首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important step in effectively reducing seismic risk and the vulnerability of a city located in an earthquake prone area is to conduct a ground motion microzonation study for the desired return period. The International Institute of Earthquake Engineering and Seismology (IIEES) initiated a number of seismic microzonation projects for Iran. This paper presents the steps followed by IIEES in ground motion microzonation. IIEES performs both probabilistic and deterministic seismic hazard analysis. IIEES uses his own fault map for seismotectonic studies and develops modulus and damping curves for the soils in the study area. The experience of ground motion microzonation shows that in almost all cases, the estimated 475-year peak ground acceleration (PGA) values are higher than the PGA proposed by the Iranian seismic code. Although ground motion microzonation in Iran has some shortcomings, IIEES is making new improvement. This includes development in deterministic seismic hazard analysis, two-dimensional and three-dimensional modelling of basin and topographical effects, using microtremor measurements to find shear-wave velocity profiles in high-density urban areas and providing maps for spectral acceleration in the study area.  相似文献   

2.
Nuclear power plants are designed to prevent the hazardous effects of the earthquakes and any external events to keep the safety of the plant. Ninety-one shallow seismic refraction profiles were performed to determine shear wave velocity of the engineering layers at the site of El Dabaa area that is situated to the northern coastline of Egypt for seismic hazard microzonation evaluation according to hazard index values. A microzonation is a procedure of delineating an area into individual zones having different ranks of numerous seismic hazards. This will aid in classifying areas of high seismic risk which is vigorous for industrial design of nuclear structures. The site response analysis requires the characterization of subsurface materials considering local subsurface profiles of the site. Site classification of the area under investigation was undertaken using P- and S-waves and available borehole data. The studied nuclear power plant site has been characterized as per NEHRP site classification using an average velocity of transverse wave (V s 30 ) of depth 30 m which acquired from seismic survey. This site was categorized into two site classes: the major one is “site class B,” and the minor one is “site class A.” The attenuation coefficient, the damping ratio and the liquefaction potential are geotechnical parameters which were derived from P- and S-waves, and have their major effects on the seismic hazard contribution. 1D ground response analysis was carried out in the places of seismic profiles inside the site for estimating the amount of ground quaking using peak ground acceleration (PGA), site amplification, predominant frequency and spectral accelerations on the surface of ground by the DEEPSOIL software package. Seven factors (criteria) deliberated to assess the earthquake hazard index map are: (1) the peak ground acceleration at the bedrock, (2) the amplification of the site, (3) the liquefaction potential, (4) the main frequency of the earthquake signal, (5) the average V s of the first 30 m from the ground surface, (6) the depth to the groundwater and (7) the depth to the bedrock. These features were exemplified in normalized maps after uniting them to 0–1 scores according to some criteria by the minimum and maximum values as linear scaling points. Multi-criteria evaluation is an application of multi-criteria decision analysis theory that used for developing a seismic hazard index map for a nuclear power plant site at El Dabaa area in ArcGIS 10.1 software. Two models of decision making were used in this work for seismic hazard microzonation. The analytic hierarchy process model was applied to conduct the relative weights of the criteria by pairwise comparison using Expert Choice Software. An earthquake hazard index map was combined using Weighted Linear Combination model of the raster weighted overlay tool of ArcGIS 10.1. The results indicated that most of the study site of the nuclear power plant is a region of low to moderate hazard; its values are ranging between 0.2 and 0.4.  相似文献   

3.
A microzonation study is performed as a part of the Zeytinburnu Pilot Project within the framework of the Earthquake Master Plan for Istanbul to determine the effects of local soil conditions on the earthquake forces that will act on structures. For this purpose, detailed geological and geotechnical studies are conducted at the site, a geological map which demonstrates the local geological features of the site is prepared, and the site is classified with respect to the dynamic behaviour based on the data gathered from the soil borings. In order to investigate the effects of local soil conditions on the dynamic behaviour, site response analyses are performed with the computer code EERA by utilizing the findings of field and laboratory investigations. The behaviour of the region during a probable earthquake is investigated through one dimensional response analyses and microzonation maps are prepared with respect to ground shaking intensity in accordance with the new microzonation manual [Ansal, A., Laue, J., Buchheister, J., Erdik, M., Springman, S., Studer, J., and Koksal, D., 2004. “Site characterization and site amplification for a seismic microzonation study in Turkey” 11th Int. Conference on Soil Dynamics and Earthquake Engineering and 3rd Earthquake Geotechnical Engineering, San Francisco; Studer, J. and Ansal, A., 2004. Belediyeler için Sismik Mikrobölgeleme El Kitabı, Araştırma Raporu, Afet İşleri Genel Müdürlüğü, Bayındırlık ve İskan Bakanlığı, Afet Risk Yönetimi Dünya Enstitüsü].  相似文献   

4.
The purpose of this study is to develop a geotechnical microzonation model using Geographical Information Systems (GIS) based on Multicriteria Decision Analysis (MCDA). As study area, the Eskişehir downtown area has been chosen. Eskişehir is one of the most rapidly growing cities in central Turkey. The model inputs include slope, flood susceptibility, soil, depth to groundwater table, swelling potential, and liquefaction potential. The weight and rank values are assigned to the layers and to the classes of each layer respectively. The assignment of the weight/rank values and the analysis are realized by the application of two different decision models, namely Simple Additive Weighting (SAW) and Analytic Hierarchy Process (AHP) methods. The geotechnical microzonation maps prepared as outputs of these methods are found to be consistent with each other and confirmed by the experts within the study area. The geotechnical microzonation map prepared using the AHP method is recommended as the final map of the study.  相似文献   

5.
In the present study, an attempt has been made to evaluate the seismic hazard considering local site effects by carrying out detailed geotechnical and geophysical site characterization in Bangalore, India to develop microzonation maps. An area of 220 km2, encompassing Bangalore Mahanagara Palike (BMP) has been chosen as the study area. Seismic hazard analysis and microzonation of Bangalore are addressed in three parts: in the first part, estimation of seismic hazard is done using seismotectonic and geological information. Second part deals with site characterization using geotechnical and shallow geophysical techniques. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis (using the program SHAKE2000) using both standard penetration test (SPT) data and shear wave velocity data from multichannel analysis of surface wave (MASW) survey. Further, field experiments using microtremor studies have also been carried out for evaluation of predominant frequency of the soil columns. The same has been assessed using 1-D ground response analysis and compared with microtremor results. Further, the Seed and Idriss simplified approach has been adopted to evaluate the soil liquefaction susceptibility and liquefaction resistance assessment. Microzonation maps have been prepared with a scale of 1:20,000. The detailed methodology, along with experimental details, collated data, results and maps are presented in this paper.  相似文献   

6.
A first order seismic microzonation map of Delhi is prepared using five thematic layers viz., Peak Ground Acceleration (PGA) contour, different soil types at 6 m depth, geology, groundwater fluctuation and bedrock depth, integrated on GIS platform. The integration is performed following a pair-wise comparison of Analytical Hierarchy Process (AHP), wherein each thematic map is assigned weight in the 5-1 scale: depending on its contribution towards the seismic hazard. Following the AHP, the weightage assigned to each theme are: PGA (0.333), soil (0.266), geology (0.20), groundwater (0.133) and bedrock depth (0.066). The thematic vector layers are overlaid and integrated using GIS. On the microzonation theme, the Delhi region has been classified into four broad zones of vulnerability to the seismic hazard. They are very high (> 52%), high (38–52%), moderate (23–38%) and less ( < 23%) zones of seismic hazard. The “very high” seismic hazard zone is observed where the maximum PGA varies from 140 to 210 gal for a finite source model of Mw 8.5 in the central seismic gap. A site amplification study from local and regional earthquakes for Delhi region using Delhi Telemetry Network data shows a steeper site response gradient in the eastern side of the Yamuna fluvial deposits at 1.5 Hz. The ‘high’ seismic hazard zone occupies most of the study area where the PGA value ranges from 90 to 140 gal. The ‘moderate’ seismic hazard zone occurs on either side of the Delhi ridge with PGA value varying from 60 to 90 gal. The ‘less’ seismic hazard zone occurs in small patches distributed along the study area with the PGA value less than 60 gal. Site response studies, PGA distribution and destruction pattern of the Chamoli earthquake greatly corroborate the seismic hazard zones estimated through microzonation on GIS platform and also establishes the methodology incorporated in this study.  相似文献   

7.
The present study presents a review on the progressive development of the seismic zonation map of India both from official agencies and also from independent individual studies. The zonation map have been modified and updated regularly with the occurrence of major destructive earthquakes over the years in the Indian subcontinent with the addition of new data. This study discusses the criteria chosen for the progressive zonation and the major earthquakes that were responsible for retrospection of the earlier published maps. The seismic zonation maps of India have also been prepared by various independent workers by adopting different approaches to achieve the purpose of the zonation. Despite the endeavors from various sources to provide a solution for the problem of earthquake hazards in India, there were many limitations on the zonation map as it gives the picture at a regional scale mostly on the bedrock level without addressing the local site conditions. But nevertheless, the seismic zonation map gives basic guidelines for any region to know the hazard scenario and if any city or urban population is under threat from seismic point of view, further site specific seismic microzonation may be carried out. In the International scenario, the Global Seismic Hazard Assessment Program (GSHAP) in 1999 prepared a hazard map for world in terms of peak ground acceleration (PGA) with a 10% probability of exceedance in 50 years, but it turned out to be an underestimation of the hazard parameter when compared with the observed PGA. To tackle the problem of seismic hazards, there was a need to have a detail study on the local site conditions in terms of its geological, geophysical and geotechnical properties. With the advent of better instrumentation and knowledge on the mechanics of earthquakes, it was possible to identify zones of hazards at a local level and this gives rise to the study of seismic microzonation. Seismic microzonation work has been carried out in India in some of the strategic important mega cities and industrial build up that has the potential of being damaged from future earthquakes, as has been shown in the past. Though the microzonation map is not the final output map, as it can still be updated at later stage with more input data, it does provide a more realistic picture on the site specific seismic hazard.  相似文献   

8.
Summary On 26 March, 1993, a moderate magnitude earthquake (M s=5.5) occurred at 3 km epicentral distance from the town of Pyrgos, in Southern Greece, causing extensive damage to masonry houses. To explain the variability of seismic intensity over the town and to propose measures against future seismic activity, a microzonation study was undertaken which combined geological, geophysical and geotechnical investigations, site specific analyses of seismic ground response and detailed recording of structural damage. The analytical predictions of ground response are correlated to soil conditions and then used to identify (micro-)zones of sites with similar seismic response. Furthermore, they are compared to quantitative estimates of damage distribution over the town. It is concluded that the peak ground acceleration, normalized against the input peak seismic acceleration, is a function of the local soil conditions as well as the seismic excitation characteristics. Hence, it cannot be defined uniquely at a site, without reference to the seismic excitation. However, the normalized peak ground velocity and the acceleration response spectra are mainly functions of the soil conditions and can be used as criteria for the practical definition of (micro-)zones. The distribution of damage in various parts of the town is at least partially attributable to local soil effects. The small epicentral distance of the earthquake, connected with the direction of the fault rupture, as well as the quality and techniques of construction, are additional factors that may have influenced the extent and distribution of damage.  相似文献   

9.
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.  相似文献   

10.
The study area Delhi is second most populous city and third largest urban area in the world. Though the area lies in seismic high damage risk zone, number of high rise building and construction of mega structure at several sites of the city increase rapidly. In this study field Standard Penetration Test (SPT) values of soil collected from 750 boreholes data were analyzed to identify liquefiable sub-surface soil layers. Finally, liquefaction susceptible sub-surface maps of the region at various depth (20 m, 15 m, 12 m, 9 m, 6 m and 3 m) from ground level is prepared. The outcome of this study will be useful input for preliminary foundation and designing of earthquake resistant high rise building and seismic microzonation studies of Delhi.  相似文献   

11.
Microzonation is an effort to evaluate and map potential hazards found in an area, urban area in particular, that could be induced by strong ground shaking during an earthquake. These hazards include: ground motion amplification, liquefaction, and slope failure. The microzonation maps, depicting ground-motion amplification, liquefaction, and landslide potentials, can be produced if the ground motion on bedrock (input) and the site conditions are known. These maps, in combination with ground-motion hazard maps (on bedrock), can be used to develop a variety of hazard mitigation strategies such as seismic risk assessment, emergency response and preparedness, and land-use planning. However, these maps have certain limitations that result from the nature of regional mapping, data limitations, generalization, and computer modeling. These microzonations show that when strong ground shaking occurs, damage is more likely to occur, or be more severe, in the higher hazard areas. The zones shown on the hazard maps should not serve as a substitute for site-specific evaluations.  相似文献   

12.
Shear wave velocity (V s) and the fundamental site period of the subsurface condition are the primary parameters that affect seismic soil amplification in particular sites. Within the topmost layer of the soil, which measures 30 m, the average shear wave velocity V s30 is commonly used to build codes for site classification for the design of earthquake-resistant structures and to conduct microzonation studies. In this study, the development of a microzonation map for V s30 distribution, National Earthquake Hazard Reduction Program V s30 site classification, and a fundamental site period for Penang are presented. The multichannel analysis of surface wave (MASW) test was conducted for more than 50 sites with available borehole data to develop the microzonation maps. The ten selected V s profiles measured by MASW show a good correlation with the data obtained using empirical correlations in a previous study. The highest V s values were identified at the northeastern and southeastern parts of Penang Island, corresponding to the shallow bedrock and the outcrop zone. Conversely, the lowest V s values were found in the northwestern and southwestern parts of the Penang mainland owing to the thick layer of soft clay and silt deposits. The site period map shows the variation in site periods, with the highest value of 1.03 s at the western part of the Penang mainland and the lowest value of 0.02 s at the eastern part of the Penang Island. The microzonation maps developed in this study are vital to studies on seismic hazard and earthquake mitigation programs in Malaysia.  相似文献   

13.
Antakya city is at risk because of strong earthquakes occurring in the area, and different soil conditions that can produce variation of the ground motion amplification. Microzonation of cities provides a basis for site-specific hazard analysis in urban settlements. In particular, seismic microzonation can be provided by means of detailed seismic assessment of the area, including earthquake recordings and geological studies. In this paper, we propose a preliminary microzonation map for the city of Antakya, based on the variation of the dominant periods and shear velocities of the sediments covering the area. The periods are retrieved from microtremor measurements conducted at 69 sites, using the horizontal-to-vertical spectral ratio technique. The results of microtremor analysis were compared with data obtained from refraction microtremor (ReMi) measurements at four profiles crossing the studied area. According to the classification of dominant periods, Antakya city can be divided into five zones, probably prone to different levels of seismic hazard. The shorter natural periods are in inner Antakya and both the sides of Asi River (i.e., northern and southern parts). The eastern and western parts of Antakya have maximum dominant periods. The V s 30 values were calculated by using the ReMi method along the profiles. Antakya city has V s 30 values in the range of category C of the national earthquake hazard reduction programme site classification.  相似文献   

14.
Kachchh region of India is a rift basin filled with sediments from Jurassic to Quaternary ages. This area is tectonically active and witnessed several major earthquakes since the recent historical past. During an earthquake event, the water-laden foundation soil liquefies and causes damage to buildings and other civil engineering structures. The January 26, 2001, Bhuj earthquake demonstrated extensive liquefaction-related damages in entire Kachchh Peninsula. Therefore, evaluation of liquefaction susceptibility of unconsolidated sediments is a vital requirement for developing seismic microzonation maps. In this paper, a new approach involving remote sensing techniques and geotechnical procedures is demonstrated for effective mapping of liquefaction-susceptible areas. The present and paleo-alluvial areas representing unconsolidated sediments were mapped using Landsat-TM data and field reflectance spectra. Spectral discrimination of alluvial area was made using the feature-oriented principal component selection and spectral angle mapping techniques. Subsequently, field geotechnical investigations were carried out in these areas. It is evident from the results that the alluvial soils are predominantly sandy loam with very low (7–28) standard penetration test values. The evaluated factor of safety for these soils varies from 0.43 to 1.7 for a peak ground acceleration of 0.38. Finally, a liquefaction susceptibility map is prepared by integrating results on alluvium distribution, factor of safety, and depth to water table.  相似文献   

15.
Seismic microzonation is one of the most important measures to mitigate earthquake hazards in urban areas. Because the ground motion varies significantly with the subsurface geology, it is needed for microzonation to account as much as possible for the local soil conditions. Noteworthy is that nonlinear deformation properties of soil play essential roles in amplification of strong ground motion. It is desired furthermore to focus on the expected damage extent in addition to the calculated maximum acceleration and/or velocity. The present study first developed a computer code for one-dimensional response analysis of ground that reasonably takes into account nonlinear dynamic soil properties. Second, correlations between the calculated ground motion and damage extent were obtained by examining seismic damages during the past earthquakes. By combining these two issues, seismic microzonation was carried out, and detailed damage distribution was assessed. The product of this study covers not only the damage caused by ground shaking but also liquefaction problem and lifeline damage.  相似文献   

16.
The seismic ground motion hazard is mapped in the Sikkim Himalaya with local and regional site conditions incorporated through geographic information system. A strong motion network in Sikkim comprising of 9 digital accelerographs recorded more than 100 events during 1998–2002, of which 41 events are selected with signal-to-noise ratio 3 for the estimation of site response (SR), peak ground acceleration (PGA) and predominant frequency (PF) at all stations. With these and inputs from IRS-1C LISS III digital data, topo-sheets, geographical boundary of the State of Sikkim, surface geological maps, soil taxonomy map in 1:50,000 scale and seismic refraction profiles, the seismological and geological thematic maps, namely, SR, PGA, PF, lithology, soil class, %slope, drainage, and landslide layers are generated. The geological themes are united to form the basic site condition coverage of the region. The seismological themes are assigned normalized weights and feature ranks following a pair-wise comparison hierarchical approach and later integrated to evolve the seismic hazard map. When geological and seismological layers are integrated together through GIS, microzonation map is prepared. The overall site response, PGA and predominant frequency show an increasing trend in the NW–SE direction peaking at Singtam in the lesser Himalaya. As Main Boundary Thrust (MBT) is approached, the attribute value increases further. A quasi-probabilistic seismic hazard index has been proposed based on site response, peak ground acceleration and predominant frequency. Six seismic hazard zones are marked with percent probability <22%, 22–37%, 37–52%, 52–67%, 67–82%, >82% at 3 Hz and <20%, 20–34%, 34–48%, 48–61%, 61–75%, >75% at 9 Hz. In the microzonation vector layer of integrated seismological and geological themes also six major zones are mapped, with percent probability <15%, 15–31%, 31–47%, 47–63%, 63–78%, >78% at low frequency end. The maximum risk is attached to the probability greater than 78% in the Singtam and its adjoining area. These maps are generally better spatial representation of seismic hazard including site-specific analysis.  相似文献   

17.
A comprehensive analytical as well as numerical treatment of seismological, geological, geomorphological and geotechnical concepts has been implemented through microzonation projects in the northeast Indian provinces of Sikkim Himalaya and Guwahati city, representing cases of contrasting geological backgrounds — a hilly terrain and a predominantly alluvial basin respectively. The estimated maximum earthquakes in the underlying seismic source zones, demarcated in the broad northeast Indian region, implicates scenario earthquakes of M W 8.3 and 8.7 to the respective study regions for deterministic seismic hazard assessments. The microzonation approach as undertaken in the present analyses involves multi-criteria seismic hazard evaluation through thematic integration of contributing factors. The geomorphological themes for Sikkim Himalaya include surface geology, soil cover, slope, rock outcrop and landslide integrated to achieve geological hazard distribution. Seismological themes, namely surface consistent peak ground acceleration and predominant frequency were, thereafter, overlaid on and added with the geological hazard distribution to obtain the seismic hazard microzonation map of the Sikkim Himalaya. On the other hand, the microzonation study of Guwahati city accounts for eight themes — geological and geomorphological, basement or bedrock, landuse, landslide, factor of safety for soil stability, shear wave velocity, predominant frequency, and surface consistent peak ground acceleration. The five broad qualitative hazard classifications — ‘low’, ‘moderate’, ‘high’, ‘moderate high’ and ‘very high’ could be applied in both the cases, albeit with different implications to peak ground acceleration variations. These developed hazard maps offer better representation of the local specific seismic hazard variation in the terrain.  相似文献   

18.
This paper presents the development of spectral hazard maps for Sumatra and Java islands, Indonesia and microzonation study for Jakarta city. The purpose of this study is to propose a revision of the seismic hazard map in Indonesian Seismic Code SNI 03-1726-2002. Some improvements in seismic hazard analysis were implemented in the analysis by considering the recent seismic activities around Java and Sumatra. The seismic hazard analysis was carried out using 3-dimension (3-D) seismic source models (fault source model) using the latest research works regarding the tectonic setting of Sumatra and Java. Two hazard levels were analysed for representing 10% and 2% probability of exceedance (PE) in 50 years ground motions for Sumatra and Java. Peak ground acceleration contour maps for those two hazard levels and two additional macrozonation maps for 10% PE in 50 years were produced during this research. These two additional maps represent short period (0.2 s) and long-period (1.0 s) spectra values at the bedrock. Microzonation study is performed in order to obtain ground motion parameters such as acceleration, amplification factor and response spectra at the surface of Jakarta. The analyses were carried out using nonlinear approach. The results were used to develop contour of acceleration at the surface of Jakarta. Finally, the design response spectra for structural design purposes are proposed in this study.  相似文献   

19.
Mäntyniemi  P.  Mârza  V.  Kijko  A.  Retief  P. 《Natural Hazards》2003,29(3):371-385
In this paper we apply a probabilistic methodology to map specific seismic hazard induced by the Vrancea Seismogenic Zone, which represents the uttermost earthquake danger to Romania as well as its surroundings. The procedure is especially suitable for the estimation of seismic hazard at an individual site, and seismic hazard maps can be created by applying it repeatedly to grid points covering larger areas. It allows the use of earthquake catalogues with incompletely reported historical and complete instrumental parts. When applying themethodology, special attention was given to the effect of hypocentral depth and the variation of attenuation according to azimuth. Hazard maps specifying a 10% chance of exceedance of the given peak ground acceleration value for an exposure time of 50 years were prepared for three different characteristic depths of earthquakes in the Vrancea area. These maps represent a new realistic contribution to the mitigation of the earthquake risk caused by the Vrancea Seismogenic Zone in terms of: (1) input data (consistent, reliable, and the most complete earthquake catalogue), (2) appropriate and specific attenuation relationships (considering both azimuthal and depth effects); and (3) a new and versatile methodology.  相似文献   

20.
The preparation of the preliminary seismic hazard maps of the territory of Slovenia has been based on an expansion of the basic approach laid out by Cornell in 1968. Three seismic source models were prepared. Two of them are based mainly on the earthquake catalogue using the Poissonian probability model. A map of seismic energy release and a map of earthquake epicenter density are used to delineate seismic sources in these models. The geometry of the third model which is based on a rough estimate of seismotectonic setting is taken from the probabilistic seismic hazard analysis of a nuclear power plant in Slovenia. Published ground motion attenuation models based on strong motion records of recent strong earthquakes in Italy are used. Test maps for variable and uniform b-values are presented. The computer program, Seisrisk III, developed by the U.S. Geological Survey is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号