首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling the face stability of shallow shield tunnels is difficult due to the inadequate understanding of face failure mechanism. The failure mechanism and the limit support pressure of a tunnel face in dry sandy ground were investigated by using discrete element method (DEM), which has particular advantages for revealing mechanical properties of granular materials. The contact parameters of the dry sand particles were obtained by calibrating the results of laboratory direct shear tests. A series of three-dimensional DEM models for different ratios of the cover depth to the diameter of the tunnel (C/= 0.5, 1, and 2; i.e., relative depth) were then built to simulated the process of tunnel face failure. The limit support pressure, failure zone and soil arching were discussed and compared with other methods. The results of DEM simulations show that the process of tunnel face failure can be divided into two stages. With the increase of the horizontal displacement of the tunnel face, the support pressure decreases to the limit support pressure and then increases to the residual support pressure. The limit support pressure increases with the rise of relative depth and then tends to be constant. In the process of tunnel face failure, the failure zone is gradually enlarged in size and expands to the ground surface. The numerical results also demonstrate that soil arching occurs in the upper part of the failure zone and the soil becomes loosened in the failure zone. Consequently, the comprehensive analysis of tunnel face failure may help to guarantee safe construction during tunneling.  相似文献   

2.
王俊  王闯  何川  胡雄玉  江英超 《岩土力学》2018,39(8):3038-3046
采用?800 mm模型土压盾构开展室内掘进试验,以探究砂卵石中土压盾构隧道掌子面失稳诱发地层变形特征。同时,补充开展三维离散元仿真以挖掘室内试验难以获取的掌子面失稳信息,并研究隧道埋深对掌子面稳定性的影响规律。研究结果表明:砂卵石地层中盾构隧道掌子面失稳发展到地表后,沉降曲面呈上大下小逐步收缩的沙漏状,影响范围小于砂土地层。考虑盾构动态掘进过程后,卵石颗粒接触关系变化十分剧烈,掌子面稳定性被削弱,极限支护压力随之增大。掌子面极限支护压力随隧道埋深基本呈线性增加,极限支护压力与初始支护压力之比则随埋深增大而减小。掌子面失稳机制可根据隧道埋深划分为3种模式。与既有研究相比,考虑了盾构动态掘进过程与实际工程更加接近,可为确保砂卵石地层土压盾构隧道施工掌子面稳定提供参考。  相似文献   

3.
Liu  Wei  Shi  Peixin  Chen  Lijuan  Tang  Qiang 《Acta Geotechnica》2020,15(3):781-794

This paper develops the 2D and 3D kinematically admissible mechanisms for analyzing the passive face stability during shield tunneling using upper-bound analysis. The mechanisms consider trapezoidal distribution of support pressure along tunnel face and partial failure originated at tunnel face above invert. For cohesionless soils, the support pressure is a function of soil effective frictional angle φ′ which determines the inclination of failure block and the normalized soil cover depth C/D (soil cover depth/tunnel diameter) which affects the origination of the passive failure. For cohesive soils, the support pressure is a function of φ′, C/D, and the effective cohesion c′. The cohesion c′ has a relatively smaller impact on the support pressure than φ′ and C/D have. The mechanisms are verified by comparing the current solutions with a previous upper-bound solution. The comparison shows that the current solutions are a general solution which is capable of predicting the passive face failure originated at any depth along tunnel face and the previous solution is a particular solution with the assumption that the face failure originated at tunnel invert. The mechanisms are validated through application to a practical project of shallowly buried, large diameter underwater tunnel. The validation shows that the mechanisms are capable of assessing the tunnel face passive instability rationally.

  相似文献   

4.
张子新  张帆 《岩土力学》2015,36(11):3193-3200
隧道掘进机(TBM)近年来在世界范围内得到了广泛应用,通常通过完全充满压力仓的泥土或泥浆来支护开挖面。但在较差的地层和水力条件下,开挖面失稳时有发生。事实上,TBM开挖面的支护压力的大小直接决定了施工安全及地表变形。基于所建立的开挖面支护压力计算模型,并考虑复合地层下土体分层带来的影响,通过计算机编程方法,建立了界面友好、使用便捷的开挖面支护压力可视化计算平台(TBM Studio);并结合阿拉斯加隧道、钱江隧道工程实例进行了不同模型结果的验证分析,给出了各模型计算结果的差异性;讨论了软土复合地层条件下,土体自稳性对开挖面稳定的影响,认为软土地层中定量确定有效支护压力和水头高度至关重要,研究为正确评价TBM开挖面稳定性提供了相应的计算模型。  相似文献   

5.
The instantaneous response of saturated low permeability grounds to tunnel excavation is important for deformations and stability close to the tunnel face. It is characterized by zero volume change in combination with the development of excess pore pressures. In tunnelling through poor quality ground under great depth of cover and high in situ pore pressure, heavily squeezing conditions (characterized by very large convergences) may occur soon after excavation. This paper presents exact finite strain analytical solutions for the undrained ground response around cylindrical and spherical openings that are unloaded from uniform and isotropic initial stress states, on the basis of the Modified Cam Clay (MCC) model and the Mohr–Coulomb (MC) model. The solution for a Drucker–Prager material is also given as it requires only a very small modification to the MC solution. The so‐called ground response curve, that is, the relationship between the support pressure and the cavity wall displacement, is derived in closed form for the MC model. The solution for the MCC problem is semi‐analytical in that it uses the trapezium rule for the computation of a definite integral. The influence of the significant parameters of the problem on the predicted deformation behaviour is shown by means of dimensionless charts. Finally, the practical usefulness of the solutions presented is illustrated by applying them to the breccia zones of the planned Gibraltar Strait tunnel – an extreme case of weak, low permeability ground under high pore pressure. The solutions can serve as a trustworthy benchmark for numerical procedures that incorporate material and geometric nonlinearities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
考虑盾构掘进速度的隧道掘进面稳定性分析   总被引:1,自引:0,他引:1  
高健  张义同 《岩土力学》2010,31(7):2232-2237
隧道在低渗透性土壤中掘进,盾构掘进速度的改变将引起作用在掘进面上支护压力的显著变化。考虑盾构掘进速度以及土体的渗透系数的影响,通过伽辽金有限元法推导三维稳态渗流有限元方程,使用FORTRAN代码编制数值分析程序计算稳态地下水流条件下隧道掘进面附近水头分布。维持掘进面稳定极限支护压力由有效支护压力和渗透力共同构成,前者基于土体稳定的极限平衡理论计算结果,后者通过隧道掘进面附近水头分布推导得出。结果发现,低渗透性土层中进行隧道掘进,盾构掘进速度的改变对隧道掘进面附近水头分布产生很大影响,掘进速度的增加将引起作用在隧道掘进面上支护力的显著增加。理论分析结果与实验数据取得较好的一致,验证了该理论与方法的合理性和有效性。  相似文献   

7.
Assessment of tunnel stability has become increasingly crucial as more and more tunnels are built in difficult terrains such as sloping ground. The required support pressure on the tunnel walls associates both tunnel stability and liner design considerations. The present analysis attempts to find a uniform internal pressure which can support a circular tunnel built in a sloping ground with a particular level of stability in cohesive-frictional soils. The lower bound finite element limit analysis has been applied to find the required minimum uniform internal support pressure presented as a non-dimensional term p/c; where p is the minimum normal internal pressure on the tunnel boundary to avoid collapse and c is the cohesion of soil. The variation of p/c is presented for a range of normalised embedment depth of tunnel (H/D), stability number (γD/c), internal friction angle of soil (?) and slope angle (β); where H is the crown depth of the tunnel, D is the tunnel diameter and γ is the unit weight of soil. Appropriate comparisons have been carried out with available literature. Failure patterns of the tunnel have also been studied to understand the extent and the type of failure zone which may generate during the collapse.  相似文献   

8.
非均质黏土地基中平面应变隧道最小支护压力数值模拟   总被引:1,自引:0,他引:1  
周维祥  黄茂松  吕玺琳 《岩土力学》2010,31(Z2):418-421
土体由于沉积而具有天然的非均质性,但关于非均质地基中隧道开挖面稳定性的研究却很稀少,在实际盾构隧道工程中均按均质地基对待。但这一简化并没有考虑非均质性对保持开挖面稳定所需最小支护压力的有利作用,以及对破坏模式的影响。故文中采用基于tresca准则的弹塑性有限元法来研究黏聚力随深度线性变化的纯黏土地基中平面应变隧道的开挖面稳定性,模拟了土体失稳渐进破坏的全过程。最终验证了无量纲化的有效性,得到了各种工况时保持土体稳定的最小支护压力值,并发现了黏聚力线性变化斜率对深埋隧道破坏模式的影响,可为理论分析和工程实践提供依据。  相似文献   

9.
This paper investigates the face stability of shield-driven tunnels shallowly buried in dry sand using 1-g large-scale model tests. A half-circular tunnel model with a rigid front face was designed and tested. The ground movement was mobilized by pulling the tunnel face backwards at different speeds. The support pressure at tunnel face, settlement at ground surface, and internal movement of soil body were measured by load cells, linear variable differential transducers, and a camera, respectively, and the progress of face failure was observed through a transparent lateral wall of model tank. The tests show that, as the tunnel face moves backwards, the support pressure at the tunnel face drops sharply initially, then rebounds slightly, and tends to be stabilized at the end. Similarly, the ground surface settlement shows a three-stage variation pattern. Using the particle image velocimetry technique, the particle movement, shear strain, and vortex location of soil are analyzed. The variation of support pressure and ground surface settlement related to the internal movement of soil particles is discussed. The impact of the tunnel face moving speed on the face stability is discussed. As the tunnel face moves relatively fast, soil failure originates from a height above tunnel invert and an analytical model is developed to analyze such failure.  相似文献   

10.
Increasing demands on infrastructures increases the attention on shallow soft ground tunneling methods in urbanized areas. Especially, in metro tunnel excavations, it is important to control the surface settlements observed before and after excavation, which may cause damage to surface structures. To solve this problem, earth pressure balance machines (EPBMs) have widely been used throughout the world. This study focuses on surface settlement measurements, the interaction of twin tunnel surface settlement, and the relationship between shield parameters and surface settlement for parallel tunnels using EPBM shields in clay and sand soils. In this study, the tunnels were excavated using two EPBMs. The tunnels were 6.5 m in diameter, as twin tubes with a 14 m distance from center to center. The EPBM in the first tube followed about 100 m behind the other tube. Segmental lining with 1.4 m of length was employed as a final support. The results from this study showed that (1) the most important parameters for the maximum surface settlements are the face pressure and backfill; (2) in twin tunnel excavation with EPBM for longitudinal profile, the settlement rate reached its peak value when the shield came to the monitoring section and this peak value continued until the shield passed the monitoring section; (3) every shield affected the other tunnel’s longitudinal surface settlement profile by approximately 35–36.8 %; (4) S A, S B and S C values were found to be 38.0, 35.8 and 26.2 %, respectively for an EPBM, and (5) ensuring good construction quality is a very effective way to control face stability and minimize surface settlement.  相似文献   

11.
Upper bound analysis of tunnel face stability in layered soils   总被引:3,自引:3,他引:0  
The working face of tunnel constructions has to be kept stable during tunneling to prevent large soil deformations or fatal failure. In layered soils with lower cohesion, failures happen more often and more abrupt than in cohesive soils. Therefore, the maintenance of a proper support pressure at the tunnel working face is of high importance. In this paper, an upper bound analysis is introduced to investigate the minimum support pressure for the face stability in layered soils. A three-dimensional kinematically admissible mechanism for the upper bound analysis is improved to model potential failure within different soil layers. An analytical solution for the support pressure assessment is achieved. The influence of the crossing and cover soil on the face stability is analyzed, respectively. This solution provides an analytical estimation of the minimum support pressure for the face stability. It may be used as a reference for projects under similar conditions.  相似文献   

12.
相对于盾构隧道施工的大量需求与快速发展的状况,国内在盾构工法特别是大型深埋盾构隧道施工技术和理论研究方面还存在不足,特别是水压条件下深埋盾构隧道开挖面稳定问题。基于极限分析上限法和水土压力统一参数,对考虑水压影响的均质土深埋隧道开挖面稳定性计算方法进行研究,建立了考虑水压影响的深埋盾构隧道开挖面三维对数螺旋破坏模式模型,并推导了其极限支护压力计算公式。然后利用土层厚度加权平均法,可将上述方法应用于多层土深埋盾构隧道开挖面稳定性的评价中。最后,以上海长江盾构隧道实际工程为例,采用本文推导的极限分析上限三维对数螺旋破坏模式方法计算并分析其极限支护压力,并将计算结果与前人研究和规范方法计算的结果进行对比分析。通过该研究可改进与完善水压条件下深埋盾构隧道极限支护压力确定方法,从而为考虑水压条件下盾构隧道施工支护压力的合理确定提供理论依据。  相似文献   

13.
盾构穿越砂卵石地层地表沉降特征细宏观分析   总被引:2,自引:0,他引:2  
滕丽  张桓 《岩土力学》2012,33(4):1141-1150
以成都砂卵石地层中地铁1号线的土压平衡盾构掘进施工为研究背景,采用室内试验、PFC2D二维颗粒流程序和 Plaxis 3D有限元软件对盾构穿越砂卵石地层地表沉降特征进行了细宏观数值模拟,揭示了土压盾构穿越砂卵石地层的失稳机制和沉降规律,并结合实际施工参数和实测地表沉降数据进行了对比分析,获得了土压盾构在砂卵石地层中掘进引起的地表横向沉降槽和纵向沉降槽曲线,分析了不同大小的开挖面土仓压力和盾尾注浆压力对地表沉降的影响,给出了砂卵石地层开挖面土仓压力的建议值和盾尾注浆压力参数的合理取值范围。细宏观分析表明,与注浆压力相比较,土仓压力对地表最大沉降曲线的形状影响较小;但必须关注土仓压力的变化,在砂卵石地层中由于土拱效应对开挖面稳定性影响较大,甚至发生突然坍塌破坏。  相似文献   

14.
The kinematic approach in combination with numerical simulation is used to examine the effect of pore water pressure on tunnel face stability. Pore water pressure distribution obtained by numerical calculations using FLAC3D is used to interpolate the pore water pressure on a 3D rotational collapse mechanism. Comparisons are made to check the present approach against other solutions, showing that the present approach improves the existing upper bound solutions. Results obtained indicate that critical effective face pressure increases with water table elevation. Several normalized charts are also presented for quick evaluation of tunnel face stability. At the end of the paper, the influence of anisotropic permeability on tunnel face stability is also discussed, showing that the isotropic model leads to an overestimation of the necessary tunnel face pressure for anisotropic soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
韩月旺  钟小春  朱伟  虞兴福 《岩土力学》2007,28(Z1):516-520
在渗透性大且富含地下水的砂砾地层中进行土压平衡式盾构施工,切削下来的土体具有渗透系数大、流动性差的特点,由于地下水的渗透使压力舱内支护土压力不能有效地施加到开挖面。通过压力舱土体改良技术,降低土体渗透性和提高土体的流动性是改善压力舱土体状态和提高支护土压力的重要措施。利用能够考虑大变形破坏的快速拉格朗日有限差分计算程序研究了压力舱土体改良效果对开挖面稳定性的影响,分析了压力舱土体渗透系数的降低对开挖面支护压力的影响关系,为土压平衡式盾构施工开挖面支护压力的确定提供参考。  相似文献   

16.
Zeng  Sheng    Xilin  Huang  Maosong 《Acta Geotechnica》2019,14(6):1643-1652

The failure mechanism and limit support pressure are essential factors for the stability assessment of tunnel face during shield tunneling. Previous studies were mostly based on the assumption that soil fails when the plastic limit is reached. The static liquefaction of saturated sand at pre-failure state often largely reduces shear strength; a stable tunnel face could be destabilized and even collapses abruptly. This paper aims to explore the static liquefaction failure of tunnel face in saturated sands by 3D discrete element simulation. The particle shape is considered by using clump composed of two identical spheres, and the micro-material parameters are calibrated by fitting against triaxial tests. The tunnel face is initially supported by the earth pressure at rest, and then the pressure is reduced by applying a displacement on the free surface until soil body completely collapses. The second-order work during the unloading process is calculated, and a negative value denotes the initiation of static liquefaction. The distribution of negative second-order work point shows the initiation and propagation of static liquefaction. The ultimate failure mode is shown to be composed of a sliding wedge and an overlying chimney, and the chimney is confined to a local area for soil arching. The experienced stress path of tunnel face verifies the existence of static liquefaction instability, indicating the stability analysis should consider static liquefaction rather than simply using the conventional plastic limit state analysis.

  相似文献   

17.
盾构隧道开挖面稳定的可靠度研究   总被引:1,自引:0,他引:1  
李志华  华渊  周太全  孙秀丽 《岩土力学》2008,29(Z1):315-319
目前,盾构隧道开挖面稳定性评价方法均是确定性方法。为了考虑土体参数的变异性,提出用可靠方法来评价其稳定程度。采用数值模拟方法,研究了隧道开挖面极限支护压力。基于BP神经网络预测大量给定地层参数工况下的开挖面极限支护压力,对其进行统计,得其概率分布特征。在理论分析的基础上,结合工程实际,探讨了盾构施工土压力的确定原理。建立了隧道开挖面稳定的极限状态方程,对其进行了可靠度分析。该研究除能够科学、合理地评价开挖面的稳定程度外,对于盾构施工过程中合理地设定开挖面支护压力也具有一定的参考作用。  相似文献   

18.
Fractures developed around high pressurized gas or air storage tunnels can progressively extend to the ground surface, eventually leading to an uplift failure. A tool reasonably reproducing the failure patterns is necessary for stability assessment. In this study, a numerical method based on the element-free Galerkin (EFG) method with a cohesive crack model is developed to simulate fracture propagation patterns in the rock mass around a tunnel under high internal pressure. A series of physical model tests was also conducted to validate the reliability of the developed method. A qualitative agreement between physical model tests and numerical results can be obtained. The in situ stress ratio, k, has a strong influence on both the position of crack initiation and the propagation direction. The numerical analyses were extended to full-scale problems. Numerical tests were performed to investigate the prime influencing factors on the failure patterns of a high pressurized gas circular tunnel with varying parameters. The results suggest that initial in situ stress conditions with a high k (larger than 1) is favorable for construction of pressurized gas or air storage tunnels.  相似文献   

19.
The measures required for driving a tunnel below the groundwater table depend on the permeability of the soil. In coarse-grained, highly permeable soils additional measures, for example compressed-air support combined with a reduction of the permeability of the soil, e.g. induced by grouting, are necessary. Compared to this, it is possible to do without such measures in fine-grained, cohesive soils because of the increased short-term stability of the tunnel face under undrained conditions. In this publication the results of 3-dimensional finite-element calculations are presented to show the influence of the permeability of the soil and also the rate of the tunnel driving on the deformations around the tunnel as well as on the ground surface. The calculated deformations can furthermore be considered as an indicator for the time dependent stability of the tunnel face due to a higher redistribution of stresses and by that an enlargement of the plasticized zone. Usually the stability of the tunnel face is reduced by the presence of water because of the flow of water towards the tunnel. In low permeable soils undrained conditions prevail immediately after an excavation step. In this case relatively high stability-ratios may occur. The stability of the tunnel face will be reduced with increasing time until reaching the lower boundary of possible values, possibly leading to failure. If calculations are done under the assumption of drained conditions, the real stability of the tunnel face during construction may substantially exceed that of the calculated one. On the other hand, if calculations are done for undrained conditions, the effective stability may lie on the unsafe side [10]. There is therefore a big demand to optimize the method of investigating deformations around the tunnel, so as to ensure a safe tunnel excavation on the one hand and to guarantee a cost-effective process on the other. In this paper the tunnelling process is modelled by a step-by-step excavation under atmospheric conditions. The soil is described by a material model which distinguishes between primary and unload-reload stress paths and also accounts for stress-dependent stiffness parameters. The failure criterion is described by the Mohr-Coulomb criterion that considers cohesion, friction angle and angle of dilatancy.  相似文献   

20.
By using the lower-bound finite element limit analysis, the stability of a long unsupported circular tunnel has been examined with an inclusion of seismic body forces. The numerical results have been presented in terms of a non-dimensional stability number (γH/c) which is plotted as a function of horizontal seismic earth pressure coefficient (k h) for different combinations of H/D and ?; where (1) H is the depth of the crest of the tunnel from ground surface, (2) D is the diameter of the tunnel, (3) k h is the earthquake acceleration coefficient and (4) γ, c and ? define unit weight, cohesion and internal friction angle of soil mass, respectively. The stability numbers have been found to decrease continuously with an increase in k h. With an inclusion of k h, the plastic zone around the periphery of the tunnel becomes asymmetric. As compared to the results reported in the literature, the present analysis provides a little lower estimate of the stability numbers. The numerical results obtained would be useful for examining the stability of unsupported tunnel under seismic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号