首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deposition and subsidence analysis, coupled with previous structural studies of the Sevier thrust belt, provide a means of reconstructing the detailed kinematic history of depositional response to episodic thrusting in the Cordilleran foreland basin of southern Wyoming, western interior USA. The Upper Cretaceous basin fill is divided into five megasequences bounded by unconformities. The Sevier thrust belt in northern Utah and southwestern Wyoming deformed in an eastward progression of episodic thrusting. Three major episodes of displacement on the Willard‐Meade, Crawford and ‘early’ Absaroka thrusts occurred from Aptian to early Campanian, and the thrust wedge gradually became supercritically tapered. The Frontier Formation conglomerate, Echo Canyon and Weber Canyon Conglomerates and Little Muddy Creek Conglomerate were deposited in response to these major thrusting events. Corresponding to these proximal conglomerates within the thrust belt, Megasequences 1, 2 and 3 were developed in the distal foreland of southern Wyoming. Two‐dimensional (2‐D) subsidence analyses show that the basin was divided into foredeep, forebulge and backbulge depozones. Foredeep subsidence in Megasequences 1, 2 and 3, resulting from Willard‐Meade, Crawford and ‘early’ Absaroka thrust loading, were confined to a narrow zone in the western part of the basin. Subsidence in the broad region east of the forebulge was dominantly controlled by sediment loading and inferred dynamic subsidence. Individual subsidence curves are characterized by three stages from rapid to slow. Controlled by relationships between accommodation and sediment supply, the basin was filled with retrogradational shales during periods of rapid subsidence, followed by progradational coarse clastic wedges during periods of slow subsidence. During middle Campanian time (ca. 78.5–73.4 Ma), the thrust wedge was stalled because of wedge‐top erosion and became subcritical, and the foredeep zone eroded and rebounded because of isostasy. The eroded sediments were transported far from the thrust belt, and constitute Megasequence 4 that was mostly composed of fluvial and coastal plain depositional systems. Subsidence rates were very slow, because of post‐thrusting rebound, and the resulting 2‐D subsidence was lenticular in an east–west direction. During late Campanian to early Maastrichtian time, widespread deposits of coarse sediment (the Hams Fork Conglomerate) aggraded the top of the thrust wedge after it stalled, prior to initiation of ‘late’ Absaroka thrusting. Meanwhile Megasequence 5 was deposited in the Wyoming foreland under the influence of both the intraforeland Wind River basement uplift and the Sevier thrust belt.  相似文献   

2.
Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia   总被引:3,自引:1,他引:3  
Eastward Andean orogenic growth since the late Oligocene led to variable crustal loading, flexural subsidence and foreland basin sedimentation in the Chaco basin. To understand the interaction between Andean tectonics and contemporaneous foreland development, we analyse stratigraphic, sedimentologic and seismic data from the Subandean Belt and the Chaco Basin. The structural features provide a mechanism for transferring zones of deposition, subsidence and uplift. These can be reconstructed based on regional distribution of clastic sequences. Isopach maps, combined with sedimentary architecture analysis, establish systematic thickness variations, facies changes and depositional styles. The foreland basin consists of five stratigraphic successions controlled by Andean orogenic episodes and climate: (1) the foreland basin sequence commences between ~27 and 14 Ma with the regionally unconformable, thin, easterly sourced fluvial Petaca strata. It represents a significant time interval of low sediment accumulation in a forebulge‐backbulge depocentre. (2) The overlying ~14–7 Ma‐old Yecua Formation, deposited in marine, fluvial and lacustrine settings, represents increased subsidence rates from thrust‐belt loading outpacing sedimentation rates. It marks the onset of active deformation and the underfilled stage of the foreland basin in a distal foredeep. (3) The overlying ~7–6 Ma‐old, westerly sourced Tariquia Formation indicates a relatively high accommodation and sediment supply concomitant with the onset of deposition of Andean‐derived sediment in the medial‐foredeep depocentre on a distal fluvial megafan. Progradation of syntectonic, wedge‐shaped, westerly sourced, thickening‐ and coarsening‐upward clastics of the (4) ~6–2.1 Ma‐old Guandacay and (5) ~2.1 Ma‐to‐Recent Emborozú Formations represent the propagation of the deformation front in the present Subandean Zone, thereby indicating selective trapping of coarse sediments in the proximal foredeep and wedge‐top depocentres, respectively. Overall, the late Cenozoic stratigraphic intervals record the easterly propagation of the deformation front and foreland depocentre in response to loading and flexure by the growing Intra‐ and Subandean fold‐and‐thrust belt.  相似文献   

3.
The propagation of the deformation front in foreland systems is typically accompanied by the incorporation of parts of the basin into wedge‐top piggy‐back basins, this process is likely producing considerable changes to sedimentation rates (SR). Here we investigate the spatial‐temporal evolution of SR for the Tremp–Jaca Basin in the Southern Pyrenees during its evolution from a wedge‐top, foreredeep, forebulge configuration to a wedge‐top stage. SR were controlled by a series of tectonic structures that influenced subsidence distribution and modified the sediment dispersal patterns. We compare the decompacted SR calculated from 12 magnetostratigraphic sections located throughout the Tremp–Jaca Basin represent the full range of depositional environment and times. While the derived long‐term SR range between 9.0 and 84.5 cm/kyr, compiled data at the scale of magnetozones (0.1–2.5 Myr) yield SR that range from 3.0 to 170 cm/kyr. From this analysis, three main types of depocenter are recognized: a regional depocenter in the foredeep depozone; depocenters related to both regional subsidence and salt tectonics in the wedge‐top depozone; and a depocenter related to clastic shelf building showing transgressive and regressive trends with graded and non‐graded episodes. From the evolution of SR we distinguish two stages. The Lutetian Stage (from 49.1–41.2 Ma) portrays a compartmentalized basin characterized by variable SR in dominantly underfilled accommodation areas. The markedly different advance of the deformation front between the Central and Western Pyrenees resulted in a complex distribution of the foreland depozones during this stage. The Bartonian–Priabonian Stage (41.2–36.9 Ma) represents the integration of the whole basin into the wedge‐top, showing a generalized reduction of SR in a mostly overfilled relatively uniform basin. The stacking of basement units in the hinterland during the whole period produced unusually high SR in the wedge‐top depozone.  相似文献   

4.
The Ericson Formation was deposited in the distal foredeep of the Cordilleran foreland basin during Campanian time. Isopach data show that it records early dynamic subsidence and the onset of basin partitioning by Laramide uplifts. The Ericson Formation is well exposed around the Rock Springs uplift, a Laramide structural dome in southwestern Wyoming; the formation is thin, regionally extensive, and does not display the wedge‐shaped geometry typical of foredeep deposits. Sedimentation in this area was controlled both by activity in the thrust belt and by intraforeland tectonics. The Ericson Formation is ideally situated both spatially and temporally to study the transition from Sevier to Laramide (thin‐ to thick‐skinned) deformation which corresponded to the shift from flexural to dynamic subsidence and the demise of the Cretaceous foreland basin system. We establish the depositional age of the Ericson Formation as ca. 74 Ma through detrital zircon U–Pb analysis. Palaeocurrent data show a generally southeastward transport direction, but northward indicators near Flaming Gorge Reservoir suggest that the intraforeland Uinta uplift was rising and shedding sediment northward by late Campanian time. Petrographic data and detrital zircon U–Pb ages indicate that Ericson sediment was derived from erosion of Proterozoic quartzites and Palaeozoic and Mesozoic quartzose sandstones in the Sevier thrust belt to the west. The new data place temporal and geographic constraints on attempts to produce geodynamic models linking flat‐slab subduction of the oceanic Farallon plate to the onset of the Laramide orogenic event.  相似文献   

5.
Isopach and sedimentary facies maps of Upper Devonian (upper Frasnian and lower Famennian) strata deposited in a part of the central Appalachian foreland basin (eastern United States) during the Acadian orogeny show a significant change in depositional style over time. Maps of two successive upper Frasnian intervals show steady thickening to the east towards the hinterland. Coarser‐grained sediment was deposited in distinct tongues in front of the Augusta lobe, a previously recognized locus of sediment input in the central Appalachian basin. Maps of two subsequent lower Famennian stratigraphic intervals show distinct depocentres in the study area. Famennian strata thin eastward (by about 50%) over a distance of about 90 km from these depocentres to the limit of mapping at the Allegheny structural front. This is towards the Acadian sediment source and in contrast to general Upper Devonian thickening in that direction. The axes of these lower Famennian depocentres are stacked on top of each other. Also, coarser‐grained lower Famennian sediment is concentrated in strike trends just east of the axes of the depocentres, and no coarser tongues exist in front of the Augusta lobe, in contrast to the underlying (upper Frasnian) strata. The duration of each of the four study intervals is estimated to be between 0.5 and 3.0 Myr. The early Famennian depocentres may be in a back‐bulge basin, with a forebulge uplifted to the east of the study area. Earlier deposition may have occurred in a basin with a subtle, subdued, and longer wavelength forebulge (perhaps located west of the study area). Previously published regional isopachs of Upper Devonian strata suggest that the main axis of subsidence of the Acadian foreland basin (foredeep depozone) at this time was over 350 km east of the study area. Examination of published quantitative flexural models of other foreland basins with flexural rigidities close to published rigidities calculated for the Appalachian basin suggests that the proposed back‐bulge basin is in the correct location, relative to the suggested position of the foredeep at that time. Several previously recognized structural features of the northern Appalachian basin support the interpretations presented herein. Much of the Acadian foreland basin may be eroded in the central Appalachian basin. The present study demonstrates the difficulties in recognizing foreland basin depozones in partially preserved orogens.  相似文献   

6.
The transition to a post‐orogenic state in mountain ranges has been identified by a change from active subsidence to isostatic rebound of the foreland basin. However, the nature of the interplay between isostatic rebound and sediment supply, and their impact on the topographic evolution of a range and foreland basin during this transition, has not been fully investigated. Here, we use a box model to explore the syn‐ to post‐orogenic evolution of foreland basin/thrust wedge systems. Using a set of parameter values that approximate the northern Pyrenees and the neighbouring Aquitaine foreland basin, we evaluate the controls on sediment drape over the frontal parts of the retro‐wedge following cessation of crustal thickening. Conglomerates preserved at approximately 600‐m elevation, which is ~ 300 m above the present mountain front in the northern Pyrenees are ca. 12 Ma, approximately 10 Myrs younger than the last evidence of crustal thickening in the wedge. Using the model, this post‐orogenic sediment drape is explained by the combination of a sustained, high sediment influx from the range into the basin relative to the efflux out of the basin, combined with cessation of the generation of accommodation space through basin subsidence. Post‐orogenic sediment drape is considered a generic process that is likely to be responsible for elevated low‐gradient surfaces and preserved remnants of continental sedimentation draping the outer margins of the northern Pyrenean thrust wedge.  相似文献   

7.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

8.
Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U‐Pb geochronological data from Eocene–Pliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (Pucará–Angastaco and La Viña areas) provide an Eocene (ca. 38 Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca. 14 Ma and the coarse‐grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge‐top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial‐lacustrine intramontane setting. By ca. 4 Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge‐top depozone, influenced by thick‐skinned deformation and re‐activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre‐Eocene strata (Santa Barbara Subgroup) within the region.  相似文献   

9.
The main Karoo Basin of South Africa is a Late Carboniferous–Middle Jurassic retroarc foreland fill, developed in front of the Cape Fold Belt (CFB) in relation to subduction of the palaeo-Pacific plate underneath the Gondwana plate. The Karoo sedimentary fill corresponds to a first-order sequence, with the basal and top contacts marking profound changes in the tectonic setting, i.e. from extensional to foreland and from foreland to extensional, respectively. Sedimentation within the Karoo Foreland Basin was closely controlled by orogenic cycles of loading and unloading in the CFB. During orogenic loading, episodes of subsidence and increase in accommodation adjacent to the orogen correlate to episodes of uplift and decrease in accommodation away from the thrust-fold belt. During orogenic unloading the reverse occurred. As a consequence, the depocentre of the Karoo Basin alternated between the proximal region, during orogenic loading, and the distal region, during orogenic unloading. Orogenic loading dominated during the Late Carboniferous–Middle Triassic interval, leading to the accumulation of thick foredeep sequences with much thinner forebulge correlatives. The Late Triassic–Middle Jurassic interval was dominated by orogenic unloading, with deposition taking place in the distal region of the foreland system and coeval bypass and reworking of the older foredeep sequences. The out of phase history of base-level changes generated contrasting stratigraphies between the proximal and distal regions of the foreland system separated by a stratigraphic hinge line. The patterns of hinge line migration show the flexural peripheral bulge advancing towards the craton during the Late Carboniferous–Permian interval in response to the progradation of the orogenic front. The orogenward migration of the foreland system recorded during the Triassic–Middle Jurassic may be attributed to piggyback thrusting accompanied by a retrogradation of the centre of weight within the orogenic belt during orogenic loading (Early Middle Triassic) or to the retrogradation of the orogenic load through the erosion of the orogenic front during times of orogenic unloading (Late Triassic–Middle Jurassic).  相似文献   

10.
The Northern Apennines provide an example of long‐term deep‐water sedimentation in an underfilled pro‐foreland basin first linked to an advancing orogenic wedge and then to a retreating subduction zone during slab rollback. New palaeobathymetric and geohistory analyses of turbidite systems that accumulated in the foredeep during the Oligocene‐Miocene are used to unravel the basin subsidence history during this geodynamic change, and to investigate how it interplayed with sediment supply and basin tectonics in controlling foredeep filling. The results show an estimated ca. 2 km decrease in palaeowater depth at ca. 17 Ma. Moreover, a change in basin subsidence is documented during Langhian time, with an average decompacted subsidence rate, during individual depocentre life, that increased from <0.3 to 0.4–0.6 mm y?1, together with the appearance of a syndepositional backstripped subsidence bracketed between 0.1 and 0.2 mm y?1. This change prevented the basin from complete filling during late Miocene and is interpreted as the foredeep response to initial rollback of the downgoing Adriatic slab. Thus, the Northern Apennine system provides an example of a pro‐foreland basin that experienced both a slow‐ and high‐subsidence regime as a consequence of the advancing then retreating evolution of the collisional system.  相似文献   

11.
The stratigraphy of the Eocene-Miocene peripheral foreland basin in Switzerland consists of basal deposits of Nummulitic Limestones and Globigerina Marls representing a phase of deepening, followed by two shallowing-up megacycles culminating in fully continental sedimentation. The onset of sedimentation was diachronous and took place on an unconformity surface with increasing stratigraphic gap to the north and west. In the Ultrahelvetic units, which were derived from the south and have a provenance between the Helvetic shelf and the Penninic ocean, the stratigraphic gap is minimal. This restricts the initiation of erosion of the southern European margin due to emersion to post-Maastrichtian and pre-late Palaeocene. This coincides with the final closing of the Valais trough and may therefore be interpreted as the point at which continental flexure s. s. started. In the autochthon, the subcrop map of the unconformity surface shows that the regional pattern of subcropping units is oblique to both neo-Alpine tectonic structures and Helvetic (Mesozoic) passive margin structures. There are local zones of disruption to the broad regional pattern suggesting that the basal unconformity was corrugated. Both the paliaspastic restoration of the autochthon relative to the thrust front during the Palaeocene, and the regional pattern of erosion indicate that the basal unconformity may be due to erosion of a flexural forebulge. Following deposition of the shallow water Nummulitic Limestones and the deeper water Globigerina Marls, clastic sediments were shed from the orogenic wedge in the south. These turbidites, the Taveyannaz Sandstones, filled both ponded basins at the contemporaneous thrust front and the frontal trench or foredeep. Evidently, early thrusts drove at a shallow level into the embryonic basin as ‘front-runners’, whereas most shortening and uplift continued to take place within the main part of the orogenic wedge further to the south. Eventually, the frontal palaeohighs, together with the turbidite basins, were buried by the northward emplacement of surface mud-slides, and sediment depocentres were translated northwards onto the foreland. The most likely cause of the underfilled ‘Flysch’ stage is the rapid advance of a submarine thrust wedge over the flexed European plate which resulted in (i) low sediment fluxes and (ii) high subsidence rates associated with the rapid migration of the load and depocentre. Later, as the rate of advance slowed and the wedge became subaerially exposed, the basin rapidly filled with coarse-grained detritus representing the ‘Molasse’ stage.  相似文献   

12.
ABSTRACT Foreland basins form by lithospheric flexure under orogenic loading and are filled by surface transport of sediment. This work readdresses the interplay between these processes by integrating in a 3D numerical model: the mechanisms of thrust stacking, elastic flexural subsidence and sediment transport along the drainage network. The experiments show that both crustal tectonic deformation and vertical movements related to lithospheric flexure control and organise the basin-scale drainage pattern, competing with the nonlinear, unpredictable intrinsic nature of river network evolution. Drainage pattern characteristics are predicted that match those observed in many foreland basins, such as the axial drainage, the distal location of the main river within the basin, and the formation of large, long-lasting lacustrine systems. In areas where the river network is not well developed before the formation of the basin, these lithospheric flexural effects on drainage patterns may be enhanced by the role of the forebulge uplift as drainage divide. Inversely, fluvial transport modifies the flexural vertical movements differently than simpler transport models (e.g. diffusion): Rivers can drive erosion products far from a filled basin, amplifying the erosional rebound of both orogen and basin. The evolution of the sediment budget between orogen and basin is strongly dependent on this coupling between flexure and fluvial transport: Maximum sediment accumulations on the foreland are predicted for a narrow range of lithospheric elastic thickness between 15 and 40 km, coinciding with the T e values most commonly reported for foreland basins.  相似文献   

13.
A two‐dimensional mathematical model considering coupling between a deforming elasto‐visco‐plastic fold–thrust belt, flexural subsidence and diffusional surface processes is solved using the Finite Element Method to investigate how the mechanical behaviour of brittle–ductile wedges influences the development of foreland basins. Results show that, depending mainly on the strength of the basal décollement, two end‐member types of foreland basin are possible. When the basal detachment is relatively strong, the foreland basin system is characterised by: (1) Highly asymmetrical orogen formed by thrusts concentrated in the incoming pro‐wedge. (2) Sedimentation on retro‐side takes place in one major foredeep basin which grows throughout orogen evolution. (3) Deposition on the pro‐side occurs initially in the foredeep, and continues in the wedge‐top before isolated basins are advected towards the orogen core where they become uplifted and exhumed. (4) Most pro‐wedge basins show an upward progression from low altitude, foredeep deposits at the base to high altitude, wedge‐top deposits near the surface. In contrast, when the basal detachment behaves weakly due to the presence of low viscosity material such as salt, the foreland basin system is characterised by (1) Broad, low relief orogen showing little preferential vergence and predominance of folding relative to faulting. (2) Deposition mainly in wedge‐top basins showing growth strata. (3) Many basins are initiated contemporaneously but form discontinuously due to the locus of active deformation jumping back and forth between different structures. Model results successfully reproduce first order observations of deforming brittle–ductile wedges and foreland basins. Moreover, the results support and provide a framework for understanding the existence of two main end‐member foreland basin types, simple and complex, associated with fold–thrust belts whose detachments are relatively strong and weak, respectively.  相似文献   

14.
We present field and seismic evidence for the existence of Coniacian–Campanian syntectonic angular unconformities within basal foreland basin sequences of the Austral or Magallanes Basin, with implications for the understanding of deformation and sedimentation in the southern Patagonian Andes. The studied sequences belong to the mainly turbiditic Upper Cretaceous Cerro Toro Formation that includes a world‐class example of conglomerate‐filled deep‐water channel bodies deposited in an axial foredeep depocentre. We present multiple evidence of syntectonic deposition showing that the present internal domain of the fold‐thrust belt was an active Coniacian–Campanian wedge‐top depozone where deposition of turbidites and conglomerate channels of Cerro Toro took place. Cretaceous synsedimentary deformation was dominated by positive inversion of Jurassic extensional structures that produced elongated axial submarine trenches separated by structural highs controlling the development and distribution of axial channels. The position of Coniacian‐Campanian unconformities indicates a ca. 50–80 km advance of the orogenic front throughout the internal domain, implying that Late Cretaceous deformation was more significant in terms of widening the orogenic wedge than all subsequent Andean deformation stages. This south Patagonian orogenic event can be related to compressional stresses generated by the combination of both the collision of the western margin of Rocas Verdes Basin during its closure, and Atlantic ridge push forces due to its accelerated opening, during a global‐scale plate reorganization event.  相似文献   

15.
We present new sedimentological, petrographical, palaeontological and detrital zircon U–Pb data on late Oligocene–early Miocene sedimentary rocks of the thin-skinned thrust belt of East Carpathians. These data were acquired to reconstruct the sedimentary routing system for two compositionally different turbidite fans made of the regionally extensive Kliwa and Fusaru formations. On the eastern margin of the Moldavides foreland basin, large low-gradient river systems draining the East European Platform provided well-sorted quartz-rich sand forming deltas on wide shallow shelves and thick Kliwa submarine fans. Due to the westward subduction of a thinned continental plate, the western basin margin was characterized by short, steep-gradient routing systems where sediment transport to deep water was mainly through hyperpycnal flows. The Getic and Bucovinian nappes of the East Carpathians and the exhumed Cretaceous–Early Palaeogene orogenic wedge fed Fusaru fans with poorly sorted lithic sand. The Fusaru fans trend northwards in the foredeep basin having an elongate depocentre, interfingering and then overlapping on the distal part of the Kliwa depositional system due to the eastward advance of the Carpathian fold-and-thrust belt. A smaller sediment input is supplied by southern continental areas (i.e. Moesian Platform, North Dobrogea and potentially the Balkans). In general, the sandstone interfingering between distinct basin floor fan systems is less well documented because the facies would be similar and there are not many systems that have a distinct sediment provenance like Kliwa and Fusaru systems. This case study improves the understanding of regional palaeogeography and sedimentary routing systems and provides observations relevant here or elsewhere on the interfingering turbidite fan systems.  相似文献   

16.
ABSTRACT This study combines stratigraphic evidence with geodynamic modelling to demonstrate that a forebulge played an identifiable role in Cenomanian–Turonian erosion and sediment accumulation in the North American Western Interior basin. The early to middle Turonian forebulge migrated progressively eastwards, and by the upper middle Turonian acted as a 'backstop' against which barrier islands formed in the axial basin.
This paper focuses on the progressive migration of an unconformity on the forebulge. The lengthwise orogen-parallel orientation and time-transgressive orogen-normal migration of the forebulge unconformity are characteristics that differentiate it from unconformities developed on reactivated basement structures. We present a conceptual model in which the unconformity formed as the seafloor was uplifted by forebulge-related flexure to a water depth at which submarine bypass and erosion occurred. A numerical model that describes forebulge migration in response to load dispersal by erosion of the orogenic front and sedimentation into the foredeep indicates that the distance from the thrust front to the forebulge is within reasonable bounds established using a flexural rigidity of 3×1024 Nm.
We identify architecturally similar, coeval unconformities from Montana to New Mexico, and interpret the similar distance from the thrust front to a point where each unconformity dissipates as indicative of a uniform lithospheric flexural response along the orogenic front. Here we ascribe cratonward (west-to-east) forebulge migration to erosional load redistribution, whereas orogen-parallel (north–south) stratigraphic climb of the forebulge unconformities developed in response to depocentre migration. Inherited lithospheric inhomogeneities may have allowed the forebulge in central Colorado to crest farther from the orogen than to the north and south.  相似文献   

17.
Foreland basin strata provide an opportunity to review the depositional response of alluvial systems to unsteady tectonic load variations at convergent plate margins. The lower Breathitt Group of the Pocahontas Basin, a sub‐basin of the Central Appalachian Basin, in Virginia preserves an Early Pennsylvanian record of sedimentation during initial foreland basin subsidence of the Alleghanian orogeny. Utilizing fluvial facies distributions and long‐term stacking patterns within the context of an ancient, marginal‐marine foreland basin provides stratigraphic evidence to disentangle a recurring, low‐frequency residual tectonic signature from high‐frequency glacioeustatic events. Results from basin‐wide facies analysis, corroborated with petrography and detrital zircon geochronology, support a two end‐member depositional system of coexisting transverse and longitudinal alluvial systems infilling the foredeep during eustatic lowstands. Provenance data suggest that sediment was derived from low‐grade metamorphic Grenvillian‐Avalonian terranes and recycling of older Palaeozoic sedimentary rocks uplifted as part of the Alleghanian orogen and Archean‐Superior‐Province. Immature sediments, including lithic sandstone bodies, were deposited within a SE‐NW oriented transverse drainage system. Quartzarenites were deposited within a strike‐parallel NE‐SW oriented axial drainage, forming elongate belts along the western basin margin. These mature quartzarenites were deposited within a braided fluvial system that originated from a northerly cratonic source area. Integrating subsurface and sandstone provenance data indicates significant, repeated palaeogeographical shifts in alluvial facies distribution. Distinct wedges comprising composite sequences are bounded by successive shifts in alluvial facies and define three low‐frequency tectonic accommodation cycles. The proposed tectonic accommodation cycles provide an explanation for the recognized low‐frequency composite sequences, defining short‐term episodes of unsteady westward migration of the flexural Appalachian Basin and constrain the relative timing of deformation events during cratonward progression of the Alleghanian orogenic wedge.  相似文献   

18.
《Basin Research》2018,30(3):426-447
Integration of detrital zircon geochronology and three‐dimensional (3D) seismic‐reflection data from the Molasse basin of Austria yields new insight into Oligocene‐early Miocene palaeogeography and patterns of sediment routing within the Alpine foreland of central Europe. Three‐dimensional seismic‐reflection data show a network of deep‐water tributaries and a long‐lived (>8 Ma) foredeep‐axial channel belt that transported Alpine detritus greater than 100 km from west to east. We present 793 new detrital zircon ages from 10 sandstone samples collected from subsurface cores located within the seismically mapped network of deep‐water tributaries and the axial channel belt. Grain age populations correspond with major pre‐Alpine orogenic cycles: the Cadomian (750–530 Ma), the Caledonian (490–380 Ma) and the Variscan (350–250 Ma). Additional age populations correspond with Eocene‐Oligocene Periadriatic magmatism (40–30 Ma) and pre‐Alpine, Precambrian sources (>750 Ma). Although many samples share the same age populations, the abundances of these populations vary significantly. Sediment that entered the deep‐water axial channel belt from the west (Freshwater Molasse) and southwest (Inntal fault zone) is characterized by statistically indistinguishable age distributions that include populations of Variscan, Caledonian and Cadomian zircon at modest abundances (15–32% each). Sandstone from a shallow marine unit proximal to the northern basin margin consists of >75% Variscan (350–300 Ma) zircon, which originated from the adjacent Bohemian Massif. Mixing calculations based on the Kolmogorov–Smirnoff statistic suggest that the Alpine fold‐thrust belt south of the foreland was also an important source of detritus to the deep‐water Molasse basin. We interpret evolving detrital zircon age distributions within the axial foredeep to reflect a progressive increase in longitudinal sediment input from the west (Freshwater Molasse) and/or southwest (Inntal fault zone) relative to transverse sediment input from the fold‐thrust belt to the south. We infer that these changes reflect a major reorganization of catchment boundaries and denudation rates in the Alpine Orogen that resulted in the Alpine foreland evolving to dominantly longitudinal sediment dispersal. This change was most notably marked by the development of a submarine canyon during deposition of the Upper Puchkirchen Formation that promoted sediment bypass eastward from Freshwater Molasse depozones to the Molasse basin deep‐water axial channel belt. The integration of 3D seismic‐reflection data with detrital zircon geochronology illustrates sediment dispersal patterns within a continental‐scale orogen, with implications for the relative role of longitudinal vs. transverse sediment delivery in peripheral foreland basins.  相似文献   

19.
Changes in sediment flux to continental margins are commonly interpreted in terms of tectonic growth of topography or climatic change. Here, we show that variations in sediment yield from orogenic systems, previously considered as resulting from climate change, drainage reorganisation or mantle processes can be explained by intrinsic mechanisms of mountain belt/foreland basin systems naturally evolving during post-orogenic decay. Numerical modelling indicates an increase of sediment flux leaving the orogenic system synchronous with the cessation of deposition in the foreland basin and the transition from late syn- to post-orogenesis. Experiments highlight the importance of lithospheric flexure that causes the post-orogenic isostatic rebound of the foreland basin. Erosion of the rebounding foreland basin combined with continued sediment flux from the thrust wedge drives an acceleration in sediment outflux towards continental margins. Sediment budget records in natural settings such as the Northern Pyrenees or Western European Alps also indicate accelerated post-orogenic sediment delivery to the Bay of Biscay and Rhône Delta respectively. These intrinsic processes that determine sediment yield to continental margins must be accounted for prior to consideration of additional external tectonic or climatic controls.  相似文献   

20.
A synthesis has been undertaken based on regionally compiled data from the post early Eocene foreland basin succession of Svalbard. The aim has been to generate an updated depositional model and link this to controlling factors. The more than kilometer thick progradational succession includes the offshore shales of the Gilsonryggen Member of the Frysjaodden Formation, the shallow marine sandstones of the Battfjellet Formation and the predominantly heterolithic Aspelintoppen Formation, together recording the progressive eastwards infill of the foredeep flanking the West Spitsbergen fold‐and‐thrust belt. Here we present a summary of the paleo‐environmental depositional systems across the basin, their facies and regional distribution and link these together in an updated depositional model. The basin‐margin system prograded with an ascending shelf‐edge trajectory in the order of 1°. The basin fill was bipartite, with offset stacked shelf and shelf‐edge deltas, slope clinothems and basin floor fans in the western and deepest part and a simpler architecture of stacked shelf‐deltas in the shallower eastern part. We suggest a foredeep setting governed by flexural loading, likely influenced by buckling, and potentially developing into a wedge top basin in the mature stage of basin filling. High‐subsidence rates probably counteracted eustatic falls with the result that relative sea‐level falls were uncommon. Distance to the source terrain was small and sedimentation rates was temporarily high. Time‐equivalent deposits can be found outbound of Stappen High in the Vestbakken Volcanic Province and the Sørvestsnaget Basin 300 km further south on the Barents Shelf margin. We cannot see any direct evidence of coupling between these more southerly systems and the studied one; southerly diversion of the sediment‐routing, if any, may have taken place beyond the limit of the preserved deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号