首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. We estimate total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10(16) moles) over a period of several hundred thousand years based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 degree C over several hundred thousand years. We conclude that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.  相似文献   

2.
The results of palacomagnetic studies made on the Deccan Traps by various workers are reviewed in the light of the recent palaeomagnetic data on these rocks and the general geological information. It is suggested that: (a) the earlier altitude-polarity classification of the Deccan Traps, suggesting that the flows below the general elevation of 2000±200 feet above mean sea level are of reversed magnetic polarity while those above this horizon are normal, is not without exceptions; (b) the geomagnetic field reversed its polarity several times during the eruption of these lavas; (c) the Deccan Trap eruptions probably consisted of several phases of volcanicity over a protracted period; and (d) the phases of Deccan Trap volcanism, the phases of Himalayan upheaval, and the northward drift of the Indian landmass were rather concrescent events.  相似文献   

3.
Deccan Traps are the most extensive geological formations of Deccan Peninsula with the exception of only the metamorphic and igneous complex of Archaean age. Based on their mode of emplacement, geomorphic setting and hydrogeological behaviour over an area of about 5,000 sq. km the authors have classified the Deccan Traps of western Maharashtra into 3 groups, namely, (1) The Deccan Traps of Dhulia district, characterised by numerous dolerite dykes, (2) Areally extensive trap flows of Sholapur and Osmanabad districts resulting from slow and quiescent type of flood eruption occupyng the gently undulating terrain, and (3) the traps of Kolaba, Thana and Bombay-Poona regions characterised by intertrappean sediments, dolerite dykes and volcanic ash beds, indicative of violent outbursts resulting in the Sahyadri geomorphologic unit. The groundwater possibilities in the three groups are to a great extent governed by the nature and constitution of the individual flows. The massive traps with their fracture porosities, the vesicular traps with their minutely interconnected and partly filled vesicles and the intertrappen sediments with their primary porosities play a decisive role in determining the groundwater possibilities in them. In Dhulia district the dolerite dykes to a great extent control the movement of groundwater, and success or otherwise of the well field area depends very much upon its location with reference to adjacent dykes. Areally extensive thick vesicular traps with their gentle dips towards east, in Sholapur district, have to be explored for possible artesian conditions in the downdip directions of the trappean units to be tapped. In the case of Poona, Thana and Kolaba districts, exploratory drilling based on geophysical data (to delineate the nature and extent of water bearing horizons) has to be resorted to. It is, therefore, imperative to sub-divide at this stage Taylor’s Single Unit of Deccan Trap Groundwater Province into 3 Sub-Provinces, based on geomorphological, geological and geohydrological setting in the region of western Maharashtra of the present investigation.  相似文献   

4.
The Jurassic stratigraphy in China is dominated by continental sediments. Marine facies and marine-terrigenous facies sediment have developed locally in the Qinghai-Tibet area, southern South China, and northeast China. The division of terrestrial Jurassic strata has been argued, and the conclusions of biostratigraphy and isotope chronology have been inconsistent.During the Jurassic period, the North China Plate, South China Plate, and Tarim Plate were spliced and formed the prototype of ancient China. The Yanshan Movement has had a profound influence on the eastern and northern regions of China and has formed an important regional unconformity. The Triassic-Jurassic boundary(201.3 Ma) is located roughly between the Haojiagou Formation and the Badaowan Formation in the Junggar Basin, and between the Xujiahe Formation and the Ziliujing Formation in the Sichuan Basin. The early Early Jurassic sediments generally were lacking in the eastern and central regions north of the ancient Dabie Mountains, suggesting that a clear uplift occurred in the eastern part of China during the Late Triassic period when it formed vast mountains and plateaus. A series of molasse-volcanic rock-coal strata developed in the northern margin of North China Craton in the Early Jurassic and are found in the Xingshikou Formation, Nandailing Formation, and Yaopo Formation in the West Beijing Basin. The geological age and markers of the boundary between the Yongfeng Stage and Liuhuanggou Stage are unclear. About 170 Ma ago, the Yanshan Movement began to affect China. The structural system of China changed from the near east-west Tethys or the Ancient Asia Ocean tectonic domain to the north-north-east Pacific tectonic domain since 170–135 Ma. A set of syngenetic conglomerate at the bottom of the Haifanggou or Longmen Fms. represented another set of molasse-volcanic rock-coal strata formed in the Yanliao region during the Middle Jurassic Yanshan Movement(Curtain A1). The bottom of the conglomerate is approximately equivalent to the boundary of the Shihezi Stage and Liuhuanggou Stage. The bottom of the Manas Stage creates a regional unconformity in northern China(about 161 Ma, Volcanic Curtain of the Yanshan Movement, Curtain A2). The Jurassic Yanshan Movement is likely related to the southward subduction of the Siberian Plate to the closure of the Mongolia-Okhotsk Ocean. A large-scale volcanic activity occurred in the Tiaojishan period around 161–153 Ma. Note that 153 Ma is the age of the bottom Tuchengzi Formation, and the bottom boundary of the Fifth Stage of the Jurassic terrestrial stage in China should have occurred earlier than this. This activity was marked by a warming event at the top of the Toutunhe Formation, and the change in the biological assembly is estimated to be 155 Ma. The terrestrial Jurassic-Cretaceous boundary(ca. 145.0 Ma) in the Yanliao region should be located in the upper part of Member 1 of the Tuchengzi Formation, the Ordos Basin in the upper part of the Anding Formation, the Junggar Basin in the upper part of the Qigu Formation, and the Sichuan Basin in the upper part of the Suining Formation The general characteristics of terrestrial Jurassic of China changed from the warm and humid coal-forming environment of the Early-Middle Jurassic to the hot, dry, red layers in the Late Jurassic. With the origin and development of the Coniopteris-Phoenicopsis flora, the Yanliao biota was developed and spread widely in the area north of the ancient Kunlun Mountains, ancient Qinling Mountains, and ancient Dabie Mountain ranges in the Middle Jurassic, and reached its great prosperity in the Early Late Jurassic and gradually declined and disappeared and moved southward with the arrival of a dry and hot climate.  相似文献   

5.
The Nanling Mountain is an important Mesozoic orogenic belt in the south of China, its E-W-trending granites and adjacent sedimentary basins form a dis-tinctive basin-mountain landform. The Nanxiong basin and the Zhuguang granite, both located in the northern Nanling belt, make up a typical basin-mountain sys-tem. Since the 1970s, a systematical research on gran-ites and their deposit ores was carried out, from that the two main viewpoints were proposed[1—5], including (1) the polyphase gr…  相似文献   

6.
The Yanchang Formation is extensively developed in the Ordos Basin and its surrounding regions. As one of the best terrestrial Triassic sequences in China and the major oil-gas bearing formations in the Ordos Basin, its age determination and stratigraphic assignment are important in geological survey and oil-gas exploration. It had been attributed to the Late Triassic and regarded as the typical representative of the Upper Triassic in northern China for a long time, although some scholars had already proposed that the lower part of this formation should be of the Middle Triassic age in the mid-late 20th century. In this paper, we suggest that the lower and middle parts of the Yanchang Formation should be of the Ladinian and the bottom possibly belongs to the late Anisian of the Middle Triassic, mainly based on new fossils found in it and high resolution radiometric dating results. The main source rocks, namely the oil shales and mudstones of the Chang-7, are of the Ladinian Age. The upper part of the Yanchang Formation, namely the Chang-6 and the above parts, belongs to the Late Triassic. The uppermost of the Triassic is missed in most parts of the Ordos Basin. The Middle-Upper Triassic Series boundary lies in the Yanchang Formation, equivalent to the boundary between Chang-7 and Chang-6. The Ladinian is an important palaeoenvironmental turning point in the Ordos Basin. Palaeoenvironmental changes in the basin are coincidence with that of the Sichuan Basin and the main tectonic movement of the Qinling Mountains. It indicates that tectonic activities of the Qinling Mountains are related to the big palaeoenvironmental changes in both the Ordos and Sichuan Basins, which are caused by the same structural dynamic system during the Ladinian.  相似文献   

7.
Recent investigations on the Deccan Traps reveal many new findings of alkaline rocks more commonly occurring as minor intrusions than as lava flows. In comparison to the vast extent of the Deccan Traps, the alkaline rocks are negligible in their volume and are confined to tectonic belts in parts of Western India. The rocks exhibit no systematic variation in their petrographical and chemical characters thereby suggesting that they were not derived from a primary alkali olivine-basalt magma. The possibility of derivation of alkaline magma locally along the rift zones is proposed. Some of the alkaline rocks are shown to have been formed due to the effective role of volatiles in bringing dissociation of feldspar in certain cases, and alkali metasomatism in others. The syntexis of the pre-Deccan Trap carbonate rocks along the Narmada rift zone is also responsible for some occurrences.  相似文献   

8.
In the attempt to study the buried Deccan Trap layers in the Cambay Basin, the ground magnetic surveys have not been very useful as the data combine the effect due to the crystalline basement and the Trap thickness. In some parts of the basin, some reflections in the seismograms obtained in the course of seismic surveys, could be correlated to the Trap surface. These can be tied with wells drilled in the basin upto the Traps. The synthesis of the gravity and seismic data has enabled us to prepare a map of the Trap surface in the Cambay basin. The depth of the Trap surlace increases from about 2000 m in the northern part of the basin to about 600 m in its deepest part near Broach. The Trap surface rises gradually south of Narbada in an average direction of SE with depths running from 2500 m to 500 m. The interpretation of the gravity anomalies, assuming their cause to be the variations in the thickness of the Trap, has enabled the determination of the average thickness of the Traps in the basin. The maximum thickness of the Trap is in the central part of the basin and is estimated to be about 2.4 km. The Traps appear to gradually taper towards the flanks of the basin.  相似文献   

9.
40Ar/39Ar dating results on seven volcanic rocks from four areas of the Deccan Traps, India, suggest that volcanic activity more than 70 Ma ago might have occurred at least in limited areas.In the Igat Puri area, the uppermost flow shows an40Ar/39Ar age of 63 Ma, whereas a lower flow has an age of around 82–84 Ma.40Ar/39Ar ages of samples from the Bombay area also seem to favor the occurrence of volcanic activity more than 70 Ma ago. One rhyolite dyke from the Osam Hill in the Girnar Hill area shows a well-defined plateau age of 68 Ma, whereas two tholeiitic basalts from the Mahabaleshwar area indicate a total40Ar/39Ar age of around 63–64 Ma, though they show the effect of secondary disturbance in the age spectra.The volcanic activity(ies) more than 70 Ma ago may correspond to precursory one(s) for the main volcanic activity around 65 Ma ago in the Deccan Traps.  相似文献   

10.
Leg 115 of the Ocean Drilling Program recovered basaltic rocks from four sites along the ancient trail of the Réunion hotspot. The age of volcanism, determined from biostratigraphic data at the four sites, increases to the north and records the motion of India away from the Réunion hotspot through Tertiary time. Hotspot activity began with the eruption of the Deccan flood basalt flows at the time of the Cretaceous/Tertiary boundary. The Réunion hotspot has been stationary with respect to other hotspots in the Atlantic and Indian Ocean basins through Tertiary time. The geochemical compositions of the drilled basalts differ according to the relative contributions of magmas from hotspot and MORB mantle sources.  相似文献   

11.
A detailed test of a simple nonlinear quasi-geostrophic model of stratospheric sudden warming has been performed. The model is of Matsuno's type, which includes only the interaction between a single planetary wave and the zonal mean flow. Given this limitation, the 1979 major stratospheric sudden warming has been employed to test the ability of the model to simulate an actual warming event. This event proved to be an especially appropriate testing ground for the model, since its main assumptions were reasonably well satisfied by the observational evidence. Results from the model simulations demonstrate (a) that such simple quasi-geostrophic dynamics are completely capable of providing a rather detailed simulation of the 1979 major warming event and (b) that the ability of the model to simulate successfully the observed evolution of the warming is extremely sensitive to the magnitude and form of the dissipation mechanism that is assumed to operate in the middle atmosphere.  相似文献   

12.
The pioneering studies by Newell[1,2] about 40 years ago and the statistical work of Raup and Sepkoski[3] have made the end-Triassic mass extinction event of marine organisms gradually familiar to the geologists. Evidences of considerable extinction have been ob- tained both in the terrestrial and marine ecosystems[4―10]. Based on the database of Benton[11], 61 of the 257 sta-tistic animal families which lived in the Late Triassic and Early Jurassic disappeared within or at the end of the …  相似文献   

13.
Petrography, mineral and host-rock chemistry of the mantle-derived spinel lherzolite xenoliths in the nephelinites of Kutch, a late variant of the Deccan Traps province, India, are reported. The xenoliths register equilibration temperatures between 920° ± 70°C and 1060° ± 50°C and an ascent time between 19 and 168 days. Representing a palaeogeotherm of minimum heat flow between 60 and 70 mW/m2, the xenoliths possibly came from the oceanic lithosphere under the Deccan field, following the Cretaceous-Eocene fragmentation of Gondwanaland.  相似文献   

14.
Problem on development control of marine source bed hold in Chinese petroleum industry progression. The Hongshuizhuang Formation,Tieling Formation and Xiamaling Formation in the Middle and Upper Proterozoic are important hydrocarbon source beds in northern North China, and investigation of their sedimentary environments and the controls has great significance for petroleum exploration in North China. Based on sedimentology (sequence stratigraphy), palaeoecology, sedimentary geochemistry, and sedimentary palaeogeography, their development pattern is discussed. All these studies indicate that the development controls of the hydrocarbon source beds include a favorite palaeogeographic location, exceeding propagation of biomes in low and middle latitudes, anoxic environments, enrichment of phosphorus element and the adsorption of clay minerals during the preservation of organic matter in the marine carbonates.  相似文献   

15.
The Nenjiang Formation in the Songliao Basin is a symmetrical sequence of progradation-retrogradation,and is formed in the transgression cycle and regression cycle(T-R cycles)of the base level of deposition.We analyzed the drilling,well logging,core data,and seismic profiles of basin level,and by using the sequence stratigraphy,identified one secondary sequence boundary,two third-order sequence boundaries,and eight fourth-order sequence boundaries in the Nenjiang Formation.These eleven sequence boundaries can be divided into structural unconformity,depositional unconformity,flooding surface,and forced regression surface.Therefore the Nenjiang Formation can be subdivided into one secondary sequence,three third-order sequences,and ten fourth-order sequences.We have restored the sedimentary filling evolution within the stratigraphic framework of fourth-order sequences in the Nenjiang Formation.The sedimentary period of the first member of the Nenjiang Formation was corresponded to the global transgression period,which is also the development period of transgression cycle(T cycle),when the lake basin had the largest scope and deepest sedimentary water,the SB07(the maximum flooding surface)was formed on the top of strata during this period;covering above the SB07,there developed a set of condensation layer-oil shale,which is distributed in the whole basin and is the important source bed and regional cover.Therefore,a retrogradation sequence was formed in the T cycle of the first member of the Nenjiang Formation,characterized by the retrograding delta at a low angle.The delta has a giant front,a small plain,and many underwater distributary channels.Meanwhile,large gravity flow channels and sublacustrine fans are developed in the front of the delta.During the depositional period of the second member of the Nenjiang Formation,the R cycle began to develop due to the compression of the pacific tectonic domain;the source direction rotated 90°along with the eastern uplifting of the basin,and formed a series of east-west prograded and forced retrogradations.The prograding delta at high angel was developed in the interior of the sequence;the delta had a small front,a giant plain,and fewer underwater distributary channels,with the collapse at the foreslope,forming a series of slump fans.The slump fans can be divided into three types:discrete type,superimposed type,and fluid type.We built a whole"triad model"of the slump fan.Pointed out that the sequence of forced retrogradation formed by R cycle is a good structural mark of basin optimization,and rejected the viewpoint of"transgression"in the Nenjiang Formation of the Songliao Basin.  相似文献   

16.
The Hangenberg Crisis at the Devonian–Carboniferous boundary is known as a polyphase extinction event that affected more than 45 % of marine and terrestrial genera. As the cause of this event is still debated, analyses were carried out on sedimentary samples from the Devonian–Carboniferous Pho Han Formation in northeastern Vietnam to reconstruct the paleoenvironment around the time of this event using stable carbon isotopes; total sulfur; manganese; vanadium; molybdenum; and sedimentary organic matter, such as dibenzothiophenes, cadalene, and regular steranes. These geochemical signatures provide a high‐resolution redox history for this section and show that transgression‐driven high primary productivity, possibly enhanced by terrestrial input, caused severe oxygen depletion along the continental margin of the South China block during the Hangenberg Crisis.  相似文献   

17.
The results of remanent magnetic studies on eight of the nine Deccan Trap flows in the vicinity of Sagar (23°56′ N: 78°38′ E) are presented. It is found that the lower four flows in the sequence are of ‘reversed’ magnetic polarity. Of the upper four flows, the top and the bottom ones show ‘intermediate’ directions while the two flows sandwiched between these are ‘normal’. These results suggest a transitional stage between the polarity inversion of the geomagnetic field from ‘reversed’ to ‘normal’ during the eruption of these Deccan Trap flows. The remanent magnetic directions of these ‘reversed’ and ‘normal’ flows show fairly shallow inclinations and are comparable to the remanent magnetic directions of the Pavagarh basalts.  相似文献   

18.
The Late Permian to Early Triassic transition represents one of the most important Phanerozoic mass extinction episodes. The cause of this event is still in debate between catastrophic and gradual mechanisms. This study uses the U-Pb method on zircons from the uppermost Permian/lowermost Triassic clay deposits at Chahe (Guizhou Province, SW China) to examine time constraints for this event. The results of both this and previous studies show that the ages of Bed 68a and 68c (the upper clay bed of the terrestrial Permian-Triassic boundary (PTB)) respectively are 252.6±2.8 and 247.5±2.8 Ma. This age (within the margin of error) almost accords with the upper clay bed (Bed 28) age of Meishan and the eruption age of Tunguss Basalt, and is so far the most accurate age obtained from terrestrial PTB. The claystone of Bed 68 was formed in the earliest Triassic. The biotic crisis occurred at nearly the same time in terrestrial and marine environments during Permian-Triassic interval; however the extinction patterns and processes are different. The extinction pattern of the terrestrial plants shows a major decline at the PTB after long-term evolution, followed by a retarded extinction of the relicts in the earliest Triassic.  相似文献   

19.
Phanerozoic chronostratigraphic units can only be defined through their lower boundary stratotypes.The lowermost stage of the Paleocene of China,which mainly consists of terrestrial deposits,can only be defined through its lower boundary stratotype,i.e.the continental Cretaceous/Paleogene boundary stratotype.There is no section yet found which contains continuous terrestrial deposits and biostratigraphic records of the Cretaceous-Paleogene transition in Nanxiong,Guangdong and Jiayin,Heilongjiang,there is no evidence for establishing the continental stratotype of the Cretaceous/Paleogene boundary in either area.Therefore,both the"Shanghuan stage"and"Furaoan stage"are not good candidates for the lowermost stage of the Paleocene of China.From the viewpoint of charophytes,the outcrop section of the Dangyang,Hubei Province(Central China)contains the most continuous,abundant and diverse terrestrial biostratigraphic records of the Cretaceous-Paleogene transition,in particular the early Paleocene,known so far in the world.The biostratigraphic records of ostracods in the transition are also continuous,rich,and diverse.The Dangyang outcrop section is the only section known so far in China that is a possible candidate for a continental stratotype of the Cretaceous/Paleogene boundary in China and the section is the only potential section identified to date for establishing the regional lowermost stage of the Paleocene,Paleogene and Cenozoic in China or stratotype section for the stage.  相似文献   

20.
Magmatism in Kachchh, in the northwestern Deccan continental flood basalt province, is represented not only by typical tholeiitic flows and dikes, but also plug-like bodies, in Mesozoic sandstone, of alkali basalt, basanite, melanephelinite and nephelinite, containing mantle nodules. They form the base of the local Deccan stratigraphy and their volcanological context was poorly understood. Based on new and published field, petrographic and geochemical data, we identify this suite as an eroded monogenetic volcanic field. The plugs are shallow-level intrusions (necks, sills, dikes, sheets, laccoliths); one of them is known to have fed a lava flow. We have found local peperites reflecting mingling between magmas and soft sediment, and the remains of a pyroclastic vent composed of non-bedded lapilli tuff breccia, injected by mafic alkalic dikes. The lapilli tuff matrix contains basaltic fragments, glass shards, and detrital quartz and microcline, with secondary zeolites, and there are abundant lithic blocks of mafic alkalic rocks. We interpret this deposit as a maar-diatreme, formed due to phreatomagmatic explosions and associated wall rock fragmentation and collapse. This is one of few known hydrovolcanic vents in the Deccan Traps. The central Kachchh monogenetic volcanic field has >30 individual structures exposed over an area of ∼1,800 km2 and possibly many more if compositionally identical igneous intrusions in northern Kachchh are proven by future dating work to be contemporaneous. The central Kachchh monogenetic volcanic field implies low-degree mantle melting and limited, periodic magma supply. Regional directed extension was absent or at best insignificant during its formation, in contrast to the contemporaneous significant directed extension and vigorous mantle melting under the main area of the Deccan flood basalts. The central Kachchh field demonstrates regional-scale volcanological, compositional, and tectonic variability within flood basalt provinces, and adds the Deccan Traps to the list of such provinces containing monogenetic- and/or hydrovolcanism, namely the Karoo-Ferrar and Emeishan flood basalts, and plateau basalts in Saudi Arabia, Libya, and Patagonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号