首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
全球土地覆盖制图在过去的10年中取得重要进展,空间分辨率从300 m增加至30 m,分类详细程度也有所提高,从10余个一级类到包含29类的二级分类体系。然而,利用光学遥感数据在大空间范围制图方面仍有诸多挑战。本文主要介绍在农田、居住区、水体和湿地制图方面的挑战,讨论在使用多时相和多传感器遥感数据上的困难,这将是未来遥感应用的趋势。由于各种地表覆盖数据产品有自己定义的地表覆盖类型体系和处理流程,通过调和以及集成各种全球土地覆盖制图产品能够满足新的应用目的,并且可以最大程度地利用已有的土地覆盖数据。然而,未来全球土地覆盖制图需要能够按照新应用需求动态生成地表覆盖数据产品的能力。过去的研究表明有效地提高局部尺度制图的分类精度,更好的算法、更多种特征变量(新类型的数据或特征)以及更具代表性的训练样本都非常重要。我们却认为特征变量的使用更重要。本文提出了一个全球土地覆盖制图的新范式。在这个新范式中,地表覆盖类型的定义被分解为定性指标的类、定量指标的植被郁闭度和高度。非植被类型通过它们的光谱和纹理信息提取。复合考虑类、郁闭度和高度3种指标来定义和区别包含植被的地表覆盖类型。郁闭度和高度不能在分类算法中提取,需要借助其他直接测量或间接反演方法。新的范式还表明,一个普遍适用的训练样本集有效地提高了在非洲大陆尺度土地覆盖分类。为了确保更加容易地实现从传统的土地覆盖制图到全球土地覆盖制图新范式的转变,建议构建一体化的数据管理和分析系统。通过集成相关的观测数据、样本数据和分析算法,逐步建成全球土地覆盖制图在线系统,构建全球地表覆盖制图门户网站,为数据生产者、数据用户、专业研究人员、决策人员搭建合作互助的平台。  相似文献   

2.
A nationwide multidate GIS database was generated in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in Mexico. Existing cartography on land use/cover at a 1:250,000 scale was revised to select compatible inputs regarding the scale, the classification scheme and the mapping method. Digital maps from three different dates (the late 1970s, 1993 and 2000) were revised, evaluated, corrected and integrated into a GIS database. In order to improve the reliability of the database, an attempt was made to assess the accuracy of the digitalisation procedure and to detect and correct unlikely changes due to thematic errors in the maps. Digital maps were overlaid in order to generate LUCC maps, transition matrices and to calculate rates of conversion. Based upon this database, rates of deforestation between 1976 and 2000 were evaluated as 0.25 and 0.76% per year for temperate and tropical forests, respectively.  相似文献   

3.
Six widely used coarse-resolution global land cover data-sets – Global Land Cover Characterization (GLCC), Global Land Cover 2000 (GLC2000), GlobCover land cover product (GlobCover), MODIS land cover product (MODIS LC), the University of Maryland land cover product (UMD LC), and the MODIS Vegetation Continuous Fields tree cover layer (MODIS VCF) disagree substantially in their estimates of forest cover. Employing a regression tree model trained on higher-resolution, Landsat-based data, these multisource multiresolution maps were integrated for an improved characterization of forest cover over North America. Evaluated using a withheld test sample, the integrated percent forest cover (IPFC) data-set has a root mean square error of 11.75% – substantially better than the 17.37% of GLCC, 17.61% of GLC2000, 17.96% of GlobCover, 15.23% of MODIS LC, 19.25% of MODIS VCF, and 15.15% of UMD LC, respectively. Although demonstrated for forest, this approach based on integration of multiple products has potential for improved characterization of other land cover types as well.  相似文献   

4.
Many African countries are facing increasing risks of food insecurity due to rising populations. Accurate and timely information on the spatial distribution of cropland is critical for the effective management of crop production and yield forecast. Most recent cropland products (2015 and 2016) derived from multi-source remote sensing data are available for public use. However, discrepancies exist among these cropland products, and the level of discrepancy is particularly high in several Africa regions. The overall goal of this study was to identify and assess the driving factors contributing to the spatial discrepancies among four cropland products derived from remotely sensed data. A novel approach was proposed to evaluate the spatial agreement of these cropland products and assess the impact of environmental factors such as elevation dispersion, field size, land-cover richness and frequency of cloud cover on these spatial differences. Results from this study show that the overall accuracies of the four cropland products are below 65%. In particular, large disagreements are seen on datasets covering Sahel zone and along the West African coasts. This study has identified land-cover richness as the driving factor with the largest contribution to the spatial disagreement among cropland products over Africa, followed by the high frequency of cloud cover, small and fragmented field size, and elevation complexity. To improve the accuracy of future cropland products for African regions, the data producers are encouraged to take a multi-classification approach and incorporate multi-sensors into their cropland mapping processes.  相似文献   

5.
Global change issues are high on the current international political agenda. A variety of global protocols and conventions have been established aimed at mitigating global environmental risks. A system for monitoring, evaluation and compliance of these international agreements is needed, with each component requiring comprehensive analytical work based on consistent datasets. Consequently, scientists and policymakers have put faith in earth observation data for improved global analysis. Land cover provides in many aspects the foundation for environmental monitoring [FAO, 2002a. Proceedings of the FAO/UNEP Expert Consultation on Strategies for Global Land Cover Mapping and Monitoring. FAO, Rome, Italy, 38 pp.]. Despite the significance of land cover as an environmental variable, our knowledge of land cover and its dynamics is poor [Foody, G.M., 2002. Status of land cover classification accuracy assessment. Rem. Sens. Environ. 80, 185–201]. This study compares four satellite derived 1 km land cover datasets freely available from the internet and in wide use among the scientific community. Our analysis shows that while these datasets have in many cases reasonable agreement at a global level in terms of total area and general spatial pattern, there is limited agreement on the spatial distribution of the individual land classes. If global datasets are used at a continental or regional level, agreement in many cases decreases significantly. Reasons for these differences are many—ranging from the classes and thresholds applied, time of data collection, sensor type, classification techniques, use of in situ data, etc., and make comparison difficult. Results of studies based on global land cover datasets are likely influenced by the dataset chosen. Scientists and policymakers should be made aware of the inherent limitations in using current global land cover datasets, and would be wise to utilise multiple datasets for comparison.  相似文献   

6.
The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from coarse-resolution (GLC2000) and high-resolution imagery (Africover).  相似文献   

7.
Standard false colour composites (Std. FCC) on 1:50,000 scale was visually interpreted in conjunction with soil survey to prepare physiographic-soil map. Thirteen mapping units were delineated indicating soil association at family-level. Soil and land resource was evaluated for their land capability and irrigation suitability for its sustained use under irrigation. Land capability and land irrigability maps were generated as attribute map. These maps were integrated to suggest potential land use map. Current land use/land cover map prepared by visual analysis was spatially analysed in relation to potential land use to study potential changes in land use / land cover using GIS. The study reveals that 14.66% area has no limitation and can be brought to intensive agriculture by double cropping.  相似文献   

8.
Given the current lack of interoperability between global and regional land cover products, efforts are underway to link the new European global land cover map (GLOBCOVER) with the existing global land cover 2000 map (GLC2000) and European CORINE mapping initiative. Since both datasets apply different mapping standards, key for a successful implementation is a thorough understanding of the heterogeneities among both datasets. Thus, this paper provides an assessment of compatibilities and differences between the CORINE2000 and GLC2000 datasets. The comparative assessment considers inconsistencies between the thematic legends (using the UN land cover classification system-LCCS), class specific accuracies, and the spatial resolution and heterogeneity of the datasets. The results are summarized with implications for the development of the new GLOBCOVER datasets.  相似文献   

9.
Land cover mapping forms a reference base for resource managers in their decision-making processes to guide rural/urban growth and management of natural resources. The aim of this study was to map land cover dynamics within the Upper Shire River catchment, Malawi. The article promotes innovation of automated land cover mapping based on remote sensing information to generate data products that are both appropriate to, and usable within different scientific applications in developing countries such as Malawi. To determine land cover dynamics, 1989 and 2002 Landsat images were used. Image bands were combined in transformations and indices with physical meaning; together with spatial data, to enhance classification accuracy. A maximum likelihood classification for each image was computed for identification of land cover variables. The results showed that the combination of spatial and digital data enhanced classification accuracy and the ability to categorise land cover features, which are relatively inhomogeneous.  相似文献   

10.
Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).  相似文献   

11.
On the Caribbean island of Puerto Rico, forest, urban/built-up, and pasture lands have replaced most formerly cultivated lands. The extent and age distribution of each forest type that undergoes land development, however, is unknown. This study assembles a time series of four land cover maps for Puerto Rico. The time series includes two digitized paper maps of land cover in 1951 and 1978 that are based on photo interpretation. The other two maps are of forest type and land cover and are based on decision tree classification of Landsat image mosaics dated 1991 and 2000. With the map time series we quantify land-cover changes from 1951 to 2000; map forest age classes in 1991 and 2000; and quantify the forest that undergoes land development (urban development or surface mining) from 1991 to 2000 by forest type and age. This step relies on intersecting a map of land development from 1991 to 2000 (from the same satellite imagery) with the forest age and type maps. Land cover changes from 1991 to 2000 that continue prior trends include urban expansion and transition of sugar cane, pineapple, and other lowland agriculture to pasture. Forest recovery continues, but it has slowed. Emergent and forested wetland area increased between 1977 and 2000. Sun coffee cultivation appears to have increased slightly. Most of the forests cleared for land development, 55%, were young (1-13 yr). Only 13% of the developed forest was older (41-55+ yr). However, older forest on rugged karst lands that long ago reforested is vulnerable to land development if it is close to an urban center and unprotected.  相似文献   

12.
<正>Land cover is a fundamental variable that links many facets of the natural environment and a key driver of global environmental change.Alterations in its status can have significant ramifications at local,regional and global levels.Hence,it is imperative to map land cover at a range of spatial and temporal scales with a view to understanding the inherent patterns for effective characterization,prediction and management of the potential environmental impacts.This paper presents the results of an effort to map land cover patterns in Kinangop division,Kenya,using geospatial tools.This is a geographic locality that has experienced rapid land use transformations since Kenya's independence culminating in uncontrolled land cover changes and loss of biodiversity.The changes in land use/cover constrain the natural resource base and presuppose availability of quantitative and spatially explicit land cover data for understanding the inherent patterns and facilitating specific and multi-purpose land use planning and management.As such,the study had two objectives viz.(i) mapping the spatial patterns of land cover in Kinangop using remote sensing and GIS and;(ii) evaluating the quality of the resultant land cover map.ASTER satellite imagery acquired in January 23,2007 was procured and field data gathered between September l0 and October 16,2007.The latter were used for training the maximum likelihood classifier and validating the resultant land cover map.The land cover classification yielded 5 classes,overall accuracy of 83.5%and kappa statistic of 0.79,which conforms to the acceptable standards of land cover mapping. This qualifies its application in environmental decision-making and manifests the utility of geospatial techniques in mapping land resources.  相似文献   

13.
Land cover maps play an integral role in environmental management. However, countries and institutes encounter many challenges with producing timely, efficient, and temporally harmonized updates to their land cover maps. To address these issues we present a modular Regional Land Cover Monitoring System (RLCMS) architecture that is easily customized to create land cover products using primitive map layers. Primitive map layers are a suite of biophysical and end member maps, with land cover primitives representing the raw information needed to make decisions in a dichotomous key for land cover classification. We present best practices to create and assemble primitives from optical satellite using computing technologies, decision tree logic and Monte Carlo simulations to integrate their uncertainties. The concept is presented in the context of a regional land cover map based on a shared regional typology with 18 land cover classes agreed on by stakeholders from Cambodia, Laos PDR, Myanmar, Thailand, and Vietnam. We created annual map and uncertainty layers for the period 2000–2017. We found an overall accuracy of 94% when taking uncertainties into account. RLCMS produces consistent time series products using free long term historical Landsat and MODIS data. The customizable architecture can include a variety of sensors and machine learning algorithms to create primitives and the best suited smoothing can be applied on a primitive level. The system is transferable to all regions around the globe because of its use of publicly available global data (Landsat and MODIS) and easily adaptable architecture that allows for the incorporation of a customizable assembly logic to map different land cover typologies based on the user's landscape monitoring objectives  相似文献   

14.
Abstract

This paper presents the results of analysis of the data obtained by the method of computer-aided visual interpretation of satellite images used for identification of changes in land cover within the framework of the Image and CORINE Land Cover 2000 (I&CLC2000) Project (jointly managed by the European Environment Agency in Copenhagen, Denmark and the Joint Research Centre of the European Commission in Ispra, Italy). These data are also relevant in cartography. Land cover changes identified by the method mentioned may contain mistakes caused by over- or underestimation. The paper describes these mistakes. Overestimation (technical change) of the extent of land cover change is caused by adding the residual polygons (smaller than 25 ha) to neighbouring polygons. Underestimation is caused by the fact that discernible changes concerning areas larger than 5 ha which showed up in objects with areas smaller than 25 ha were not identified and, consequently, not included in either CLC90 or CLC2000 data layers; e.g. Dutch CLC_change database users' accuracy indicates an overestimation of 8.8% whereas the comparison of net change indicates a small, insignificant underestimation. In spite of the problems referred to, caused by overestimation or underestimation, the datasets on land cover changes in Europe for the 1990s and the year 2000 (± one year) can also be used for the compilation of land cover change maps at the regional, national and European levels.  相似文献   

15.
ABSTRACT

Global or regional land cover change on a decadal time scale can be studied at a high level of detail using the availability of remote sensing data such as that provided by Landsat. However, there are three main technical challenges in this goal. First, the generation of land cover maps without reference data is problematic (backdating). Second, it is important to maintain high accuracies in land cover change map products, requiring a reasonably rich legend within each map. Third, a high level of automation is necessary to aid the management of large volumes of data. This paper describes a robust methodology for processing time series of satellite data over large spatial areas. The methodology includes a retrospective analysis used for the generation of training and test data for historical periods lacking reference information. This methodology was developed in the context of research on global change in the Iberian Peninsula. In this study we selected two scenes covering geographic regions that are representative of the Iberian Peninsula. For each scene, we present the results of two classifications (1985–1989 and 2000–2004 quinquennia), each with a legend of 13 categories. An overall accuracy of over 92% was obtained for all 4 maps.  相似文献   

16.
郑瑜晗  黄麟  翟俊 《遥感学报》2020,24(7):917-932
陆表覆盖变化影响地表特征从而改变地表能量平衡是理解人类活动对全球气候变化影响的关键环节。选择国际气候谈判主要国家的美国、印度和巴西作为中国的对比国,对比分析不同国别、不同气候带典型陆表覆盖类型的地表反照率时空差异,进而模拟开垦和城市化等陆表覆盖变化对反照率的影响差异。结果表明:(1) 2000年—2015年,中国、美国的地表反照率年际变化存在明显的气候带空间分异特征,中国干旱半干旱区和美国中低纬湿润区表现出降低趋势,而中国亚热带湿润和美国高纬与中部干旱区则表现出明显的升高趋势,印度的地表反照率年际变化呈微弱下降趋势,而巴西为微弱上升趋势。(2)无雪覆盖时,耕地、林地、草地和人造地表反照率具有夏高、冬低的时间变化特征,干旱半干旱区反照率明显高于湿润区。4种类型的国别差异体现在,中国亚热带湿润区地表反照率均以上升为主,干旱半干旱区则相反;美国除耕地在干旱区呈较强的升高趋势外,其余类型基本为降低趋势;印度均表现为降低趋势;巴西则表现为略微升高趋势。(3)与无雪覆盖相比,有雪覆盖时不同陆表覆盖类型地表反照率均有所提高,林地提高幅度最小,约0.06—0.26,耕地提高最大,约为0.17—0.38,且中国林地反照率提高幅度略高于美国。(4)原陆表覆盖为林地时,开垦和城镇化均导致地表反照率升高,且干旱区升高幅度高于湿润区,湿润区的升高幅度随纬度降低而减弱;为草地时,开垦主要在巴西、印度和中、美亚热带湿润区引起地表反照率升高。而城镇化引起的反照率变化则受到原有地表覆盖、季节和气候背景影响存在较复杂的国别和气候带差异。  相似文献   

17.
In this study, we explored the spatial and temporal patterns of land cover and land use (LCLU) and population change dynamics in the St. Louis Metropolitan Statistical Area. The goal of this paper was to quantify the drivers of LCLU using long-term Landsat data from 1972 to 2010. First, we produced LCLU maps by using Landsat images from 1972, 1982, 1990, 2000, and 2010. Next, tract level population data of 1970, 1980, 1990, 2000, and 2010 were converted to 1-km square grid cells. Then, the LCLU maps were integrated with basic grid cell data to represent the proportion of each land cover category within a grid cell area. Finally, the proportional land cover maps and population census data were combined to investigate the relationship between land cover and population change based on grid cells using Pearson's correlation coefficient, ordinary least square (OLS), and local level geographically weighted regression (GWR). Land cover changes in terms of the percentage of area affected and rates of change were compared with population census data with a focus on the analysis of the spatial-temporal dynamics of urban growth patterns. The correlation coefficients of land cover categories and population changes were calculated for two decadal intervals between 1970 and 2010. Our results showed a causal relationship between LCLU changes and population dynamics over the last 40 years. Urban sprawl was positively correlated with population change. However, the relationship was not linear over space and time. Spatial heterogeneity and variations in the relationship demonstrate that urban sprawl was positively correlated with population changes in suburban area and negatively correlated in urban core and inner suburban area of the St. Louis Metropolitan Statistical Area. These results suggest that the imagery reflects processes of urban growth, inner-city decline, population migration, and social spatial inequality. The implications provide guidance for sustainable urban planning and development. We also demonstrate that grid cells allow robust synthesis of remote sensing and socioeconomic data to advance our knowledge of urban growth dynamics from both spatial and temporal scales and its association with population change.  相似文献   

18.
Since last few decades RS-GIS is playing vital role in studying and mapping spatiotemporal responses of land cover, however, as a matter of fact, the mapping outputs largely depend on the expert's/user's preferences because location specific and people specific land cover classification systems are adopted autonomously for image classification in GIS. This may actually lead to an ambiguous definition of a particular land cover type when such different maps are compared at global level. In 1993, FAO and UNEP started efforts for development of a software tool know as LCCS which is a comprehensive standardized tool capable of providing land cover characterization to all possible land cover types in the world regardless of spatial relevance, mapping scale, data collection method etc. Adding to the global efforts of land cover legend harmonization and mapping, this study presents development of harmonized land cover legends for Namdapha National Park located in north-eastern Indian Himalayan region using LCCS and subsequent mapping. The potential of Remote Sensing (RS) and Geographical Information Systems (GIS) in forest/land cover mapping is very well recognized. Therefore, adopting the developed harmonized legends for the study area, land cover mapping was done using RS-GIS approach.  相似文献   

19.
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.  相似文献   

20.
Urbanization is increasingly becoming a widespread phenomenon at all scales of development around the globe. Be it developing or developed nations, all are witnessing urbanization at very high pace. In order to study its impacts, various methodologies and techniques are being implemented to measure growth of urban extents over spatial and temporal domains. But urbanization being a very dynamic phenomenon has been facing ambiguities regarding methods to study its dynamism. This paper aims at quantifying urban expansion in Delhi, the capital city of India. The process has been studied using urban land cover pattern derived from Landsat TM/ETM satellite data for two decades (1998–2011). These maps show that built-up increased by 417 ha in first time period (1998–2003) and 6,633 ha during next period (2003–2011) of study. For quantification of metrics for urban expansion, the Urban Landscape Analysis Tool (ULAT) was employed. Land cover mapping was done with accuracy of 92.67 %, 93.3 % and 96 % respectively for years 1998, 2003 and 2011. Three major land covers classes mapped are; (i) built-up, (ii) water and (iii) other or non-built-up. The maps were then utilized to extract degree of urbanization based on spatial density of built-up area consisting of seven classes, (i) Urban built-up, (ii) Suburban built-up,(iii) Rural built-up, (iv) Urbanized open land, (v) Captured open land, (vi) Rural open land and (vii) Water. These classes were demarcated based on the urbanness of cells. Similarly urban footprint maps were generated. The two time maps were compared to qualitatively and quantitatively capture the dynamics of urban expansion in the city. Along with urbanized area and urban footprint maps, the new development areas during the study time periods were also identified. The new development areas consisted of three major categories of developments, (i) infill, (ii) extension and (iii) leapfrog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号