首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
煤矿井下槽波三维数值模拟及频散分析   总被引:8,自引:3,他引:5       下载免费PDF全文
采用交错网格高阶有限差分法编制了地震波场三维正演模拟软件,设计了基于镜像法原理处理煤矿井下近水平和起伏巷道特殊空间的算法;模拟了煤矿井下含巷道和不含巷道情况下煤层中传播的地震波场,并分析其频散特征.结果发现:由于巷道的影响,巷道壁上产生很强的巷道振型槽波,煤层中则出现了以Love型为主的槽波,据此分析了实际槽波记录的形成机理,研究结果对今后煤矿井下巷道地震超前探测和工作面弹性波透视等具有重要的理论意义和实际价值.  相似文献   

2.
Guided seismic waves are generated at lateral discontinuities in coal seams as an integral part of the mechanics of scattering downgoing body waves from a surface energy source.Numerical and laboratory model studies undertaken for both thin and thick coal seam waveguides show that small faults generate recognizable diffraction patterns by convertingP andS waves into channel wave arrivals at in-seam geophones on a walkawayVSP profile.These results suggest that in-seam geophones can be used during subsequent surface reflection surveys so as to improve mine profitability by optimising longwall layout in faulted ground.  相似文献   

3.
An in-seam fan shoot was conducted in 1981 over a 300 m × 500 m panel of the Schwalbach seam at Ensdorf by a team from Prakla-Seismos AG of Hannover under contract to Saarbergwerke AG, Saarbrücken. The object was to study SH-mode propagation in the coal seam waveguide. The high quality dataset retrieved provides a general and valuable test bed with which to compare the performance of in-seam seismic velocity analysers. Five different dispersion analysers are demonstrated using the Schwalbach data. They are all based on the a priori assumption of coal seam homogeneity and isotropy. Space or time windows limit the resolution of the Fourier moving-window analyser, the migration based phase-velocity analyser, and the double Fourier transformer. The other two analysers, the maximum entropy moving-window analyser and the phase-moveout analyser, achieve noise-limited super-resolution by predicting the probable behaviour of the wavefield outside the window. The coal seam's characteristics conform to those predicted for a simplified model based on proposals by Elsen, Rüter and Schott of Westfälische Berggewerkschaftskasse, Bochum. The slight discrepancy between theoretical and actual dispersion characteristics could be reduced by increasing the model's complexity. However, there would be no material gain without testing the validity of the signal processing assumptions of seam isotropy and homogeneity.  相似文献   

4.
The geological sequence rock-coal-rock represents a seismic low-velocity channel. Channel waves generated in a coal seam and their reflections from discontinuities can be used for proving the minability of the seam. To investigate the process of reflection, two-dimensional models of the sequence rock-coal-rock have been investigated by means of the ultrasonic transducer technique. Two-dimensional models have the advantage that the wave field can be observed at an arbitrarily chosen point of the model plate. Thus, by means of these models the direct and the reflected Rayleigh channel wave can be observed along their path of propagation. From the geophysical point of view the various types of discontinuities of a coal seam can be divided into two basic types: one is restricted to the seam, the other includes in addition a fractured zone in the adjoining rock. The investigation of the symmetrical Rayleigh channel wave reflected by a discontinuity yields the following results: For dip angles γ between approximately 90° and approximately 60° the reflectivity is virtually independent of the type of discontinuity. This does not hold for the limiting case of γ= 90° (vertical dip) for which the reflectivity increases with increasing influence of the fractured zone. For dip angles γ between approximately 60° and approximately 40° the reflectivity is still independent of the fractured zone but the shape of the reflected wave deteriorates with increasing influence of the fractured zone. For dip angles γ below approximately 40° the reflected wave deteriorates such that the application of the in-seam seismic reflection method will be difficult or even impossible. The conversion of the direct wave of the symmetrical fundamental mode into a reflected wave of the antisymmetrical fundamental mode has been observed.  相似文献   

5.
Three-component seismic and geoelectrical in-mine surveys were carried out in Lyukobanya colliery near Miskolc, Hungary to determine the in situ petrophysical parameter distributions and to detect inhomogeneities in the coal seam. The seismic measurements comprise an underground vertical seismic profile, using body waves, and an in-seam seismic amplitude-depth distribution and transmission survey, using channel waves. The geoelectrical measurements are based on the drift- and seam-sounding method. Interval traveltime-, amplitude-, multiple-filter- and polarization analysis methods are applied to the seismic data. They lead to a five-layer model for the strata including the coal seam. The coal seam and two underlying beds act as a seismic waveguide. The layer sequence supports the propagation of both normal and leaky mode channel waves of the Love- and Rayleigh type. A calculation of the total reflected energy for each interface using Knott's energy coefficients shows that the velocity ranges of high reflection energy and of normal and leaky mode wavegroups coincide. The excitation of wavegroups strongly depends on the seismic source. A simultaneous inversion of a geoelectrical drift- and seam-sounding survey prevents misinterpretations of the seismic data by clearly identifying the low-velocity coal seam as a high-resistivity bed. Calculations of dispersion and sounding curves improve the resolution of the slowness and resistivity in each layer. Both diminished amplitudes and distortions in the polarization of transmission seismo-grams and decreasing resistivities in a geoelectrical pseudosection of the coal seam are related to an inhomogeneity. A calculation of synthetic seismograms for Love and Rayleigh channel waves with the finite-difference and the Alekseev-Mikhailenko method agrees well with the field data for the main features, i.e., particular arrivals in the wave train, wavegroups, velocities and symmetries or asymmetries. This in-mine experiment demonstrates that the simultaneous acquisition, processing and interpretation of seismic and geoelectrical data improve the lithological interpretation of petrophysical parameter distributions. Coal seam inhomogeneities can also be detected more reliably by the two independent surveys than by one alone.  相似文献   

6.
We present dispersion curves, and amplitude-depth distributions of the fundamental and first higher mode of Love seam waves for two characteristic seam models. The first model consists of four layers, representing a coal seam underlain by a root clay of variable thickness. The second model consists of five layers, representing coal seams containing a dirt band with variable position and thickness. The simple three-layer model is used for reference. It is shown that at higher frequencies, depending on the thickness of the root clay and the dirt band, the coal layers alone act as a wave guide, whereas at low frequencies all layers act together as a channel. Depending on the thickness, and position of the dirt band and the root clay, in the dispersion curves of the group velocity, secondary minima grow in addition to the absolute minima. Furthermore, the dispersion curves of the group velocity of the two modes can overlap. In all these cases, wave groups in addition to the Airy phase of the fundamental mode (propagating with minimum group velocity) occur on the seismograms recorded in in-seam seismic surveys, thus impeding their interpretation. Hence, we suggest the estimation of the dispersion characteristics of Love seam waves in coal seams under investigation preceding actual field surveys. All numerical calculations were performed using a fast and stable phase recursion algorithm.  相似文献   

7.
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.  相似文献   

8.
0.9 m薄煤层SH型槽波频散特征及波形模式   总被引:3,自引:2,他引:1       下载免费PDF全文
在0.9 m薄煤层中使用放炮方法做微震震源的条件,通过对所采集到的薄煤层槽波信号进行分析,发现薄煤层槽波在频域中存在高频和低频两个独立并且不连续的波段.其中高频区大约以2000 Hz为中心,低频域的中心频率约为490 Hz,并且高频域和低频域的能量差异不显著.通过时频分析,可以清晰地看到高、低两个频域几乎在同一时刻触发,并且其小波相关系数在这两个域中的分布规律表现出一定的相似性.通过对0.9 m薄煤层槽波频散曲线的理论分析可知,现场观测到的Airy震相的频率及速度和其理论值较为接近.震源置于煤层中心,且炸药能量对顶底板的扰动,对第二阶对称波形模式下槽波高频部分的形成起着关键作用.在这一对称高阶波形模式下槽波的波速基本上和煤层顶底板中S波的波速一致.由于这两个触发的波形模式在时间域中具有相似的特征,建议在高频域和低频域同时发育较好的薄煤层槽波勘探中,可以采用在同一时间域中高低频相结合的方法提高利用槽波勘探分析的效果.  相似文献   

9.
Field data from two-component in-seam seismic measurements are used to study roadway modes and their interaction with reflected seam waves. Using the multiple-filter technique to investigate the dispersion behaviour of the different waves, it can be shown that the roadway modes disperse very similarly to the related transmitted seam waves. However, because of the free surface of the coal face, the dispersion curves of the roadway modes show a velocity reduction and a slight shift to lower frequencies compared to those of the related transmitted seam waves. Polarization analysis using hodograms, rectilinearity and polarization angle confirms these results. The parameters found by polarization analysis can be used to design polarization filters which help to separate roadway modes and reflected events in the traveltime range of superposition in the presented field case.  相似文献   

10.
In-seam seismic survey currently is a hot geophysical exploration technology used for the prediction of coal seam thickness in China. Many studies have investigated the relationship between the group velocity of channel wave at certain frequency and the actual thickness of exposed coal beds. But these results are based on statistics and not universally applicable to predict the thickness of coal seams. In this study, we first theoretically analyzed the relationship between the depth and energy distribution of multi-order Love-type channel waves and found that when the channel wave wavelength is smaller than the thickness of the coal seam, the energy is more concentrated, while when the wavelength is greater than the thickness, the energy reduces linearly. We then utilized the numerical simulation technology to obtain the signal of the simulated Love-type channel wave, analyzed its frequency dispersion, and calculated the theoretical dispersion curves. The results showed that the dispersion characteristics of the channel wave are closely related to the thickness of coal seam, and the shear wave velocity of the coal seam and its surrounding rocks. In addition, we for the first time realized the joint inversion of multi-order Love-type channel waves based on the genetic algorithm and inversely calculated the velocities of shear wave in both coal seam and its surrounding rocks and the thickness of the coal seam. In addition, we found the group velocity dispersion curve of the single-channel transmitted channel wave using the time–frequency analysis and obtained the phase velocity dispersion curve based on the mathematical relationship between the group and phase velocities. Moreover, we employed the phase velocity dispersion curve to complete the inversion of the above method and obtain the predicted coal seam thickness. By comparing the geological sketch of the coal mining face, we found that the predicted coal seam thickness is in good agreement with the actual thickness. Overall, adopting the channel wave inversion method that creatively uses the complete dispersion curve can obtain the shear wave velocities of the coal and its surrounding rocks, and analyzing the depth of the abruptly changed shear wave velocity can accurately obtain the thickness of the coal seam. Therefore, our study proved that this inversion method is feasible to be used in both simulation experiments and actual detection.  相似文献   

11.
Channel waves generated in coal-seams and their reflections from discontinuities are widely used to indicate the tectonic and stratigraphic features of coal deposits, resulting in greater efficiency and safety in coal-mining. In the mining area of Ibbenbüren (F.R.G.) seam structures sometimes contain so-called mylonite zones, which are crushed coal deposits capable of binding gas. If mining hits a mylonite zone this would probably not only reduce output of the mine, but could even cause gas explosions. To investigate the influence of a mylonite zone on the propagation of channel waves, Rayleigh channel wave measurements for 2D analogue models were performed and synthetic seismograms of Love channel waves were calculated. Analogue modelling of the mylonite zone using Rayleigh seam waves within the seam was carried out using a perforation technique. Calculations were made to obtain an estimate of velocity reduction due to perforation. The results agree well with velocity values measured up to a perforation of 25% in a 2D epoxy resin model. Reflected channel wave energy was found by applying dispersion analysis in the case where the impedance reduction between the mylonite seam structure and the undisturbed seam was approximately 5%. The horizontal width of the mylonite structure was detectable from the time lag between reflected channel wave signals from both in-seam borders of the mylonite zone. Resolution of two discrete borders was possible for a width of 1.5 λ's. The influence of a vertical fault, positioned within the mylonite zone, could only poorly be resolved. Numerical model investigations of Love seam waves were concerned mainly with the variation of the horizontal width of the mylonite zone. Mylonite zones with dimensions of the order of 0.4 λ's allow definite statements about their widths from dispersion and spectral analyses. For zones with smaller widths down to 0.2 λ's, it was found that reflectivity and transmissivity analyses give a qualitative criterion for distinguishing a mylonite structure surrounding a fault from a pure fault.  相似文献   

12.
The problem of detecting discontinuities which interrupt coal seams is of great importance to the coal mining industry. One possible method of detecting such discontinuities is that of in-seam seismology where both source and detectors are placed under- ground on the coal face. In this paper the propagation of SH waves from a line source in the seam is investigated. There exists a particular set of waves–channel waves–, confined to the coal seam. These waves are dispersive and have an associated Airy phase whose geometrical attenuation is least. However, if absorption of energy within the coal is included then the Airy phase is the dominant wavegroup only for distances less than a certain maximum. If a detection criterion proposed by Dresen and Freystätter applies, then there is a lower limit to the frequency that should be used for exploration. This requirement may be in conflict with attenuation considerations.  相似文献   

13.
上组煤采空区对于下组煤的成像和安全回采有着重要影响,有必要研究矿区上组煤采空区精准成像技术.对于实际采空区及其下组煤的地震响应特征预测来说,建立和实际地质情况相吻合的正演模型是基础.根据搜集到的研究矿区钻孔测井资料,获取建模所需的等效地层物性参数、采空区垮落带等效模量、裂隙带等效模量等数据,建立与研究矿区地质情况比较接...  相似文献   

14.
Finite‐difference P‐SV simulations of seismic scattering characteristics of faulted coal‐seam models have been undertaken for near‐surface P‐ and S‐wave sources in an attempt to understand the efficiency of body‐wave to channel‐wave mode conversion and how it depends on the elastic parameters of the structure. The synthetic seismograms clearly show the groups of channel waves generated at the fault: one by the downgoing P‐wave and the other by the downgoing S‐wave. These modes travel horizontally in the seam at velocities less than the S‐wavespeed of the rock. A strong Airy phase is generated for the fundamental mode. The velocity contrast between the coal and the host rock is a more important parameter than the density contrast in controlling the amplitude of the channel waves. The optimal coupling from body‐wave energy to channel‐wave energy occurs at a velocity contrast of 1.5. Strong guided waves are produced by the incident S‐sources for source angles of 75° to 90° (close to the near‐side face of the fault). As the fault throw increases, the amplitude of the channel wave also increases. The presence of a lower‐velocity clay layer within the coal‐seam sequence affects the waveguiding characteristics. The displacement amplitude distribution is shifted more towards the lower‐wavespeed layer. The presence of a ‘washout’ zone or a brecciated zone surrounding the fault also results in greater forward scattering and channel‐wave capture by the coal seam.  相似文献   

15.
煤巷小构造Rayleigh型槽波超前探测数值模拟   总被引:13,自引:3,他引:10       下载免费PDF全文
对煤巷小构造地震波场进行了数值模拟研究,分析了层状煤层中地震波的传播特征.研究表明:(1)在煤巷迎头前方煤层内以纵波震源激发的Rayleigh型槽波相对于体波能量较强,波列较长,波速较低.(2)沿煤层传播的Rayleigh型槽波在小构造面上产生Rayleigh型槽波反射波,反射Rayleigh型槽波垂直分量相对于水平分量能量较强.沿煤层反向传播的反射Rayleigh型槽波在煤巷迎头面上转换为沿煤巷底板传播的Rayleigh面波.沿煤巷底板可以接收到能量较强的反射Rayleigh型槽波产生的Rayleigh面波,其可以作为超前探测小构造面的特征波.在地震记录上反射Rayleigh型槽波产生的Rayleigh面波波至最迟,在时间域与其他波列时间间隔较大,其垂直分量能量相对于水平分量较强,在地震记录上容易识别.(3)在相同的地质条件下应用反射地震超前探测方法,标志煤巷迎头前方存在小构造面的反射地震波能量较弱,受煤巷顶、底板界面和采煤迎头面的强反射波干扰,在地震记录中难以识别.  相似文献   

16.
煤层中流体地震可探测性的模拟分析   总被引:1,自引:0,他引:1       下载免费PDF全文
杨春  张会星  王赟 《地球物理学报》2018,61(4):1605-1614
作为一种典型的强阻抗差低阻抗薄层,煤层中孔隙含流体时是否会引起地震反射产生明显的异常是回答地震检测流体是否可行的根本.为此,本文针对强阻抗差薄层模型,基于Biot双相介质理论,通过弹性波有限差分法数值模拟,与各向同性单相介质假设的煤层反射对比,探讨了反射复合波受煤层孔隙度及流体性质变化的影响程度.模拟分析发现:由于薄层孔隙度和孔隙流体属性的变化在Biot理论中表现为纵波速度的变化,PP波反射AVO(Amplitude Versus Offset,振幅随偏移距变化)特征对薄层是否含流体相对敏感;综合使用PP与PS波对比有利于薄层中流体的预测;孔隙度一定时,PP波反射振幅随着含气饱和度的增加而增大;受薄层调谐作用的影响,孔隙和流体变化对煤层反射的频谱特征影响不大,近似于单相介质时的情况.  相似文献   

17.
应用三分量地震数据反演煤系地层孔隙含水量   总被引:6,自引:4,他引:2       下载免费PDF全文
芦俊  王赟  赵伟 《地球物理学报》2010,53(7):1734-1740
地层孔隙水含量的计算主要受地层孔隙度与孔隙含水饱和度的影响.通过实验室煤层及其顶底板岩芯物理测试与孔隙度测量,可以获得煤系地层岩芯的孔隙度与岩芯纵、横波速度的经验公式;结合三分量地震勘探获得的纵波与横波速度,能够计算出煤系地层的孔隙度;含水饱和度的计算通过实验室岩电参数测试和阿尔奇公式可以计算得到.结合淮南某矿区三维三分量地震勘探和地球物理测井及岩样的岩电试验,实现了三维空间煤系地层孔隙含水体积百分比的精确计算.该预测方法与传统的、钻孔控制的地下水评价方法相比可以提供相对精细的、三维空间的、定量化的煤系地层孔隙相对含水量,对煤炭与煤层气资源开采中所涉及的地下水分布规律预测有一定的参考意义.  相似文献   

18.
During the last six years, National Geophysical Research Institute, Hyderabad has established a semi-permanent seismological network of 5–8 broadband seismographs and 10–20 accelerographs in the Kachchh seismic zone, Gujarat with a prime objective to monitor the continued aftershock activity of the 2001 Mw 7.7 Bhuj mainshock. The reliable and accurate broadband data for the 8 October Mw 7.6 2005 Kashmir earthquake and its aftershocks from this network as well as Hyderabad Geoscope station enabled us to estimate the group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the Peninsular India. Firstly, we measure Rayleigh-and Love-wave group velocity dispersion curves in the period range of 8 to 35 sec and invert these curves to estimate the crustal and upper mantle structure below the western part of Peninsular India. Our best model suggests a two-layered crust: The upper crust is 13.8 km thick with a shear velocity (Vs) of 3.2 km/s; the corresponding values for the lower crust are 24.9 km and 3.7 km/sec. The shear velocity for the upper mantle is found to be 4.65 km/sec. Based on this structure, we perform a moment tensor (MT) inversion of the bandpass (0.05–0.02 Hz) filtered seismograms of the Kashmir earthquake. The best fit is obtained for a source located at a depth of 30 km, with a seismic moment, Mo, of 1.6 × 1027 dyne-cm, and a focal mechanism with strike 19.5°, dip 42°, and rake 167°. The long-period magnitude (MA ~ Mw) of this earthquake is estimated to be 7.31. An analysis of well-developed sPn and sSn regional crustal phases from the bandpassed (0.02–0.25 Hz) seismograms of this earthquake at four stations in Kachchh suggests a focal depth of 30.8 km.  相似文献   

19.
地震槽波的数学-物理模拟初探   总被引:2,自引:0,他引:2       下载免费PDF全文
针对地震槽波在低速层的传播特性,开展了煤层内地震槽波勘探的数值模拟和物理模拟研究的初探工作.在数值模拟研究方面,采用交错网格有限差分法对煤层中的地震槽波进行三分量全波场模拟.基于波场快照和人工合成地震记录研究了不同模型中的波场特征和各种波型的传播规律.在物理模拟方面,通过选用不同配比的环氧树脂和硅橡胶类材料构建地震槽波物理模型,利用透射法和反射法观测系统获得了清晰的地震槽波记录以研究槽波的地震学特征.研究表明,在煤层内槽波的地震波场中,Love型槽波的能量小于Rayleigh型槽波的SV分量,大于Rayleigh型槽波的SH分量.相对于Love型槽波和Rayleigh型槽波的SH分量,Rayleigh型槽波的SV分量在围岩中的泄露能量较强.在煤层界面附近的围岩中,地震波仍以槽波形式传播,随着距离的增加能量逐渐衰减.随着煤层变薄,煤层槽波主频向高频方向移动,频散现象增强,传播速度增大.  相似文献   

20.
To study the impact of modern coal mining on the overlying formation, a full‐life‐cycle four‐dimensional seismic monitoring study has been carried out. Four seismic data campaigns have been performed using flexi‐bin geometry with square bins, with total duration of 171 days. The four seismic datasets have been processed with the same processing workflow and parameters; major problems such as statics correction, signal‐to‐noise ratio, resolution, and consistency processing are addressed taking into account the geological features of the research area. This guarantees that remaining four‐dimensional differences between the time‐lapse datasets show mostly geological factors due to the coal mining and effects such as surface subsidence. Our four‐dimensional seismic monitoring of modern coal mining shows that mined and unmined areas have significant zoning characteristics; coal mining has a direct impact on the overlying formation. The mining leads to obvious event subsidence, which reflects that overlying formations undergo subsidence during the mining process. The overlying formation appears as two zones called caving zone and fractured zone. We determine the fault dip of the overlying formation at one end of the working face to be 56°or so by calculation and conversion. We also see that, during the coal mining process, over time, the overlying formation has a self‐recovery capability, which gradually strengthens from the roof siltstone upward to the Aeolian sandstone near the surface. The stability of 20‐m coal pillars between working faces displays a strengthening trend and remains safe during the mining process due to both coal seam supporting and formation compaction effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号