首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The possible effects of trace-gas induced climatic changes on Pyramid and Yellowstone Lakes are assessed using a model of lake temperature. The model is driven by years of hourly meteorological data obtained directly from the output of double-CO2 experiments (2 × CO2) conducted with a regional climate model nested in a general circulation model. The regional atmospheric model is the climate version of the National Center for Atmospheric Research/Pennsylvania State University mesoscale model, MM4.Average annual surface temperature of Pyramid Lake for the 2 × CO2 climate is 15.5 ± 5.4°C (±1 σ), 2.8°C higher than the control. Annual overturn of the lake ceases as a result of these higher temperatures for the 2 × CO2 climate. Evaporation increases from 1400 mm yr−1 in the control to 1595 mm yr−1 in the 2 × CO2 simulation, but net water supplied to the Pyramid Lake basin increases from −6 mm yr−1 in the control to +27 mm yr−1 in the 2 × CO2 simulation due to increased precipitation.For the open water periods, the average annual surface temperature of Yellowstone Lake is 13.2 ± 5.1°C for the 2 × CO2 climate, a temperature 1.6°C higher than the control. The annual duration of ice cover on the lake is 152 days in the 2 × CO2 simulation, a reduction of 44 days relative to the control. Warming of the lake for the 2 × CO2 climate is mostly confined to the near-surface. Simulated spring overturn for the 2 × CO2 climate occurs earlier in the year and fall overturn later than in the control. Evaporation increases from 544 mm yr−1 to 600 mm yr−1 in the 2 × CO2 simulation, but net water supplied to the Yellowstone Lake basin increases from +373 mm yr−1 in the control to +619 mm yr−1 due to increased precipitation. The effects of these climatic changes suggest possible deterioration of water quality and productivity in Pyramid Lake and possible enhancement of productivity in Yellowstone Lake.  相似文献   

2.
Two sensitivity experiments, in which CO2 is instantaneously doubled, have been performed with a general circulation model to determine the influence of the convective parametrization on simulated climate change. We have examined the spatial structure of changes in the annual mean and annual cycle for surface temperature and precipitation for both experiments; similarly we have examined changes in the variance for these two fields. We have also computed a range of test statistics in order to obtain reliable measures of the signal-to-noise ratio in the climate change signal from each experiment. We have computed test statistics for the entire globe and for five different region and we contrast the global response with the response in the Australian region taken as a representative sample.We find that the highest signal-to-noise ratios in the change from 1 * CO2 to 2 * CO2 are for the change in surface temperature for both experiments with little difference in the global averages between the experiments. Globally averaged precipitation shows a greater noise level but perhaps the greatest contrast between experiments. There are generally significant increases in the temporal and spatial variability of precipitation in the change from the 1 * CO2 to 2 * CO2 and with some differences apparent between the two experiments. The temporal variability of surface temperature does not change significantly in any of the 2 * CO2 cases, and there is little difference between the experiments. There is a significant decrease in the spatial variability of surface temperature in all 2 * CO2 experiments in all cases and with significant differences in the seasonal variations between different experiments. The spatial variability of precipitation increases in all 2 * CO2 cases and also with substantial differences in the seasonal variations between the experiments. There are accompanying significantly different spatial pattern correlations for both surface temperature and precipitation. In general we find that the global changes are fairly robust with the differences associated with convective parametrization schemes being very small. However, at the regional level, there are marked differences between experiments with changes both in the means and in the spatial and temporal variances but often with low levels of significance.  相似文献   

3.
Interannual variability of regional climate was investigated on a seasonal basis. Observations and two global climate model (GCM) simulations were intercompared to identify model biases and climate change signals due to the enhanced greenhouse effect. Observed record length varies from 40 to 100 years, while the model output comes from two 100-year equilibrium climate simulations corresponding to atmospheric greenhouse gas concentrations at observed 1990 and projected 2050 levels. The GCM includes an atmosphere based on the NCAR CCM1 with the addition of the radiative effects of CH4, N2O and CFCs, a bulk layer land surface and a mixed-layer ocean with thermodynamic sea-ice and fixed meridional oceanic heat transport.Because comparisons of interannual variability are sensitive to the time period chosen, a climate ensemble technique has been developed. This technique provides comparisons between variance ratios of two time series for all possible contiguous sub-periods of a fixed length. The time autocorrelation is thus preserved within each sub-period. The optimal sub-period length was found to be 30 years, based on which robust statistics of the ensemble were obtained to identify substantial differences in interannual variability that are both physically important and statistically significant.Several aspects of observed interannual variability were reproduced by the GCM. These include: global surface air temperature; Arctic sea-ice extent; and regional variability of surface air temperature, sea level pressure and 500 mb height over about one quarter of the observed data domains. Substantial biases, however, exist over broad regions, where strong seasonality and systematic links between variables were identified. For instance, during summer substantially greater model variability was found for both surface air temperature and sea-level pressure over land areas between 20–50°N, while this tendency was confined to 20–30°N in other seasons. When greenhouse gas concentrations increase, atmospheric moisture variability is substantially larger over areas that experience the greatest surface warming. This corresponds to an intensified hydrologic cycle and, hence, regional increases in precipitation variability. Surface air temperature variability increases where hydrologic processes vary greatly or where mean soil moisture is much reduced. In contrast, temperature variability decreases substantially where sea-ice melts completely. These results indicate that regional changes in interannual variability due to the enhanced greenhouse effect are associated with mechanisms that depend on the variable and season.  相似文献   

4.
One response of vegetation to future increases in atmospheric CO2 may be a widespread increase in stomatal resistance. Such a response would increase plant water usage efficiency while still allowing CO2 assimilation at current rates. The associated reduction in transpiration rates has the potential of causing significant modifications in climate on regional and global scales.This paper describes the effects of a uniform doubling of the stomatal resistance parameterization in a global climate model (GENESIS). The model includes a land-surface transfer scheme (LSX) that accounts for the physical effects of vegetation, including stomatal resistance and transpiration, which is described in detail in an appendix. The atmospheric general circulation model is a heavily modified version of the NCAR Community Climate Model version 1 with new treatments of clouds, penetrative convection, planetary boundary layer mixing, solar radiation, the diurnal cycle, and semi-Lagrangian transport of water vapor. The other surface models include multi-layer models of soil, snow and sea ice, and a 50-m slab ocean mixed layer.The effects of doubling the stomatal resistance parameterization are largest in heavily forested regions: tropical South America, and parts of the Northern Hemispheric boreal forests in Canada, Russia and Siberia in summer. The primary surface changes are a decrease in evapotranspiration, an increase in upward sensible heat flux, and a surface-air warming. Secondary effects include shifts in the ITCZ which cause large increases in precipitation, soil moisture and runoff in western tropical South America, and decreases in these quantities in northern subtropical Africa. Noticeable changes in relative humidity, cloudiness and meridional circulation occur throughout the troposphere. The global effects on atmospheric temperature and specific humidity are small fractions of those found in other doubled CO2 experiments. However, unlike doubled CO2 the signs of those changes combine to give relatively large reductions in relative humidity and cloudiness. It is suggested that the stomatal-resistance effect and other plant responses to large-scale environmental perturbations should be included in models of future climate.  相似文献   

5.
For the Tortonian, Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423] perform a model simulation which considers a generally lower palaeorography, a weaker ocean heat transport and an atmospheric CO2 concentration of 353 ppm. The Tortonian simulation of Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423] demonstrates some realistic trends: the high latitudes are warmer than today and the meridional temperature gradient is reduced. However, the Tortonian run also indicates some insufficiencies such as too cool mid-latitudes which can be due to an underestimated pCO2 in the atmosphere. As a sensitivity study, we perform a further model experiment for which we additionally increase the atmospheric carbon dioxide (700 ppm). According to this CO2 sensitivity experiment, we find a global warming and a globally more intense water cycle as compared to the previous Tortonian run. Particularly the high latitudes are warmer in the Tortonian CO2 sensitivity run which leads to a lower amount of Arctic sea ice and a reduced equator-to-pole temperature difference. Our Tortonian CO2 sensitivity study basically agrees with results from recent climate model experiments which consider an increase of CO2 during the next century (e.g. [Cubasch, U., Meehl, G.A., Boer, G.J., Stouffer, R.J., Dix, M., Noda, A., Senior, C.A., Raper, S., Yap, K.S., 2001. Projections of Future Climate Change. In: Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 525–582]) suggesting that the climatic response on a higher atmospheric CO2 concentration is almost independent from the different settings of boundary conditions (Tortonian versus today). To validate the Tortonian model simulations, we perform a quantitative comparison with terrestrial proxy data. This comparison demonstrates that the Tortonian CO2 sensitivity experiment tends to be more realistic than the previous Tortonian simulation by Steppuhn et al. [Steppuhn, A., Micheels, A., Geiger, G., Mosbrugger, V., 2006. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 399–423]. However, a high carbon dioxide concentration of 700 ppm is questionable for the Late Miocene, and it cannot explain shortcomings of our Tortonian run with ‘normal’ CO2. In order to fully understand the Late Miocene climate, further model experiments should also consider the palaeovegetation.  相似文献   

6.
A simulation model based on satellite observations of monthly vegetation cover was used to estimate monthly carbon fluxes in terrestrial ecosystems from 1982 to 1998. The NASA–CASA model was driven by vegetation properties derived from the Advanced Very High Resolution Radiometer (AVHRR) and radiative transfer algorithms that were developed for Moderate Resolution Imaging Spectroradiometer (MODIS). For the terrestrial biosphere, predicted net ecosystem production (NEP) flux for atmospheric CO2 has varied widely between an annual source of −0.9 Pg C per year and a sink of +2.1 Pg C per year. The southern hemisphere tropical zones (SHT, between 0° and 30°S) have a major influence over the predicted global trends in interannual variability of NEP. In contrast, the terrestrial NEP sink for atmospheric CO2 on the North American (NA) continent has been fairly consistent between +0.2 and +0.3 Pg C per year, except during relatively cool annual periods when continental NEP fluxes are predicted to total to nearly zero. The predicted NEP sink for atmospheric CO2 over Eurasia (EA) increased notably in the late 1980s and has been fairly consistent between +0.3 and +0.55 Pg C per year since 1988. High correlations can be detected between the El Niño Southern Oscillation (ENSO) and predicted NEP fluxes on the EA continent and for the SHT latitude zones, whereas NEP fluxes for the North American continent as a whole do not correlate strongly with ENSO events over the same time series since 1982. These observations support the hypothesis that regional climate warming has had notable but relatively small-scale impacts on high latitude ecosystem (tundra and boreal) sinks for atmospheric CO2.  相似文献   

7.
The mostly carbon dioxide (CO2) atmosphere of Mars condenses and sublimes in the polar regions, giving rise to the familiar waxing and waning of its polar caps. The signature of this seasonal CO2 cycle has been detected in surface pressure measurements from the Viking and Pathfinder landers. The amount of CO2 that condenses during fall and winter is controlled by the net polar energy loss, which is dominated by emitted infrared radiation from the cap itself. However, models of the CO2 cycle match the surface pressure data only if the emitted radiation is artificially suppressed suggesting that they are missing a heat source. Here we show that the missing heat source is the conducted energy coming from soil that contains water ice very close to the surface. The presence of ice significantly increases the thermal conductivity of the ground such that more of the solar energy absorbed at the surface during summer is conducted downward into the ground where it is stored and released back to the surface during fall and winter thereby retarding the CO2 condensation rate. The reduction in the condensation rate is very sensitive to the depth of the soil/ice interface, which our models suggest is about 8 cm in the Northern Hemisphere and 11 cm in the Southern Hemisphere. This is consistent with the detection of significant amounts of polar ground ice by the Mars Odyssey Gamma Ray Spectrometer and provides an independent means for assessing how close to the surface the ice must be. Our results also provide an accurate determination of the global annual mean size of the atmosphere and cap CO2 reservoirs, which are, respectively, 6.1 and 0.9 hPa. They also indicate that general circulation models will need to account for the effect of ground ice in their simulations of the seasonal CO2 cycle.  相似文献   

8.
We present a detailed study of an Iapetus mosaic of VIMS data with high spatial resolution (0.5 × 0.5° or ∼6.4 km/pixel). The spectra were taken in August 2007 and provide the highest VIMS spatial resolution data for this object during Cassini’s primary mission. We analyze this set of data using a statistical clustering approach to reduce the analysis of a large number of data (∼104 spectra from 0.35 to 5.10 μm) to the study of seven representative groups accounting for 99.6% of the surface covered by the original sample. We analyze the spectral absorption bands in the spectra of the different clusters indicative of different composition over the observed surface. We find coherence between the distribution of the clusters and the geographical features on the surface. We give special attention to the study of the water ice and CO2 bands. We find that CO2 is widespread over the entire surface being studied, including the bright and dark areas on Iapetus’ surface, and is probably trapped at the molecular level with other materials. The strength of the CO2 band in the areas where both, H2O- and carbon-bearing materials exist, gives support to the hypothesis that this volatile is formed on the surface of Iapetus as a product of irradiation of these two components. Finally, we also compare the Iapetus CO2 with that on other satellites confirming, that there are evident differences on the center, depth and width of the band on Iapetus and Phoebe, where CO2 has been suggested to be endogenous.  相似文献   

9.
Geologic evidence of the prior existence of liquid water on Mars suggests surface temperatures Ts were once considerably warmer than at present; and that such a condition may have arisen from a larger atmospheric greenhouse. Here we develop a simple climate model for a CO2/H2O Mars atmosphere including water vapor-longwave opacity feedback in the atmosphere and temperature-albedo feedback at surface icecaps, under the assumption that once the Martian surface pressure was ps ≥ 1 atm CO2. Longwave flux to space is computed as a function of Ts and ps using band-absorption models for the effect of the 15-μm fundamental, and the 10- and 15-μm hot bands, of the CO2 molecule; as well as the pure rotation bands and e continuum of H2O. The derived global radiative balance predicts a global mean surface temperature of 283°K at 1 atm CO2. When the emission model is coupled to a latitudinally resolved energy balance climate model, including the effect of poleward heat transfer by atmospheric baroclinic eddies, the solutions vary, depending on ps. We considered two cases: (1) the present Mars (ps ? 0.007 atm) with pressure-buffering by solid CO2 icecaps, and limited poleward heat flux by the atmosphere; and (2) a hypothetical “hot Mars” (ps ? 1.0 atm), whose much higher CO2 amount augmented by H2O evaporative feedback yields a theoretical Ts distribution with latitude admitting liquid water over 95% of the surface, water icecaps at the poles, and a diminished equator-to-pole temperature gradient relative to the present.  相似文献   

10.
Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961–2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' × 10' resolution during three 20-year mean periods (1980–1999, 2030–2049 and 2080–2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors.  相似文献   

11.
This study simulates water resources in the Tien Shan alpine basins to forecast how global and regional climate changes would affect river runoff. The model employed annual mean values for the major characteristics of the water cycle: annual air temperature, precipitation, evapotranspiration and river runoff. The simulation was based on 304 hydro-meteorological stations, 23 precipitation sites, 328 high altitudinal points with glaciological measurements, 123 stream-gauges, and 54 evaporation sites, and it took into account topography. The findings were simulated over Tien Shan relief using a 1:500,000 scale 100 m grid resolution Digital Elevation Model. An applicable GIS-based distributed River Runoff Model was implemented in regional conditions and tested in the Tien Shan basins. The annual evapotranspiration exceeds the river runoff in the Tien Shan watersheds particularly up to 3700 m. Hypothetical climate-change scenarios in the Tien Shan predict that by 2100 river runoff will increase by 1.047 times with an increase in air temperature averaging 3 °C and an increase in precipitation averaging 1.2 times the current levels. Change in precipitation, rather than temperature, is the main parameter determining river runoff in the Tien Shan. The maximum ratio for predicted river runoff could reach up to 2.2 and the minimum is predicted to be 0.55 times current levels. This possibly dramatic change in river runoff indicates on non-linear system response caused mainly by the non-linear response of evapotranspiration from air temperature and precipitation changes. In the frame of forecasted possible climate change scenarios the probability of river runoff growth amounts 83–87% and probability of this decline is 17–13% by 2100 in the Tien Shan River basins.  相似文献   

12.
Observations of Jupiter by Cassini/CIRS, acquired during the December 2000 flyby, provide the latitudinal distribution of HCN and CO2 in Jupiter's stratosphere with unprecedented spatial resolution and coverage. Following up on a preliminary study by Kunde et al. [Kunde, V.G., and 41 colleagues, 2004. Science 305, 1582-1587], the analysis of these observations leads to two unexpected results (i) the total HCN mass in Jupiter's stratosphere in 2000 was (6.0±1.5)×1013 g, i.e., at least three times larger than measured immediately after the Shoemaker-Levy 9 (SL9) impacts in July 1994 and (ii) the latitudinal distributions of HCN and CO2 are strikingly different: while HCN exhibits a maximum at 45° S and a sharp decrease towards high Southern latitudes, the CO2 column densities peak over the South Pole. The total CO2 mass is (2.9±1.2)×1013 g. A possible cause for the HCN mass increase is its production from the photolysis of NH3, although a problem remains because, while millimeter-wave observations clearly indicate that HCN is currently restricted to submillibar (∼0.3 mbar) levels, immediate post-impact infrared observations have suggested that most of the ammonia was present in the lower stratosphere near 20 mbar. HCN appears to be a good atmospheric tracer, with negligible chemical losses. Based on 1-dimensional (latitude) transport models, the HCN distribution is best interpreted as resulting from the combination of a sharp decrease (over an order of magnitude in Kyy) of wave-induced eddy mixing poleward of 40° and an equatorward transport with velocity. The CO2 distribution was investigated by coupling the transport model with an elementary chemical model, in which CO2 is produced from the conversion of water originating either from SL9 or from auroral input. The auroral source does not appear adequate to reproduce the CO2 peak over the South Pole, as required fluxes are unrealistically high and the shape of the CO2 bulge is not properly matched. In contrast, the CO2 distribution can be fit by invoking poleward transport with a velocity and vigorous eddy mixing (). While the vertical distribution of CO2 is not measured, the combined HCN and CO2 results imply that the two species reside at different stratospheric levels. Comparing with the circulation regimes predicted by earlier radiative-dynamical models of Jupiter's stratosphere, and with inferences from the ethane and acetylene stratospheric latitudinal distribution, we suggest that CO2 lies in the middle stratosphere near or below the 5-mbar level.  相似文献   

13.
The role of tropical ecosystems in global carbon cycling is uncertain, at least partially due to an incomplete understanding of climatic forcings of carbon fluxes. To reduce this uncertainty, we simulated and analyzed 1982–1999 Amazonian, African, and Asian carbon fluxes using the Biome-BGC prognostic carbon cycle model driven by National Centers for Environmental Prediction reanalysis daily climate data. We first characterized the individual contribution of temperature, precipitation, radiation, and vapor pressure deficit to interannual variations in carbon fluxes and then calculated trends in gross primary productivity (GPP) and net primary productivity (NPP). In tropical ecosystems, variations in solar radiation and, to a lesser extent, temperature and precipitation, explained most interannual variation in GPP. On the other hand, temperature followed by solar radiation primarily determined variation in NPP. Tropical GPP gradually increased in response to increasing atmospheric CO2. Confirming earlier studies, changes in solar radiation played a dominant role in CO2 uptake over the Amazon relative to other tropical regions. Model results showed negligible impacts from variations and trends in precipitation or vapor pressure deficits on CO2 uptake.  相似文献   

14.
The possible response of life zones in China under global climate change   总被引:5,自引:0,他引:5  
The response of natural vegetation to climate change is of global concern. In this research, an aggregated Holdridge Life Zone System was used to study the possible response of life zones in China under doubled atmospheric CO2 concentration with the input climatic parameters at 0.5×0.5° resolution of longitude and latitude from NCAR regional climate model 2 (RegCM2) coupled with the CSIRO global climate model. The results indicate that the latitudinal distribution of life zones would become irregular because of the complicated climate change. In particular, new life zones, such as subtropical desert (SD), tropical desert (TDE) and tropical thorn woodland (TTW), would appear. Subtropical evergreen broadleaved forest (SEBF), tropical rainforest and monsoon forest (TRF), SD, TDE and TTW zones would appear in the northeastern China. Cool-temperate mixed coniferous and broadleaved forest (CMC) and warm-temperate deciduous broadleaved forest (WDBF) zones would appear at latitudes 25–35°N. The temperate desert (TD) in the western China would become Tibetan high-cold plateau (THP), SEBF, WDBF and temperate steppe (TS), and a large part of THP would be replaced by TRF, TDE, SEBF, TS and TTW. The relative area (distribution area/total terrestrial area) of CMC, TRF, TDE and TTW zone would increase about 3%, 21%, 3% and 6%, respectively. However, the relative area of SEBF, TS, TD and THP would decrease about 5%, 3%, 19% and 4%, respectively. In all, the relative area of forests (CCF, CMC, WDBF, SEBF, TRF) would increase about 15%, but the relative area of desert (TD, SD, TDE, and TTW) and THP would decrease about 9% and 4%, respectively. Therefore, responses of different life zones in China to climate change would be dramatic, and nationwide corridors should be considered for the conservation of migrating species under climate change.  相似文献   

15.
The dynamic climate in the Northern Hemisphere during the early Holocene could be expected to have impacted on the global carbon cycle. Ice core studies however, show little variability in atmospheric CO2. Resolving any possible centennial to decadal CO2 changes is limited by gas diffusion through the firn layer during bubble enclosure. Here we apply the inverse relationship between stomatal index (measured on sub-fossil leaves) and atmospheric CO2 to complement ice core records between 11,230 and 10,330 cal. yr BP. High-resolution sampling and radiocarbon dating of lake sediments from the Faroe Islands reconstruct a distinct CO2 decrease centred on ca. 11,050 cal. yr BP, a consistent and steady decline between ca. 10,900 and 10,600 cal. yr BP and an increased instability after ca. 10,550 cal. yr BP. The earliest decline lasting ca. 150 yr is probably associated with the Preboreal Oscillation, an abrupt climatic cooling affecting much of the Northern Hemisphere a few hundred years after the end of the Younger Dryas. In the absence of known global climatic instability, the decline to ca. 10,600 cal. yr BP is possibly due to expanding vegetation in the Northern Hemisphere. The increasing instability in CO2 after 10,600 cal. yr BP occurs during a period of increasing cooling of surface waters in the North Atlantic and some increased variability in proxy climate indicators in the region.The reconstructed CO2 changes also show a distinct similarity to indicators of changing solar activity. This may suggest that at least the Northern Hemisphere was particularly sensitive to changes in solar activity during this time and that atmospheric CO2 concentrations fluctuated via rapid responses in climate.  相似文献   

16.
We present results of the first middle Miocene climate modelling study using the latest NCAR Community Atmosphere Model (CAM v.3.1) and Community Land Model (CLM v.3.0) coupled to a slab ocean. We examine the sensitivity of the middle Miocene climate to varying concentrations of atmospheric carbon dioxide (180, 355 and 700 ppm). Model simulations are forced with realistic Miocene boundary conditions for continental geometry, topography and vegetation. Global annual mean surface temperature increases by 2.2 °C with each successive doubling of CO2 which is consistent with climate sensitivity of previous paleoclimate studies and estimates for future climate. In addition to growing evidence that tropical sea surface temperatures were higher than suggested by proxy-data, our understanding of middle to high latitude warming mechanisms is still incomplete. We compare our results to the late Miocene study of Steppuhn et al. [Steppuhn, A., Micheels, A., Bruch, A., Uhl, D., Utescher, T., Mosbrugger, V., 2007. The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Global and Planetary Change, 57, 189–212] to explore the dependence of paleoclimate model sensitivities on different software systems and boundary conditions. Our comparison shows climate sensitivity to be overall quite robust — this is as significant, as it is often unclear to what extent simulation behaviour and outputs are dependent on a particular model implementation and initial/boundary conditions. Some distinct differences in model outputs, such as our reduced latitudinal surface temperature gradient and stronger Asian monsoon system, compared to the late Miocene study of Steppuhn et al. [Steppuhn, A., Micheels, A., Bruch, A., Uhl, D., Utescher, T., Mosbrugger, V., 2007. The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Global and Planetary Change, 57, 189–212] are shown to be closely linked to the choice of topography, vegetation and ocean heat flux.  相似文献   

17.
Observations of the Composite InfraRed Spectrometer (CIRS) during the entire nominal Cassini mission (2004-2008) provide us with an accurate global view of composition and temperature in the middle atmosphere of Titan (between 100 and 500 km). We investigated limb spectra acquired at resolution at nine different latitudes between 56°S and 80°N, with a better sampling in the northern hemisphere where molecular abundances and temperature present strong latitudinal variations. From this limb data acquired between February 2005 and May 2008, we retrieved the vertical mixing ratio profiles of C2H2, C2H4, C2H6, C3H8, CH3C2H, C4H2, C6H6, HCN, HC3N and CO2. We present here for the first time, the latitudinal variations of the C2H6, C3H8, CO2, C2H4 and C6H6 vertical mixing ratios profiles. Some molecules, such as C2H6 or C3H8 present little variations above their condensation level. The other molecules (except CO2) show a significant enhancement of their mixing ratios poleward of 50°N. C2H4 is the only molecule whose mixing ratio decreases with height at latitudes below 46°N. Regions depleted in C2H2, HCN and C4H2 are observed around 400 km (0.01 mbar) and 55°N. We also inferred a region enriched in CO2 located between 30 and 40°N in the 2-0.7 mbar pressure range. At 80°N, almost all molecules studied here present a local minimum of their mixing ratio profiles near 300 km (∼0.07 mbar), which is in contradiction with Global Circulation Models that predict constant-with-height vertical profiles due to subsidence at the north pole.  相似文献   

18.
The response of the Earth's global mean vertical atmospheric temperature structure to large increases in the atmospheric CO2 concentration was examined using a 1-D radiative-convective atmospheric model. It was found that the greenhouse warming of the terrestrial surface can be strongly inhibited by the development of a more isothermal, moister and higher troposphere than at present. The saturation of the strong CO2 infrared bands for high CO2 concentrations further inhibits the greenhouse warming to such an extent that a runaway greenhouse fuelled only by a rise in the atmospheric CO2 is not possible. However, a continuously rising solar-constant does eventually lead to a runaway.  相似文献   

19.
Despite a fainter Sun, the surface of the early Earth was mostly ice-free. Proposed solutions to this so-called “faint young Sun problem” have usually involved higher amounts of greenhouse gases than present in the modern-day atmosphere. However, geological evidence seemed to indicate that the atmospheric CO2 concentrations during the Archaean and Proterozoic were far too low to keep the surface from freezing. With a radiative-convective model including new, updated thermal absorption coefficients, we found that the amount of CO2 necessary to obtain 273 K at the surface is reduced up to an order of magnitude compared to previous studies. For the late Archaean and early Proterozoic period of the Earth, we calculate that CO2 partial pressures of only about 2.9 mb are required to keep its surface from freezing which is compatible with the amount inferred from sediment studies. This conclusion was not significantly changed when we varied model parameters such as relative humidity or surface albedo, obtaining CO2 partial pressures for the late Archaean between 1.5 and 5.5 mb. Thus, the contradiction between sediment data and model results disappears for the late Archaean and early proterozoic.  相似文献   

20.
The polar condensation/sublimation of CO2, that involve about one fourth of the atmosphere mass, is the major Martian climatic cycle. Early observations in visible and thermal infrared have shown that the sublimation of the Seasonal South Polar Cap (SSPC) is not symmetric around the geographic South Pole.Here we use observations by OMEGA/Mars Express in the near-infrared to detect unambiguously the presence of CO2 at the surface, and to estimate albedo. Second, we estimate the sublimation of CO2 released in the atmosphere and show that there is a two-step process. From Ls=180° to 220°, the sublimation is nearly symmetric with a slight advantage for the cryptic region. After Ls=220° the anti-cryptic region sublimation is stronger. Those two phases are not balanced such that there is 22% ± 9 more mass the anti-cryptic region, arguing for more snow precipitation. We compare those results with the MOLA height measurements. Finally we discuss implications for the Martian atmosphere about general circulation and gas tracers, e.g. Ar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号