首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The monthly climatology of observed temperature and salinity from the U.S. Navy Generalized Digital Environment Model (GDEM-Version 3.0) is used to derive the geographical and seasonal distribution of kinematic parameters of nonlinear internal waves in the Northern South China Sea (NSCS). Coefficients of the Generalized Extended Korteweg-de Vries Equation (GEKdV) with a background current are investigated (phase speed, dispersion, quadratic and cubic nonlinearity parameters, normalizing factor). These parameters are used to evaluate the possible polarities, shapes of internal solitary waves, their limiting amplitudes and propagation speed. We show that the long wave phase speed and dispersion parameters mainly depend on topography characteristics and have no obvious seasonal variation. The nonlinear parameters and normalizing factor are sensitive to variations in the density stratification and topography. Background current also exerts the distinct effects on the kinematic parameters; especially the nonlinear parameter can change by an order of magnitude. The nonlinear parameters take on larger values in the summer (July), and linear internal waves are prone to become steeper and develop into large-amplitude internal solitary waves under such circumstances. This explains why nonlinear internal solitary waves occur more frequently in summer. From the kinematic viewpoint, the dispersion parameter takes on larger values in the Pacific Ocean (PO) due to deeper water depth when compared with that in the NSCS. The stronger dispersion effect in the PO hinders the formation of large amplitude internal solitary waves, explaining why nonlinear internal solitary waves are rarely found to the east of the Luzon Strait. Large near-bottom velocities dominate the shallow area and tend to increase in the warm season. The largest values are induced by internal solitary waves, indicating that internal waves are the major drivers of sediment re-suspension and erosion processes.  相似文献   

2.
应用中国近海及邻近海域海洋再分析资料(简称CORA)研究南海北部第一模态内波场运动学参数的地理分布特征及其季节变化。首先分析了Brunt-Väisälä频率的统计特征;其次,基于弱非线性变系数扩展Kortewed-de Vries (veKdv)方程模型,计算了它的输入系数,即线性长波相速度,平方和立方非线性系数和频散系数,这些参数可用于定性评估内孤立波传播可能的极性,内孤立波的形态,幅度限制以及传播速度等。分析结果表明,南海北部季节性密度跃层从2月开始出现,最大浮力频率约在20 m。它在6—7月达到最强,自8月开始减弱,在10月消退。另一密度跃层出现在8—11月,最大浮力频率约在80 m,冬季大致在120 m。季节性密度跃层在4—9月十分明显,而8—10月双跃层现象显著,冬季仅出现较弱的第二密度跃层。在1—3月和10—12月海盆深水区最大Brunt-Väisälä频率值要大于陆架浅水区;而在5—9月情况则相反。Brunt-Väisälä频率最大值所在深度随季节变化显著,冬季最深,6—7月则最浅。计算的线性内波相速度、频散系数和幅度放大因子的空间特征主要取决于地形变化;平方(立方)非线性系数与地形关系较小,随季节变化明显,它们主要取决于局地海洋环境特征。通过分析veKdv方程的系数特征,解释了为何在夏季南海北部最容易观测到大振幅内孤立波和在吕宋海峡以东海域难以观测到孤立波的原因。  相似文献   

3.
何啸  贾村  孟静  刘娟  陈旭  杨小欣 《海洋科学》2023,47(3):1-14
内波是海洋中普遍存在的波动形式。内孤立波是典型的非线性内波,多发于陆架边缘海,如南海等海域,对陆架海域有重要影响。本文针对内孤立波在陆架地形上的传播问题,先基于弱非线性与全非线性数值模型,模拟了不同振幅、地形高度条件下内孤立波的演化的过程,探讨了动力系数对内孤立波演化过程的影响,对比了两模型的模拟结果在内孤立波演化过程、能量分配以及能量耗散的差异,后分析了南海的动力系数分布特征。结果表明,在内孤立波不发生破碎的情况下,弱非线性模型与全非线性模拟结果相近。当发生破碎过程时,弱非线性模型可准确模拟头波,但无法通过强非线性的破碎过程耗散能量,只能以裂变的方式辐射能量。在弱非线性模型中,随地形高度增加,频散系数减小到零,平方非线性系数由负转正,立方非线性系数绝对值增大一个量级,并主导陆架地形上内孤立波的演化过程。通过对比南海夏季与冬季非线性内波动力系数空间分布,发现内孤立波在传播过程由于夏季平方非线性效应、立方非线性效应与频散效应较强的影响,其在夏季更易发生陡化与裂变,波列发生频率高。  相似文献   

4.
基于弱非线性理论及再分析同化数据, 计算了苏禄—苏拉威西海冬季及夏季内孤立波动力参数, 包括内孤立波线性速度、一阶和二阶非线性参数及线性色散参数, 并研究了这些参数的时空变化特征。我们发现, 虽然苏拉威西海域受到更加显著的西北太平洋水入侵, 但苏禄海内孤立波动力参数的时空变化特征却比苏拉威西海更为显著。夏季苏禄海内孤立波线性速度总体上比冬季约大0.1m·s-1; 与此相反, 夏季苏拉威西海内孤立波线性速度却比冬季约小0.05m·s-1。无论是一阶或二阶非线性动力参数, 其在苏拉威西海的时空变化均比较微弱, 但在苏禄海则较为显著。苏禄海夏季一阶非线性动力参数比冬季高出约3×10-3s-1, 但是夏季二阶非线性动力参数却比1月份低约3×10-5m-1·s-1。此外, 相比冬季, 夏季苏禄海和苏拉威西海的色散动力参数均有所减弱, 但其在苏禄海减弱的幅度更大。综上, 苏禄—苏拉威西海环流引起的水体层化最大浮力频率所在深度的时空变化是造成上述内孤立波动力参数时空变化的根本原因。  相似文献   

5.
浙南近岸海流季节变化特征   总被引:7,自引:1,他引:6  
为了揭示浙南海流特征及其季节和垂向变化规律,于2006—2007年在浙南岸外一固定点(平均水深约32m)利用ADP潜标进行了春、夏、秋、冬季4次多个潮周期分层海流流速流向观测。结果表明:(1)测点最大流速为148.9cm/s,相应流向为75°,出现在春季表层大潮落潮阶段;垂向平均最大流速为106.2cm/s,平均流向为81°,出现在夏季大潮落潮落急阶段。(2)剖面各层流速垂向差异明显,表层流速(28m层以上)受海况影响明显,秋季平均流速最大(65.4cm/s),冬季最小(42.8cm/s),20~28m层冬季最强,春季最弱,20m层以下夏季最强,秋季最弱(仅小潮);垂线平均流速夏季最强(46.5cm/s),春季最小(33.7cm/s)。(3)夏季海流基本上为(偏)北向流;秋、冬则基本上为(偏)南向流;春季具往复流特点,但以北向流为主。(4)垂向上夏季和春季流向较一致,冬季和秋季流向分异明显(20m和10m层)。(5)垂线平均余流为12.8~29.8cm/s,夏季最强春季最弱;夏季和春季各层余流均为东北向,冬季为西南向,而秋季11m层(包括11m层)以下为E-NEE向,11m层以上为西南向。结论:测点海流受到潮汐、季风和台湾暖流的共同制约。季风的影响夏、冬两季大于春、秋两季;季风的影响自表层向底层减弱(主要限于表层以下10m)。  相似文献   

6.
卢陈  吴尧  杨裕桂  袁菲 《海洋学报》2022,44(12):9-18
河口环流结构关系到物质输运、泥沙沉积和地貌变化等物理过程。根据2019年磨刀门河口原型观测平台洪枯季连续观测分层潮流资料,统计洪枯季、大小潮河口东、西汊的涨落潮流及历时变化特征,利用理论方法解析河口东西汊平面环流和重力环流结构,进一步引入混合参数研究河口纵向环流中的潮汐应变环流。研究发现枯季东、西汊在转潮时刻存在东涨西落的平面环流结构,洪季平面环流特征较不明显;枯季重力环流强度整体略大于洪季,西汊重力环流强于东汊,表层向海环流流速可达0.2~0.25 m/s,而底层向陆环流流速相对较小。洪季大潮期由潮不对称性驱动的潮汐应变环流相对较大,进而增强了纵向环流的强度。河口垂向余流结构同样表现洪枯季、大小潮的变化规律。洪季余流整体较大,西汊在小潮期表层余流流速超过0.6 m/s,而东汊余流则明显呈现表层向海、底层向陆的分布特征,枯季余流整体较小,表明其对物质输运和河口地形塑造作用较弱。  相似文献   

7.
A numerical experiment has been carried out using a hydrodynamical model with nonlinear equations of motion and heat and salt advection to reconstruct the fields of hydrophysical parameters taking into account the real atmospheric forcing for the autumn season along the southern coast of the Crimean Peninsula. The studied part of the coast is situated at 44.25°N 33.95°E/44.72°N 34.55°E. High spatial resolution is used for modeling: 350 m in the horizontal plane with 38 layers in the vertical; the bottom topography is described in detail with ~500 m resolution. Detected and studied meso- and sub-mesoscale structures in the current field agree well with the observational data, which is impossible or hard to identify in numerical experiments with coarser resolution. Their kinematic characteristics and the lifetime are defined and some mechanisms of their origin are suggested.  相似文献   

8.
9.
In this paper, by non-dimensional analysis, it is found that finite-depth theory is more appropriate to the study of internal solitary waves (ISWs) in the South China Sea (SCS) than shallow-water theory. The 1-degree grid data of monthly mean temperature and salinity data at standard levels in the SCS are used to solve the linearized vertical eigenvalue problem. The nonlinear parameter and the wave phase speed are computed, then the nonlinear phase speed and the characteristic half-width of ISWs are calculated respectively by two different theories to investigate the difference between these two parameters in the SCS. The nonlinearity is the strongest near the continental slope of the SCS or islands where the bottom topography changes sharply, it is stronger in summer than that in winter; it increases (decreases) as pycnocline depth deepens (shallows), stratification strengthens (weakens) and pycnocline thickness thins (thickens). The nonlinear wave phase speed and the characteristic half-width are the largest in deep sea area, they then reduce peripherally in shallower water. The nonlinear wave phase speed in the SCS changes slightly with time, but the characteristic half-width changes somewhat larger with time. In most of the SCS basin, the nonlinear wave phase speed derived from shallow-water theory is very close to that derived from finite-depth theory, but the characteristic half-width derived from shallow-water theory is about 0.2–0.6 times larger than that derived from finite-depth theory. The ISW induced horizontal current velocity derived from shallow-water theory is larger than that derived from finite-depth theory. Some observed and numerical modeled ISW characteristic half-widths are compared with those derived from shallow-water and finite-depth theories, respectively. It is shown that, the characteristic half-widths derived from finite-depth theory agree better with observational and numerical modeled results than those derived from shallow-water theory in most cases, finite-depth theory is more applicable to the estimation of ISW characteristic half-widths in the northern SCS. It is also suggested that, to derive the precise ISW parameters in further study, the physical non-dimensional ratios which are related with ISW characteristic half-width, amplitude, thermocline and water depths should be calculated, so that an appropriate theory can be chosen for estimation.  相似文献   

10.
东南极Princess Elizabeth冰盖近地层大气参数的年变化特征   总被引:4,自引:0,他引:4  
利用2002年东南极Princess Elizabeth冰盖自动气象梯度观测点获得的近地层气象资料,分析了冰盖上的感热通量、潜热通量、大气稳定度、整体输送系数及有关气象要素特征,并与中山站同期的的气象要素进行了对比分析.结果表明,由于两站的海拔高度及地理位置的差异,LGB69站的年平均气温为-25.6℃,比中山站低16.4℃,进入内陆每10km,海拔高度上升约110m,温度下降约1℃.南极内陆冰盖的湍流热通量具有明显的年变化,感热通量年平均值为-17.9W/m2,潜热通量为-0.9W/m2,年平均冷源强度(Qh+Qe)为-18.8W/m2,表明地表从大气吸收热量.LGB69站近地层大气以近中性层结为主,中性层结下的整体输送系数为2.6×10-3,当风速大于8m/s后,整体输送系数趋于常数.LGB69站是南极地区典型下降风区,年平均风速比中山站大2.0m/s,其下降风出现的风向频和风速均大于中山站.  相似文献   

11.
Natural and human-induced changes may exert considerable impacts on the seasonal and nodal dynamics of M2 and K1 tidal constituents. Therefore, quantifying the influences of these factors on tidal regime changes is essential for sustainable water resources management in coastal environments. In this study, the enhanced harmonic analysis was applied to extract the seasonal variability of the M2 and K1 tidal amplitudes and phases at three gauging stations along Lingdingyang Bay of the Zhujiang River Delta. The seasonal dynamics in terms of tidal wave celerity and amplification/damping rate were used to quantify the impacts of human-induced estuarine morphological alterations on M2 and K1 tidal hydrodynamics in inner and outer Lingdingyang Bay. The results show that both tidal amplification/damping rate and wave celerity were considerably increased from the pre-anthropogenic activity period (Pre-AAP) to the post-anthropogenic activity period (Post-AAP) excepting the tidal amplification/damping rate in outer Lingdingyang Bay, and the variations in outer Lingdingyang Bay was larger than those in inner Lingdingyang Bay. The alterations in these two parameters were more significant in flood season than in dry season in both inner and outer Lingdingyang Bay. The seasonal variability of M2 and K1 tidal amplitudes were further quantified using a regression model accounting for the 18.61-year lunar nodal modulation, where this study observes a considerable alteration in M2 constituent owing to human interventions. During the Post-AAP, the M2 amplitudes at the downstream station were larger than those that would have occurred in the absence of strong human interventions, whereas the opposite was true for the upstream station, leading to a substantial decrease in tidal amplification in outer Lingdingyang Bay. However, it is opposite in inner Lingdingyang Bay. The underlying mechanism can be primarily attributed to channel deepening and narrowing caused by human interventions, that resulted in substantial enlargement of the bay volume and reduced the effective bottom friction, leading to faster wave celerity and stronger amplified waves.  相似文献   

12.
The dispersion characteristics of shallow water can be described by the dispersion curves, which contain substantial ocean parameter information. A fast ocean parameter inversion method based on dispersion curves with a single hydrophone is presented in this paper. The method is achieved through Bayesian theory. Several sets of dispersion curves extracted from measured data are used as the input function. The inversion is performed by matching a replica calculated with a dispersion formula. The bottom characteristics can be described by the bottom reflection phase shift parameter P. The propagation range and the depth can be inverted quickly when the seabed parameters are represented by on parameter P. The inversion results improve the inversion efficiency of the seabed parameters. Consequently, the inversion efficiency and accuracy are improved while the number of inversion parameters is decreased and the computational speed of replica is increased. The inversion results have lower error than the reference values, and the dispersion curves calculated with inversion parameters are also in good agreement with extracted curves from measured data; thus, the effectiveness of the inversion method is demonstrated.  相似文献   

13.
Robust Nonlinear Path-Following Control of an AUV   总被引:3,自引:0,他引:3  
This paper develops a robust nonlinear controller that asymptotically drives the dynamic model of an autonomous underwater vehicle (AUV) onto a predefined path at a constant forward speed. A kinematic controller is first derived, and extended to cope with vehicle dynamics by resorting to backstepping and Lyapunov-based techniques. Robustness to vehicle parameter uncertainty is addressed by incorporating a hybrid parameter adaptation scheme. The resulting nonlinear adaptive control system is formally shown and it yields asymptotic convergence of the vehicle to the path. Simulations illustrate the performance of the derived controller .   相似文献   

14.
海浪对北太平洋海-气二氧化碳通量的影响   总被引:1,自引:0,他引:1  
利用4种海-气界面气体传输速率公式对比研究了北太平洋气体传输速率及其CO2通量的季节变化特征。与单纯依赖风速的算法相比, 考虑波浪影响的气体传输速率和CO2通量在空间分布和季节变化上具有明显差异。在低纬度地区(0°~30°N), 波浪参数使气体传输速率下降, 海洋对大气CO2的吸收减少, 而在30°N以北范围内则出现新的气体传输速率高值区, 海洋对大气的吸收增加。进一步研究了黑潮延伸体区域的气候态月平均气体传输速率和CO2通量。结果表明, 该区域气体传输速率和CO2通量最大值分别出现于冬季和春季, 引入波浪参数后, 虽然该区域气体传输速率和CO2通量平均值没有明显差异, 但季节变化强度显著增强。  相似文献   

15.
Seasonal variation of global surface pressure and water vapor   总被引:1,自引:0,他引:1  
Previous studies have shown that the seasonal variation of global-mean surface pressure ( p s) results from variation of global-mean water vapor pressure ( p w). The current study, employing the global data generated by Version 1 of the Goddard Earth Observing System (GEOS-1) Data Assimilation System, shows that seasonal variations of regional p s and p w tend to be out of phase (particularly in the subtropics of the two hemispheres) and that the magnitude of the former variation is generally much larger than that of the latter. The seasonal variations of these two quantities are maintained by airmass and water vapor transports by the global divergent circulation, which is driven by the latent heat released by cumulus convection over the water vapor sink, as the "water mass forcing" mechanism predicted. Since p w and p s are used often in depicting the climate system, assessments of climate change in terms of the global-mean and regional variations of these two variables should be interpreted with caution.  相似文献   

16.
在对一个营养盐和赤潮藻类摄食模型进行非线性分析的基础上,提出了含有变参数的赤潮藻类生长模型。模型中用一个周期阶跃函数来近似模拟了藻类生长率参数,并对此模型做了数值模拟。结果表明,引入变参数后的模型更能体现藻类生长的季节性特点,和实际情况符合更好。  相似文献   

17.
Nonlinear Dispersion Relation in Wave Transformation   总被引:13,自引:1,他引:13  
1 .Introduction1ThisworkwasfinanciallysupportedbytheNaturalScienceFoundationofChina (GrantNo .4 0 0 760 2 6and 4 0 0 760 2 8) Correspondingauthor.E mail:rjli@hhu .edu .cn  Itisaveryusefulandeffectivewaytoadjustthewavedispersionrelationforthestudyofthenon linearityofwavepro…  相似文献   

18.
南黄海透明度的时空分异特征及影响因素分析   总被引:1,自引:0,他引:1  
水体透明度(Zsd)是评价水质状况的重要光学参数.本文针对南黄海海域,面向MODIS传感器校正了Zsd遥感反演模型,进而利用MODIS近20年(2002-2020年)数据分析了南黄海Zsd的时空变化特征及其驱动力,结果显示:建立的Zsd反演模型具有良好的精度(决定系数为0.91,均方根误差为1.69 m,平均相对误差绝...  相似文献   

19.
An investigation of equatorial near-inertial wave dynamics under complete Coriolis parameters is performed in this paper. Starting from the basic model equations of oceanic motions, a Korteweg de Vries equation is derived to simulate the evolution of equatorial nonlinear near-inertial waves by using methods of scaling analysis and perturbation expansions under the equatorial beta plane approximation. Theoretical dynamic analysis is finished based on the obtained Korteweg de Vries equation, and the results show that the horizontal component of Coriolis parameters is of great importance to the propagation of equatorial nonlinear near-inertial solitary waves by modifying its dispersion relation and by interacting with the basic background flow.  相似文献   

20.
Satellite-tracked drifters with drogues centered near-surface (5 m) and below the seasonal thermocline (50 m) were launched during late winter and spring of 1988 and 1989 in the northern Great South Channel in the western Gulf of Maine to investigate the regional circulation as part of the South Channel Ocean Productivity Experiment (SCOPEX). Many of the near-surface drifters became entrained in the clockwise gyre over Georges Bank, and eight drifters made a total of 16 complete circuits around the bank during the stratified season. The average recirculation period of these eight drifters was 48 days, and the average drifter speed around the bank was 12 cm s−1. There is no clear evidence from the drifter data that the strength of the clockwise gyre over the bank increased with time during the stratified season. On average, these drifters (i) followed a relatively narrow path around the bank, except over the eastern end of the bank where three preferred paths were observed, (ii) moved fastest over the northern and southern flanks of the bank, (iii) did not enter a core area of 3500 km2 centered at 41°17′N, 68°00′W, approximately 30 km southwest of the topographic center of the bank, and (iv) stopped circling the bank by the end of November, due in part to strong wind events that appeared to drive drifters off the bank. Curiously, none of the near-surface drifters moved from the southern flank of Georges Bank onto the New England shelf as might be expected from continuity of flow along the outer shelf; instead, the drifters that circled the bank tended to move off the bank along its southern flank. None of the drifters with drogues centered at 50 m appeared to recirculate around Georges Bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号