首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Synthetic seismograms are usually computed for reflections from vertical incidence of P waves for a horizontally layered medium. In actual practice the angle of incidence departs from the vertical, as receivers are usually located at some distance from the source. At angles other than the vertical, the conversion of P- to S-wave energy and changes in the reflection coefficient affect the shape of the synthetic seismograms. The effect of non-vertical incidence on synthetic seismograms is examined in this paper. Seismograms at non-vertical incidence have been computed using the plane-wave approach of Haskell (1953) for a layered medium. The use of plane waves is an approximation to the actual case of spherical wavefronts from a surface source. Using plane-wave theory, the expected wave forms as a function of angle of incidence were computed numerically for several simple models. The results indicate that the synthetic seismograms do not change significantly for angles of incidence between o and 25 degrees. For larger angles the changes in the wave forms may be severe. The effect is more pronounced for high-velocity layers than for low-velocity layers.  相似文献   

2.
This paper considers propagation of elastodynamic waves in an imperfectly elastic half-space. Two different excitation modes are investigated: a buried source of compressional waves and a vertically directed areal load applied to the surface. Numerical integration of the analytical solution of the wave equation allows study of the vertical and horizontal components of displacement and/or particle velocity anywhere in the half-space. One case of particular interest concerns the examination of particle displacement and velocity at the surface in a circular area above the source. In another application seismograms generated by an explosive buried source are contrasted with seismograms generated by the transient application of a vertically directed load to the free surface. Still another application of considerable practical interest concerns the study of the nongeometrical pS—wave, in particular its characteristics as functions of range and depth. Finally, in the last application the behavior of a rarely observed wave (denoted here by the letter U) is studied in both elastic and visco-elastic half-spaces.  相似文献   

3.
The existence of‘*-waves’has, in recent years, prompted a renewed interest in these non-geometrical arrivals, which are generated by point sources located adajcent to plane interfaces. It has led to the re-evaluation of seismic data aquisition techniques and to the question of how to use this real phenomena in enhancing existing seismic interpretation methods. This paper considers a non-geometrical SH-arrival which is generated by a point torque source unrealistically buried within a half-space. The method of solution is essentially the same as presented in an earlier paper, with the modification that the limitation placed on the distance of the source from the interface has been removed in the saddle point method used to obtain a high-frequency approximate solution. In the earlier paper, a preliminary assumption forced the saddle point, which corresponded to the *-wave arrival, to be real when it is generally complex. However, for offsets removed from the distinct ray, the imaginary part of this complex quantity is negligible. A problem which arose when comparing exact synthetic traces with those obtained using zero-order saddle point methods, was the inability to match either the amplitude or phase of the geometrical arrival in the range of offsets when the *-wave and this corresponding geometrical ray were well separated. For this range of offsets the geometrical arrival was approaching grazing incidence and another term in the saddle point expansion of the integral was necessary to rectify this error. This method is also being used to validate the results for higher order terms obtained using asymptotic ray theory. Analytical formulae are given for both the *-wave and the higher order expansion of the geometrical event, together with a comparison of synthetic seismograms using the method developed here and a numerical integration algorithm.  相似文献   

4.
The goal of seismic reflection surveys is the derivation of petrophysical subsurface parameters from surface measurements. Today's well established technique in data acquisition, as well as processing terms, is based on the acoustic approximation to the real world's wave propagation. In recent years a lot of work has been done to extend the technique to the elastic approximation. There was especially an important trend towards elastic inversion techniques operating on plane-wave seismograms, called simultaneous P-SV inversion (or short P-SV inversion) within this paper. Being still under investigation, some important aspects of P-SV inversion concerning data acquisition as well as pre-processing, should be pointed out. To fit the assumptions of P-SV inversion schemes, at least a two-dimensional picture of the reflected wavefield with vertical and in-line horizontal receivers has to be recorded. Moreover, the theoretical work done suggests that in addition to a survey with a compressional wave source, a second survey should be done using sources radiating vertically polarized shear waves, is needed. Finally, proper slant stacking must be performed to get plane-wave seismograms. The P/S separated plane-wave seismograms are then well prepared for feeding into the inversion algorithms. P/S separated planewave seismograms are then well prepared for feeding into the inversion algorithm.s In this paper, a tutorial overview of the data acquisition and pre-processing in accordance with the P-SV inversion philosophy is given and illustrated using synthetic seismograms. A judgement on the feasibility of the P-SV inversion philosophy must be left to ongoing research.  相似文献   

5.
理论地震图计算方法   总被引:4,自引:3,他引:4       下载免费PDF全文
近二十多年来,随着理论地震学和计算技术的发展,理论地震图的计算技术有了飞速发展.目前已能对不同的介质模型和震源计算各种体波、面波、地球自由震荡和静态位移场.它们在研究天然地震震源过程、地球内部结构、近场强地面运动、核爆作监测以及地震勘探等领域中发挥了越来越大的作用. 目前常用的理论地震图计算方法主要包括积分变换法、离散数值方法和射线方法几大类.本文对这些方法分类进行了简单介绍,并评论了各种方法的特点和各自的适用范围.  相似文献   

6.
Borehole guided waves that are excited by explosive sources outside of the borehole are important for interpreting borehole seismic surveys and for rock property inversion workflows. Borehole seismograms are typically modelled using numerical methods of wave propagation. In order to benchmark such numerical algorithms and partially to interpret the results of modelling, an analytical methodology is presented here to compute synthetic seismograms. The specific setup is a wavefield emanating from a monopole point source embedded within a homogeneous elastic medium that interacts with a fluid‐filled borehole and a free surface. The methodology assumes that the wavelength of the seismic signal is much larger than the borehole radius. In this paper, it is supposed that there is no poroelastic coupling between the formation and the borehole. The total wavefield solution consists of P, PP, and PS body waves; the surface Rayleigh wave; and the low‐frequency guided Stoneley wave (often referred as the tube wave) within the borehole. In its turn, the tube wave consists of the partial responses generated by the incident P‐wave and the reflected PP and PS body waves at the borehole mouth and by the Rayleigh wave, as well as the Stoneley wave eigenmode. The Mach tube wave, which is a conic tube wave, additionally appears in the Mach cone in a slow formation with the tube‐wave velocity greater than the shear one. The conditions of appearance of the Mach wave in a slow formation are formulated. It is shown that the amplitude of the Mach tube wave strongly depends on Poisson's ratio of the slow surrounding formation. The amplitude of the Mach tube wave exponentially decreases when the source depth grows for weakly compressible elastic media with Poisson's ratio close to 0.5 (i.e., saturated clays and saturated clay soils). Asymptotic expressions are also provided to compute the wavefield amplitudes for different combinations of source depth and source‐well offset. These expressions allow an approximate solution of the wavefield to be computed much faster (within several seconds) than directly computing the implicit integrals arising from the analytical formulation.  相似文献   

7.
The 2008 Wenchuan earthquake occurred in an active earthquake zone, i.e., Longmenshan tectonic zone. Seismic waves triggered by this earthquake can be used to explore the characteristics of the fault rupture process and the hierarchical structure of the Earth’s interior. We employ spectral element method incorporated with large-scale parallel computing technology, to investigate the characteristics of seismic wave propagation excited by Wenchuan earthquake. We calculate synthetic seismograms with one-point source model and three-point source model respectively. The AK135 model is employed as a prototype of our numerical global Earth model. The Earth’s ellipticity, Earth’s medium attenuation, and topography data are taken into consideration. These wave propagation processes are simulated by solving three-dimensional elastic wave governing equations. Three-dimensional visualization of our numerical results displays the profile of the seismic wave propagation. The three-point source, which is proposed from the latest investigations through field observation and reverse estimation, can better demonstrate the spatial and temporal characteristics of the source rupture process than the one-point source. We take comparison of synthetic seismograms with observational data recorded at 16 observatory stations. Primary results show that the synthetic seismograms calculated from three-point source agree well with the observations. This can further reveal that the source rupture process of Wenchuan earthquake is a multi-rupture process, which is composed by at least three or more stages of rupture processes. Supported by National Basic Research Program of China (Grant No. 2004CB418406), National Natural Science Foundation of China (Grant Nos. 40774049 and 40474038), and Computer Network Information Center, Chinese Academy of Sciences (Grant No. INF105-SCE-02-12)  相似文献   

8.
波动理论的合成地震记录是地震资料处理和解释中的重要研究课题。 目前,制作波动理论的合成记录主要是用Trorey的克希霍夫方法,正在研究的有有限差分法和有限元素法。本文提出一种新的方法,在频率域中制作波动理论的合成记录,给出了与克希霍夫绕射波方程等价的频率域中的绕射波方程。在国产DJS-11型计算机上,应用两种绕射波方程实现了合成地震记录,并且进行了比较,认为频率域方法是有效的,可以用于波动方程偏移和地震资料解释,进一步工作有可能获得多层变速模型的波动理论记录。  相似文献   

9.
In this study we derive expressions for particle displacement or particle velocity anywhere inside a stratified earth and at its surface due to horizontal torque source located in the top layer. Equivalently, invoking Green's function reciprocity theorem, the solution applies also to the case of a surface or subsurface source when the resulting displacement or velocity is measured within the top layer. In order to evaluate the closed-form analytical solution economically and accurately it is advisable to introduce inelastic attenuation. Causal inelastic attenuation also lends the necessary realism to the computed seismic trace. To provide proof that the analytical solution is indeed correct and applicable to the multilayer case, a thick uniform overburden was assumed to consist of many thin layers. The correctness of the computed particle velocity response can be very simply verified by inspection. The computed response can also serve as a check on other less accurate methods of producing synthetic seismograms, such as the techniques of finite differences, finite elements, and various sophisticated ray-tracing techniques. It is not difficult to construct horizontal surface torque source. It appears that such source is well suited for seismic exploration in areas with a high-velocity surface layer. A realistic source function is analyzed in detail and normalized displacement response evaluated at different incidence angles in the near and the far fields. In an effort to distinguish the features of an SH torque seismogram from a pressure seismogram two models with identical layerings and layer parameters have been set up. As expected the torque seismogram is very different from the compressional seismogram. One desirable feature of a torque seismogram is the fast decay of multiples. Exact synthetic seismograms have many uses; some of them, such as the study of complex interference phenomena, phase change at wide angle reflection, channeling effects, dispersion (geometrical and material), absolute gain, and inelastic attenuation, can be carried out accurately and effortlessly. They can also be used to improve basic processing techniques such as deconvolution and velocity analysis. The numerical evaluation of the analytical solution of the wave equation as described in this paper has a long history. Most of the work leading to this paper was carried out by one of us (M. J. K.) in the years 1957 to 1968 at the Geophysical Research Corporation. However, the full testing of the various computer codes was carried out only very recently at the Phillips Petroleum Company.  相似文献   

10.
合成地震图的广义反射透射系数矩阵方法   总被引:3,自引:1,他引:3  
简述了在均匀层状介质中,合成地震图的广义反射透射系数矩阵方法,并通过与有人的计算结果对比,检验了经过修改调试后的合成地震图的计算程序。计算与对比表明,经修改调试后的程序对于各种因素,包括震源类型、震源深度、震中、频率和慢度都有较好的普适性,适用于实际的地震波形研究。  相似文献   

11.
This paper presents a relationship between the focal depth in terms of Rayleigh-wave wavelength and the dominant frequency of Rayleigh waves generated in a homogeneous half-space. Rayleigh waves were simulated using a (2, 4) staggered grid P-SV wave finite difference algorithm with VGR-stress imaging technique as a free surface boundary condition. VGR is an acronym for vertical grid-size reduction. The simulated seismic responses using P-wave and SV-wave sources at different focal depths revealed Rayleigh-wave generation up to certain focal depth only for the considered frequency bandwidth. A shift of normalized spectral shape of Rayleigh wave towards lower frequency with increasing focal depth was inferred. Largest spectral amplitude was obtained in the wavelength for which the ratio of focal depth to the wavelength of Rayleigh wave was around 0.17 in the case of P-wave source and 0.9 in the case of SV-wave source. An exponential decrease of spectral amplitude of Rayleigh wave with the departure of the ratio of focal depth to Rayleigh wave wavelength from the above mentioned values was obtained.  相似文献   

12.
A new method for suppressing multiple reflections in seismograms is developed. It is based on a downward continuation procedure which uses the full acoustic wave equation (hyperbolic form) as a downward continuation operator. We demonstrate that the downward continuation of the recorded wave field maps a reflectivity function without multiply reflected events. The method is applied successfully to individual traces of plane-wave decomposed (slant-stacked) synthetic and field data.  相似文献   

13.
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity.  相似文献   

14.
Theoretical seismograms for an explosive source in a multilayered elastic medium are constructed by Fourier synthesis and plane wave superposition. The calculation scheme which builds up a reflection matrix layer by layer in the frequency and wave number domain allows the inclusion of attenuation and a choice of the level of internal multiples in each layer. Comparative calculations of theoretical seismograms for an elastic model and in the acoustic approximation, neglecting shear, show that the main differences arise at large offsets. The inclusion of shear waves leads to lower reflected P wave amplitudes at the end of the spread but only small amounts of converted phases.  相似文献   

15.
In the development and testing of water‐surface multiple‐removal algorithms, it is valuable to have accurate synthetic seismograms which exhibit multiples, for which the multiple‐free solution is known. A method is presented for constructing 2D and 3D solutions of the acoustic wave equation in water, by combining the solution from a primary source with other scaled solutions of secondary sources, which simulate diffractors. The computation involves function evaluation rather than numerical solution of differential equations and is consequently accurate and comparatively fast. The analytic formulae on which the method is based give insights into methods for multiple removal. Generalized reflection coefficients, defined on a horizontal plane above the diffractors, are derived and used to construct the integral equations which are the basis for many multiple‐removal schemes.  相似文献   

16.
Numerical examples of high-frequency synthetic seismograms of body waves in a 2-D layered medium with complex interfaces (faults, wedges, curvilinear, corrugated) are presented. The wave field modeling algorithm combines the possibilities of the ray method and the edge wave superposition method. This approach preserves all advantages of the ray method and eliminates restrictions related to diffraction by boundary edges and to caustic effects in singular regions. The method does not require two-point ray tracing (source-to-receiver), and the position of the source, as well as the type of source, and the position of receivers can be chosen arbitrarily. The memory and the time required for synthetic seismogram computation are similar to ray synthetic seismograms. The computation of the volume of the medium (the Fresnel volume or Fresnel zones), which gives the essential contribution to the wave field, is included in the modeling program package. In the case of complicated irregular interface (or a layered medium with a regular ray field at the last interface), the method displays a high accuracy of wave field computation. Otherwise, the method can be considered a modification of the ray method with regularization by the superposition of edge waves.  相似文献   

17.
The source parameters, moment, stress drop and source dimension are estimated for 61 events from the January 1975 Brawley earthquake swarm. Earthquakes studied range in local magnitude from 1.0 to 4.7. Stress drops range from 1 to 636 bars and increase with source depth. It is estimated that the sedimentary structure of the Imperial Valley amplifies shear waves by a factor of 2 to 3 in addition to the free surface amplification of 2. Estimates of moment from 10 sec surface waves are 4 to 6 times larger than the moment estimated from the relatively flat part of the local body wave spectrum at 1 sec. This may be due to after-slip on the fault, a long thin fault, or partial stress drop. It is shown that the experimentally determined ratio of stress drop to apparent stress should be approximately 4.0 when spectrum integration is used to obtainS-wave energy and theP-wave energy is 1/3 theS-wave energy.  相似文献   

18.
We present an approach based on controlled source seismology (CSS) methods, especially developed for processing and modeling of the local earthquake seismograms. Record sections of the local earthquake seismograms generated for multiple source depths illuminate the upper crustal velocity structure in the region. Extensive travel times and synthetic seismograms modeling of the observed record sections reveal the P and S velocity structure in the region. The strength of this approach essentially lies with the possibility of validating the upper crustal velocity models inferred in various subregions of the seismogenic region. A redundant and significantly large number of virtual source local earthquake seismogram sections, gathered for multiple source depths and varying source mechanisms in each of the subregions, validate the same set of P and S velocity models in that region. Further, those models are found to generate the synthetic seismograms consistent with the observed sections. The proposed approach effectively utilizes a reliable dataset from a great volume of well-located local earthquake recordings of a state-of-the-art digital seismograph network. Such a dataset of local earthquake seismograms in the Koyna-Warna active earthquake zone is used here to demonstrate this approach and obtained subregion-specific models of upper crustal P and S velocity structure in the epicentral region. The results indicate that the technique presented here is efficient for processing and modeling the local earthquake seismograms and deriving upper crustal velocity models in the seismogenic regions.  相似文献   

19.
We use different interferometry approaches to process the seismic signals generated by a drill‐bit source in one well and recorded by seismic receivers located both in a second borehole and at the surface near the source well. We compare the standard interferometry results, obtained by using the raw drill‐bit data without a pilot signal, with the new interferometry results obtained by using the drill‐bit seismograms correlated with a reference pilot signal. The analysis of the stationary phase shows that the final results have different S/N levels and are affected by the coherent noise in the form of rig arrivals. The interferometry methods are compared by using different deconvolution approaches. The analysis shows that the results agree with the conventional drill‐bit seismograms and that using the reference pilot signal improves the quality of the drill‐bit wavefields redatumed by the interferometry method.  相似文献   

20.
This paper is directed at modeling layered media. We extend the plane-wave normal-incidence state-space model developed by Mendel, Nahi and Chan in 1979, to the non-normal incidence case. To do this we introduce a shifting principle, a zero-offset wavefront, and zero-offset travel times for different layers. We also develop an algorithm for obtaining a synthetic line source reflection seismogram. In this algorithm non-normal incidence plane-wave seismograms are summed over a range of incident angles. The algorithm is based on a modified version of Sommerfield's (1896) theorem. Simulations of acoustic and elastic media are included which illustrate the applicability of our plane-wave and line source seismograms for both elastic and acoustic cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号