首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We report on a comprehensive analysis of the kilohertz (≥300 Hz) quasi-periodic oscillations (kHz QPOs) detected from the neutron star low-mass X-ray binary 4U 0614+09 with the Rossi X-ray Timing Explorer. With a much larger data set than previously analysed (all archival data from 1996 February up to 2007 October), we first investigate the reality of the 1330 Hz QPO reported by van-Straaten et al. This QPO would be of particular interest since it has the highest frequency reported for any source. A thorough analysis of the same observation fails to confirm the detection. On the other hand, over our extended data set, the highest QPO frequency we measure for the upper kHz QPO is at ∼1224 Hz; a value which is fully consistent with the maximum values observed in similar systems. Secondly, we demonstrate that the frequency dependence of the quality factor  ( Q =ν/Δν)  and amplitude of the lower and upper kHz QPOs follow the systematic trends seen in similar systems. In particular, 4U 0614+09 shows a drop of the quality factor of the lower kHz QPO above ∼700 Hz. If this is due to an approach to the innermost stable circular orbit, it implies a neutron star mass of  ∼1.9 M  . Finally, when analysing the data over fixed durations, we have found a gap in the frequency distribution of the upper QPO, associated with a local minimum of its amplitude. A similar gap is not present in the distribution of the lower QPO frequencies, suggesting some cautions when interpreting frequency ratio distributions, based on the occurrence of the lower QPO only.  相似文献   

2.
Based on the interpretation of the twin kilohertz Quasi Periodic Oscillations (kHz QPOs) of X-ray spectra of Low Mass X-Ray Binaries (LMXBs) ascribed to the Keplerian and the periastron precession frequencies at the inner disk respectively, we ascribe the low frequency (0.1–10 Hz) Quasi Periodic Oscillations (LFQPO) and HBO (15–60 Hz QPO for Z sources or Atoll sources) to the periastron precession at some outer disk radius. It is assumed that both radii are correlated by a scaling factor of 0.4. The conclusions obtained include: All QPO frequencies increase with increasing accretion rate. The theoretical relations between HBO (LFQPO) frequency and the kHz QPO frequencies are similar to the measured empirical formula.  相似文献   

3.
Among the variability behaviours exhibited by neutron star systems are the so-called 'horizontal branch oscillations' (HBO, with frequencies ≈50 Hz), the 'lower-frequency kHz quasi-periodic oscillation' (QPO) and the 'upper-frequency kHz QPO', with the latter two features being separated in frequency by an amount comparable to, but varying slightly from, the suspected spin-frequency of the neutron star. Recently, Psaltis, Belloni & van der Klis have suggested that there exists a correlation between these three frequencies that, when certain identifications of variability features are made, even encompasses black hole sources. We consider this hypothesis by reanalysing a set of GX 339−4 observations. The power spectral density (PSD) constructed from a composite of seven separate, but very similar, observations shows evidence for three broad peaks in the PSD. If the peak frequencies of these features are identified with QPO, then their frequencies approximately fit the correlations suggested by Psaltis, Belloni, & van der Klis. We also reanalyse a Cyg X-1 observation and show that the suggested QPO correlation may also hold, but that complications arise when the QPOs (which, in reality, are fairly broad features) are considered as a function of energy band. These fits suggest the existence of at least three separate, independent physical processes in the accretion flow, a hypothesis that is also supported by consideration of the Fourier frequency-dependent time lags and coherence function between variability in different energy bands. If these variability features have a common origin in neutron star and black hole systems, then 'beat frequency models' of kHz QPO in neutron star systems are called into question.  相似文献   

4.
We have produced the colour–colour diagram of all the observations of 4U 1728–34 available in the Rossi X-ray Timing Explorer public archive (from 1996 to 2002) and found observations filling in a previously reported 'gap' between the island and the banana X-ray states. We have made timing analysis of these gap observations and found, in one observation, two simultaneous kHz quasi-periodic oscillations (QPOs). The timing parameters of these kHz QPOs fit in the overall trend of the source. The 'lower' kHz QPO has a centroid frequency of ∼308 Hz. This is the lowest 'lower' kHz QPO frequency ever observed in 4U 1728–34. The peak frequency separation between the 'upper' and the 'lower' kHz QPO is  Δν= 274 ± 11 Hz  , significantly smaller than the constant value of  Δν∼ 350 Hz  found when the 'lower' kHz QPO frequency is between ∼500 and 800 Hz. This is the first indication in this source for a significant decrease of kHz QPO peak separation towards low frequencies. We compare the result briefly to theoretical models for kHz QPO production.  相似文献   

5.
We report the results of a systematic timing analysis of RXTE observations of GRS 1915+105 when the source was in its variability class θ, characterized by alternating soft and hard states on a time-scale of a few hundred seconds. The aim was to examine the high-frequency part of the power spectrum in order to confirm the hectohertz quasi-periodic oscillations (QPO) previously reported from observations from mixed variability behaviours. During the hard intervals (corresponding to state C in the classification of Belloni et al.), we find a significant QPO at a frequency of ∼170 Hz, although much broader (Q∼2) than previously reported. No other significant peak is observed at frequencies >30 Hz. A time-resolved spectral analysis of selected observations shows that the hard intervals from class θ show a stronger and steeper  (Γ= 2.8–3.0)  power-law component than hard intervals from other classes. We discuss these results in the framework of hectohertz QPOs reported from GRS 1915+105 and other black hole binaries.  相似文献   

6.
We take the recently published data of twin kHz quasi-period oscillations (QPOs) in neutron star (NS) low-mass X-ray binaries (LMXBs) as the samples, and investigate the morphology of the samples, which focuses on the quality factor, peak frequency of kHz QPOs, and try to infer their physical mechanism. We notice that: (1) The quality factors of upper kHz QPOs are low (2~20 in general) and increase with the kHz QPO peak frequencies for both Z and Atoll sources. (2) The distribution of quality factor versus frequency for the lower kHz QPOs are quite different between Z and Atoll sources. For most Z source samples, the quality factors of lower kHz QPOs are low (usually lower than 15) and rise steadily with the peak frequencies except for Sco X-1, which drop abruptly at the frequency of about 750 Hz. While for most Atoll sources, the quality factors of lower kHz QPOs are very high (from 2 to 200) and usually have a rising part, a maximum and an abrupt drop. (3) There are three Atoll sources (4U 1728-34, 4U 1636-53 and 4U 1608-52) of displaying very high quality factors for lower kHz QPOs. These three sources have been detected with the spin frequencies and sidebands, in which the source with higher spin frequency presents higher quality factor of lower kHz QPOs and lower difference between sideband frequency and lower kHz QPO frequency.  相似文献   

7.
Low and intermediate frequency quasi-periodic oscillations (QPOs) are thought to be due to oscillations of Comptonizing regions or hot regions embedded in Keplerian discs. Observational evidence of evolutions of QPOs would therefore be very important as they throw lights on the dynamics of the hotter region. Our aim is to find systems in which there is a well-defined correlation among the frequencies of the QPOs over a range of time so as to understand the physical picture. In this paper, we concentrate on the archival data of XTE J1550−564 obtained during 1998 outburst, and study the systematic drifts during the rising phase from the 1998 September 7 to the 1998 September 19, when the QPO frequency increased monotonically from 81 mHz to 13.1 Hz. Immediately after that, QPO frequency started to decrease and on the 1998 September 26, the QPO frequency became 2.62 Hz. After that, its value remained almost constant. This frequency drift can be modelled satisfactorily with a propagatory oscillating shock solution where the post-shock region behaves as the Comptonized region. Comparing with the nature of a more recent 2005 outburst of another black hole candidate GRO 1655−40, where QPOs disappeared at the end of the rising phase, we conjecture that this so-called 'outburst' may not be a full-fledged outburst.  相似文献   

8.
In this paper, we improve the previous work on the MHD Alfvén wave oscillation model for the neutron star (NS) kHz quasi‐periodic oscillations (QPOs), and compare the model with the updated twin kHz QPO data. For the 17 NS X‐ray sources with the simultaneously detected twin kHz QPO frequencies, the stellar mass M and radius R constraints are given by means of the derived parameter A in the model, which is associated with the averaged mass density of the star as 〈ρ 〉 = 3M /(4πR3) ≃ 2.4 × 1014 (A /0.7)2 g/cm3, and we also compare the MR constraints with the stellar equations of state. Moreover, we also discuss the theoretical maximum kHz QPO frequency and maximum twin peak separation, and some expectations on SAX J1808.4–3658 are mentioned, such as its highest kHz QPO frequency ∼ 870 Hz, which is about 1.4–1.5 times less than those of the other known kHz QPO sources. The estimated magnetic fields for both Z sources (about Eddington accretion rate ) and Atoll sources (∼ 1% ) are approximately ∼109 G and ∼108 G, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In this paper we report on further observations of the third and fourth kilohertz quasi-periodic oscillations (QPOs) in the power spectrum of the low-mass X-ray binary (LMXB) 4U 1636−53. These kilohertz QPOs are sidebands to the lower kilohertz QPO. The upper sideband has a frequency  55.5 ± 1.7 Hz  larger than that of the contemporaneously measured lower kilohertz QPO. Such a sideband has now been measured at a significance  >6σ  in the power spectra of three neutron-star LMXBs (4U 1636−53, 1728−34 and 1608−52). We also confirm the presence of a sideband at a frequency ∼55 Hz less than the frequency of the lower kilohertz QPO. The lower sideband is detected at a 3.5σ level only when the lower kilohertz QPO frequency is between 800 and 850 Hz. In that frequency interval, the sidebands are consistent with being symmetric around the lower kilohertz QPO frequency. The upper limit to the rms amplitude of the lower sideband is significantly lower than that of the upper sideband for lower kilohertz QPO frequencies >850 Hz. Symmetric sidebands are unique to 4U 1636−53. This might be explained by the fact that lower kilohertz QPO frequencies as high as 800–850 Hz are rare for 4U 1728−34 and 1608−52. Finally, we also measured a low-frequency QPO at a frequency of ∼43 Hz when the lower kilohertz QPO frequency is between 700 and 850 Hz. A similar low-frequency QPO is present in the power spectra of the other two systems for which a sideband has been observed. We briefly discuss the possibility that the sideband is caused by Lense–Thirring precession.  相似文献   

10.
We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with a model consisting of a cut-off power law along with an iron emission line.  相似文献   

11.
The LE is the low energy telescope that is carried on Insight-HXMT.It uses swept charge devices(SCDs)to detect soft X-ray photons.LE’s time response is caused by the structure of the SCDs.With theoretical analysis and Monte Carlo simulations we discuss the influence of LE time response(LTR)on the timing analysis from three aspects:the power spectral density,the pulse profile and the time lag.After the LTR,the value of power spectral density monotonously decreases with the increasing frequency.The power spectral density of a sinusoidal signal reduces by a half at frequency 536 Hz.The corresponding frequency for quasi-periodic oscillation(QPO)signals is 458 Hz.The root mean square(RMS)of QPOs holds a similar behaviour.After the LTR,the centroid frequency and full width at half maxima(FWHM)of QPOs signals do not change.The LTR reduces the RMS of pulse profiles and shifts the pulse phase.In the time domain,the LTR only reduces the peak value of the cross-correlation function while it does not change the peak position;thus it will not affect the result of the time lag.When considering the time lag obtained from two instruments and one among them is LE,a 1.18 ms lag is expected caused by the LTR.The time lag calculated in the frequency domain is the same as that in the time domain.  相似文献   

12.
We report on the numerical discovery of quasi-periodic oscillations (QPOs) associated with accretion through a non-axisymmetric magnetic boundary layer in the unstable regime, when two ordered equatorial streams form and rotate synchronously at approximately the angular velocity of the inner disc. The streams hit the star's surface producing hotspots. Rotation of the spots leads to high-frequency QPOs. We performed a number of simulation runs for different magnetospheric sizes from small to tiny, and observed a definite correlation between the inner disc radius and the QPO frequency: the frequency is higher when the magnetosphere is smaller. In the stable regime, a small magnetosphere forms and accretion through the usual funnel streams is observed, and the frequency of the star is expected to dominate the light curve. We performed exploratory investigations of the case in which the magnetosphere becomes negligibly small and the disc interacts with the star through an equatorial belt. We also performed investigation of somewhat larger magnetospheres where one or two ordered tongues may dominate over other chaotic tongues. In application to millisecond pulsars, we obtain QPO frequencies in the range of 350–990 Hz for one spot. The frequency associated with rotation of one spot may dominate if spots are not identical or antipodal. If the spots are similar and antipodal, then the frequencies are twice as high. We show that variation of the accretion rate leads to drift of the QPO peak.  相似文献   

13.
The observations of the black hole binary Cygnus X-l were made in the energy band of 20–100keV with a balloon-borne Xenon-filled multiwire proportional counter telescope on 5th April 1992. Timing analysis of the data revealed the presence of Quasi-Periodic Oscillations (QPO) in the hard X-ray emission from the source. The QPO feature in the power density spectrum is broad with a peak at a frequency of 0.06 Hz. This result is compared with similar reports of QPOs in Cyg X-l in soft and hard X-rays. Short time scale random intensity variations in the X-ray light curve are described with a shot noise model.  相似文献   

14.
For the bright neutron star low-mass X-ray binary Sco X-1, we analyzed all updated frequencies of the twin kilohertz quasi-periodic oscillations (kHz QPOs), their correlations and distributions. We found that the frequency separation of the kHz QPO peaks appears not to be a constant, rather, it decreases with increasing inferred mass accretion rate. We show that the currently available data of Sco X-1 by Rossi X-ray Timing Explorer are inconsistent with the proposals of the beat model that the frequency separation is a constant. Our conclusions are consistent with those of some previous researchers and we discuss further implications for the kilohertz QPO models.  相似文献   

15.
We report our findings on a new quasi-periodic oscillation (QPO) and a long period from the ultraluminous X-ray source (ULX) X-2 in nearby galaxy NGC 4736 based on the Chandra and XMM-Newton archival data. To examine the timing properties, power density spectra of the source have been obtained using Fast Fourier Transform. Also the spectral parameters of the source have been calculated by obtaining and fitting the energy spectra. Power density spectrum of this source reveals a QPO peak at \(0.73_{-0.14}^{+0.16}~\mathrm{mHz}\) with an fractional rms variability of 16 % using the Chandra data (in the year 2000-lower state of the source). The XMM-Newton data analysis indicates a peak at \(0.53_{-0.35}^{+0.09}~\mathrm{mHz}\) with a fractional rms variation of 5 % (in the year 2006-higher state of the source). These recovered QPOs overlap within errors and may be the same oscillation. In addition, we detect a long periodicity or a QPO in the Chandra data of about (5.2±2.0)×10?5 Hz (~5.4 h) over 3 σ confidence level. If this is a QPO, it is the lowest QPO detected from a ULX. The mass of the compact object in ULX X-2 is estimated using the Eddington luminosity and a disk blackbody model in the range (10–80) M .  相似文献   

16.
On 27th December 2004 SGR 1806–20, one of the most active Soft γ-ray Repeaters (SGRs), displayed an extremely rare event, also known as giant flare, during which up to 1047 ergs were released in the ∼1–1000 keV range in less than 1 s. Before and after the giant flare we carried out IR observations by using adaptive optics (NAOS-CONICA) mounted on VLT which provided images of unprecedented quality (FWHM better than 0.1″). We discovered the likely IR counterpart to SGR 1806–20 based on positional coincidence with the VLA uncertainty region and flux variability of a factor of about 2 correlated with that at higher energies. Moreover, by analysing the Rossi-XTE/PCA data we have discovered rapid Quasi-Periodic Oscillations (QPOs) in the pulsating tail of the 27th December 2004 giant flare of SGR 1806–20. QPOs at ∼92.5 Hz are detected in a 50 s interval starting 170 s after the onset of the giant flare. These QPOs appear to be associated with increased emission by a relatively hard unpulsed component and are seen only over phases of the 7.56 s spin period pulsations away from the main peak. QPOs at ∼18 and ∼30 Hz are also detected ∼200–300 s after the onset of the giant flare. This is the first time that QPOs are unambiguously detected in the flux of a Soft Gamma-ray Repeater, or any other isolated neutron star. We interpret the highest QPOs in terms of the coupling of toroidal seismic modes with Alfvén waves propagating along magnetospheric field lines. The lowest frequency QPO might instead provide indirect evidence on the strength of the internal magnetic field of the neutron star.   相似文献   

17.
We suggest an explanation for the twin kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binaries (LMXBs) based on magnetohydrodynamics (MHD) oscillation modes in neutron star magnetospheres. Including the effect of the neutron star spin, we derive several MHD wave modes by solving the dispersion equations, and propose that the coupling of the two resonant MHD modes may lead to the twin kHz QPOs. This model naturally relates the upper, lower kHz QPO frequencies with the spin frequencies of the neutron stars, and can well account for the measured data of six LMXBs.  相似文献   

18.
We present a detailed study of the 5-Hz quasi-periodic oscillation (QPO) recently discovered in the bright X-ray transient and black hole candidate (BHC) GRS     (Borozdin & Trudolyubov) during a Rossi X-ray Timing Explorer observation taken on 1996 March 31. In total 6.6 ksec of on-source data were obtained, divided in two data sets of 3.4 and 3.2 ksec which were separated by ∼2.6 ksec. The 5-Hz QPO was only present during the second data set. The QPO increased in strength from below 2 per cent rms amplitude for photon energies below 4 keV to ∼5 per cent rms amplitude for energies above 10 keV. The soft QPO photons (below 5 keV) lagged the hard ones (above 10 keV) by almost 1.5 rad. Besides the QPO fundamental, its first overtone was detected. The strength of the overtone increased with photon energy (from < 2 per cent rms below 5 keV to ∼8 per cent rms above 10 keV). Although limited statistics did not allow for an accurate determination of the lags of the first overtone, indications are that also for this QPO the soft photons lagged the hard ones. When the 5-Hz QPO was not detected (i.e., during the first part of the observation), a broad noise component was found for photon energies below 10 keV but it became almost a true QPO (with a Q value of ∼1.9) above that energy, with a frequency of ∼3 Hz. Its hard photons preceded the soft ones in a way reminiscent of the 5-Hz QPO, strongly suggesting that both features are physically related. We discuss our finding in the framework of low-frequency QPOs and their properties in BHCs.  相似文献   

19.
The excitation mechanism of solar five-minute oscillations is studied in the present paper. We calculated the non-adiabatic oscillations of low- and intermediate-degree (l = 1  25) g4-p39 modes for the Sun. Both the thermodynamic and dynamic couplings are taken into account by using our non-local and time-dependent theory of convection. The results show that all the lowfrequencyf- and p-modes with periods P > 5.4 min are pulsationally unstable, while the coupling between convection and oscillations is neglected. However, when the convection coupling is taken into account, all the g- and low-frequency f- and p-modes with periods longer than 16 minutes (except the low-degree p1-modes) and the high frequency p-modes with periods shorter than 3 minutes become stable, and the intermediate-frequency p-modes with period from 3 to 16 minutes are pulsationally unstable. The pulsation amplitude growth rates depend only on the frequency and almost do not depend on l. They achieve the maximum at ν 3700 μHz (or P 270 sec). The coupling between convection and oscillations plays a key role for stabilization of low-frequency f- and p-modes and excitation of intermediate-frequency p-modes. We propose that the solar 5-minute oscillations are not caused by any single excitation mechanism, but they are resulted from the combined effect of “regular” coupling between convection and oscillations and turbulent stochastic excitation. For low- and intermediatefrequency p-modes, the coupling between convection and oscillations dominates; while for high-frequency modes, stochastic excitation dominates.  相似文献   

20.
We study in a systematic way the quality factor of the lower and upper kilohertz quasi-periodic oscillations (kHz QPOs) in a sample of low-luminosity neutron star X-ray binaries, showing both QPOs varying over a wide frequency range. The sample includes 4U 1636−536, 4U 1608−522, 4U 1735−44, 4U 1728−34, 4U 1820−303 and 4U 0614+09. We find that all sources except 4U 0614+09 show evidence of a drop in the quality factor of their lower kHz QPOs at high frequency. For 4U 0614+09 only the rising part of the quality factor versus frequency curve has been sampled so far. At the same time, in all sources but 4U 1728−34, the quality factor of the upper kHz QPO increases all the way to the highest detectable frequencies. We show that the high-frequency behaviours of both the lower and the upper kHz QPO quality factors are consistent with what is expected if the drop is produced by the approach of an active oscillating region to the innermost stable circular orbit: the existence of which is a key feature of general relativity in the strong field regime. Within this interpretation, our results imply gravitational masses around 2 M for the neutron stars in those systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号