首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
You  Jianqi  Hiei  Eijiro  Li  Hui 《Solar physics》2003,217(2):235-245
After carefully comparing the white-light (5600±00 Å) and the slit-jaw H images (0.5 Å  passband) of the 2N/X20 white-light flare of 16 August 1989, we found that the H counterpart identification of the bright kernels in continuum by Hiei, Nakagomi, and Takuma (1992) was incorrect. Now we come to the conclusion that none of the two white-light kernels has a corresponding bright H area. Moreover, the loop shapes in white-light are also different from those in H. H loops rose more rapidly than white-light loops. However, their height–time variations on the whole are similar. This indicates that the continuum and chromospheric emissions of the flare presumably come from different plasmas, but may be modulated by some mutual factors, such as large-scale magnetic fields. Analysis of the Hei 10830 Å spectra taken simultaneously with the slit-jaw H images shows that the line-center intensity of Hei 10830 Å doesn't have a good correlation with the intensity of nearby continuum, which supports the above conclusions. In addition, the electron density at the white-light loop top estimated from the continuum around 5600 Å  and 10830 Å  is as high as 1012–1013 cm–3.  相似文献   

2.
Skomorovsky  V.I.  Firstova  N.M.  Kashapova  L.K.  Kushtal  G.I.  Boulatov  A.V. 《Solar physics》2001,199(1):37-45
A new two-bandpass birefringent filter has been produced at ISTP, Irkutsk for the investigation of the fine structure of the chromosphere. One filter passband is centered on the Hei 10830 Å line, the second one is centered on H. The FWHM of the Hei 10830 Å passband is 0.46 Å and of the H passband is 0.3 Å. A large number of filtergrams were obtained with the filter at the Sayan observatory. At the same time, spectral observations with high spatial and spectral resolution were carried out by the large solar vacuum telescope at the Baikal Observatory. We selected 29 `dark point' spectra with sizes from 2 to 13, as well as `dark points' on the filtergrams. Comparison of spectrograms and filtergrams has shown a good agreement of their size and intensity in relation with the surrounding chromosphere as well as the absence of primary line-of-sight velocities in both observation types. From spectral observations, the depth of 10830 Å is over 30% for some `dark points', and the FWHM is more than 1 Å. Hei 10830 Å line profiles in `dark points' are more deep and wide than in quiet regions. The optical depth of the chromosphere in `dark points' is estimated. Comparison with the unperturbed chromosphere showed that `dark points' in Hei 10830 Å are more optically thin than the nearby chromosphere.  相似文献   

3.
Doppler dimming of the Ovi resonance lines (1032 Å, 1037 Å) in an expanding corona is calculated including the pumping effect on the Ovi 1037.61 Å of both Cii lines at 1036.34 Å and 1037.02 Å, and the effect of the width of the absorption profiles of the coronal oxygen ions along the incident radiation. The pumping effect of the Cii line at 1036.34 Å allows us to extend to approximately 450 km s–1 the measurement of solar wind velocities with the Ovi line ratio technique. Since the emissivity ratio of the Ovi doublet depends on the width of the oxygen coronal absorbing profiles, this ratio can provide an accurate measurement of the solar wind velocity in the case that the width of the absorbing profile along the direction of the incident radiation is independently determined. However, if on the one hand the ratio of the emissivities of the Ovi doublet has limitations in probing the wind velocity, on the other hand it can be used as a diagnostics for inferring the velocity distribution of the coronal Ovi ions along the radial, and detecting possible velocity anisotropies. This diagnostics, applied to recent observational results, allows us to infer that the velocity distribution of the oxygen ions is much broader in the direction perpendicular to the magnetic field direction, and that the acceleration of the fast solar wind in the first 2 solar radii is high.  相似文献   

4.
Keenan  F.P.  Mathioudakis  M.  Pinfield  D.J.  Brown  W.A.  Bruner  M.E. 《Solar physics》1999,185(2):289-296
R-matrix calculations of electron impact excitation rates in Nixviii are used to derive theoretical electron-temperature-sensitive emission line ratios involving 3s–4p,3p–4d,3p –4s, and 3d–4f transitions in the 41–53 Å wavelength range. A comparison of these with solar flare observations from a rocket-borne X-ray spectrograph (XSST) reveals generally excellent agreement between theory and experiment (within the experimental and theoretical uncertainties), which provides support for the atomic data adopted in the analysis. However the 3s 2S–4p 2P1/2 line of Nixviii at 41.22 Å appears to be blended with the Fexix 13.74 Å feature observed by XSST in third order. In addition, the measured Nixviii intensity ratio I(3p 2P3/2– 4s 2S)/I(3p 2P1/2–4s 2S)=I(51.02 Å)/I(50.26 Å)=0.56, a factor of 3.8 smaller than the theoretical (temperature and density-insensitive) value of 2.1. The reason for this discrepancy is currently unexplained, but is unlikely to be due to blending of the 50.26 Å line, as the intensity of this feature is consistent with that expected from the other Nixviii lines in the XSST spectrum. Future observations of the Nixviii lines by the Advanced X-ray Astrophysics Facility (AXAF) should allow this problem to be resolved, and may also permit the use of the lines as electron-temperature diagnostics.  相似文献   

5.
Wang  M.  Duan  C.C.  Xie  R.X.  Yan  Y.H. 《Solar physics》2003,212(2):401-406
A group of type III bursts observed with the 2.6–3.8 GHz spectrometer of National Astronomical Observatory of China on 15 April 1998 is analyzed. They have the characteristics of broad bandwidth (>100 MHz), very short durations (<100 ms), high polarization degree (100%), high frequency drift rates (>1 GHz s–1), and fast pulsations (with a period of about 100–200 ms). Their time profiles are also analysed. According to these characteristics, we suggest that these microwave type III bursts may be due to the fundamental plasma emission.  相似文献   

6.
Spectro-polarimetric observations of active regions were carried out in the spectral lines of Sii 10827.1 Å and Hei 10830 Å to study the three-dimensional magnetic field structure and associated plasma flow properties. Comparison of Sii and Hei magnetograms with the potential field model shows that a large fraction of the magnetic field is consistent with the potential field structure, by assuming that the height difference between the origin of the two lines is about 1200 km. The slope of the scatter plot between Sii and Hei magnetograms is 0.5, 0.76 in an emerging flux and a larger active region, respectively. These values are lower than the scatter plot slopes obtained from Kitt Peak photospheric and chromospheric magnetograms, in which case the corresponding values are 0.83 and 0.9, respectively. Considering the height difference between these two sets of chromospheric magnetograms, this implies that the magnetic field spreads out faster near the transition region heights. Dopplergrams obtained by determining the centroid of the asymmetric line profiles show that, in case of emerging flux region, the chromospheric upflow regions are located in the magnetic neutral line areas.  相似文献   

7.
Innes  D.E.  McKenzie  D.E.  Wang  Tongjiang 《Solar physics》2003,217(2):267-279
An X1.5 flare on the west limb of the Sun on 21 April 2002 developed a large supra-arcade about 30 min after flare onset. The growth of the supra-arcade can be followed in both TRACE 195 Å images and SUMER spectra. Its growth seems to be associated with dark (in TRACE images), sunward moving channels that descend onto the arcade from above. SUMER recorded Doppler shifts of 800–1000 km s–1 in Fexxi 1354 Å from positions where this sunward flow interacts with the arcade tops. We describe the observations, focusing on the relationship of the high Fexxi line shifts to the sunward moving dark flows.  相似文献   

8.
We report on observations of a large eruptive event associated with a flare that occurred on 27 September 1998 made with the Richard B. Dunn Solar Telescope at Sacramento Peak Observatory (several wave bands including off-line-center H), in soft and hard X-rays (GOES and BATSE), and in several TRACE wave bands (including Feix/x 171 Å, Fexii 195 Å, and Civ 1550 Å). The flare initiation is signaled by two H foot-point brightenings which are closely followed by a hard X-ray burst and a subsequent gradual increase in other wavelengths. The flare light curves show a complicated, three-component structure which includes two minor maxima before the main GOES class C5.2 peak after which there is a characteristic exponential decline. During the initial stages, a large spray event is observed within seconds of the hard X-ray burst which can be directly associated with a two-ribbon flare in H. The emission returns to pre-flare levels after about 35 min, by which time a set of bright post-flare loops have begun to form at temperatures of about 1.0–1.5 MK. Part of the flare plasma also intrudes into the penumbra of a large sunspot, generally a characteristic of very powerful flares, but the flare importance in GOES soft X-rays is in fact relatively modest. Much of the energy appears to be in the form of a second ejection which is observed in optical and ultraviolet bands, traveling out via several magnetic flux tubes from the main flare site (about 60° from Sun center) to beyond the limb.  相似文献   

9.
Since 1986, we have made some improvements to the multichannel solar spectrograph at Purple Mountain Observatory (PMO) step by step, and now we have developed and added to it a multichannel infrared imaging solar spectrograph. The original spectrograph can be used to observe simultaneously solar activity at 9 wave bands including Caii H and K line, Mgi b line, Hei D3 line and H through H. The newly developed infrared imaging spectrograph can work in three wavelengths, i.e., Hei 10830 Å, Caii 8542 Å, and H. We replaced plates in the original system with CCDs and placed an image reducer before each CCD in order to match the CCD pixel size. The dispersions for Hei 10830 Å, Caii 8542 Å, and H of the new imaging solar spectrograph are 0.0693 Å, 0.0767 Å, and 0.0754 Å per CCD pixel respectively, and each vertical CCD pixel represents 0.34 arc sec of solar disk. We can obtain the line-center and off-band intensities of the three lines and the intensities of continua adjacent to these lines through the new instrument. We can also acquire velocity maps and line profiles. Therefore, it is specially suitable for two-dimensional (2D) spectroscopic observations of solar flares and active regions. We carry out scanning observation by rotating the second mirror of the coelostat system. In this paper, we introduce the improvements we made and the new imaging solar spectrograph. Some observation results are also presented in this article.  相似文献   

10.
We have studied the behavior of the emission in the highly ionized EUV lines Feix/x, 171 Å, Fexii, 195 Å, and Fexv, 284 Å observed in quiescent prominences. Kucera, Andretta, and Poland (1998) have explained the absorption of other highly ionized metallic EUV lines as due to absorption in the hydrogen continuum. However, since the authors noticed deviations from the expected 3 dependence of the absorption strengths, we have explored the possibility that emission in EUV iron lines can influence the observations. We propose the existence of a hot, i.e., million-degree plasma component of the prominence–corona transition region (PCTR), where the EUV iron lines originate. We find that (i) neither of the two scenarios alone reproduces observations; (ii) both emission and absorption increase prior to eruption; (iii) the measurements of Kucera, Andretta, and Poland's 14 May event are strongly affected by hot PCTR emission.  相似文献   

11.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

12.
In this paper we present the results of inversion of Stokes polarization profiles of a sunspot, to recover the vector magnetic field parameters of the spectral-line-forming region, using the Fei 5324.19 Å line and a nonlinear least-squares fitting. Observations of the simple sunspot were obtained using the Video Vector Magnetograph at the Huairou Solar Observing Station (HSOS) of the National Astronomical Observatories of China, over the wavelength interval of 150 mÅ redward of line center of Fei 5324.19 Å to 150 mÅ to the blue, in steps of 10 mÅ. The curves of the observed variation of azimuth with wavelength are also compared with model calculations of the azimuth at each wavelength, as derived from the inverse Zeeman effect modified by Faraday rotation. The results show that the rotation of azimuth is less significant in the observations taken near the center of the Fei 5324.19 Å line than those taken near the center of the Fei 5250.22 Å line.  相似文献   

13.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

14.
The general relativistic Lense—Thirring effect can be measured by inspecting a suitable combination of the orbital residuals of the nodes of LAGEOS and LAGEOS II and the perigee of LAGEOS II. The solid and ocean Earth tides affect the recovery of the parameter by means of which the gravitomagnetic signal is accounted for in the combined residuals. Thus an extensive analysis of the perturbations induced on these orbital elements by the solid and ocean Earth tides is carried out. It involves the l=2 terms for the solid tides and the l=2,3,4 terms for the ocean tides. The perigee of LAGEOS II turns out to be very sensitive to the l=3 part of the ocean tidal spectrum, contrary to the nodes of LAGEOS and LAGEOS II. The uncertainty in the solid tidal perturbations, mainly due to the Love number k 2, ranges from 0.4% to 1.5%, while the ocean tides are uncertain at 5–15% level. The obtained results are used in order to check in a preliminary way which tidal constituents the Lense-Thirring shift is sensitive to. In particular it is tested if the semisecular 18.6-year zonal tide really does not affect the combined residuals. It turns out that, if modeled at the level of accuracy worked out in the paper, the l=2,4 m=0 and also, to a lesser extent, the l=3, m=0 tidal perturbations cancel out.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

15.
Innes  D.E.  McKenzie  D.E.  Wang  Tongjiang 《Solar physics》2003,217(2):247-265
On 21 April 2002 a large eruptive flare on the west limb of the Sun developed a bright, very dynamic, post-flare arcade. In TRACE 195 Å images, a series of dark, sunward moving flows were seen against the bright extreme ultraviolet (EUV) arcade. SUMER obtained a series of spectra of the dark EUV flows in the lines Cii, Fexii, and Fexxi at a fixed position above the limb. These spectra give spatially resolved line-of-sight velocities and emission measures for the arcade plasma over a temperature range 2×104 to 107 K. The flows are dark in all SUMER lines. The UV continuum longward (1350 Å) and shortward (675 Å) of the hydrogen Lyman limit is used to determine whether the dark 195 Å inflows are due to regions of low plasma density (plasma voids) or cold absorbing material. There is some evidence of absorption near the front of one of the inflows; however, along most of the dark channels there is no change in continuum ratio and we therefore conclude, as originally suggested by McKenzie and Hudson (1999), that they are plasma voids.  相似文献   

16.
Wang  Haimin  Chae  Jongchul  Qiu  Jiong  Lee  Chik-Yin  Goode  Philip R. 《Solar physics》1999,188(2):365-376
On 27 September 1998, Big Bear Solar Observatory (BBSO) and Transition Region and Coronal Explorer (TRACE) coordinated observations from 16:00 to 19:00 UT to study properties of microflares in AR NOAA No. 8340. Fortuitously, a C5.2 flare occurred at 16:30 UT in this active region. H and magnetograph movies were obtained at BBSO; Civ 1550 Å, Feix 171 Å, and Fexii 195 Å movies were obtained by TRACE; both with a cadence about 1 min. In this paper, we concentrate on the study of magnetic properties of 70 Civ microflares, as well as their relationship to the C5.2 flare. We obtained the following results: (1) We found two kinds of microflares: microflares of transient brightenings with a time scale of 1 to 5 min (impulsive events) and microflares lasting half an hour or longer (persistent events). Ninety percent of the microflares are impulsive events. Most of the event in this category are associated with well defined magnetic neutral lines, but some are found in non-neutral line areas. All of seven persistent events are found at parasitic magnetic configurations with inclusions of small magnetic flux within dominant magnetic flux of opposite polarity. (2) More than a third of the impulsive microflares occurred near the C5.2 flare site indicating that a local instability is responsible for both the C5.2 flare and microflares. This indirectly supports the avalanche theory of flare energy release, which implies that a big flare may be spatially associated with many small flares.  相似文献   

17.
You  Jianqi  Li  Hui  Fan  Zhongyu  Sakurai  Takashi 《Solar physics》2001,203(1):107-117
The 3N/X3.3 flare of 28 November 1998 was observed in multiple wavelength simultaneously. The available data include H images, spectra in Hei 1083 nm and Caii 854.2 nm from Purple Mountain Observatory (PMO), soft X-ray (SXR) and hard X-ray (HXR) images and flux from Yohkoh. Morphological relationship investigation and spectral analysis of these data show: (1) The sudden brightening at loop top above the active region and the steep increase of SXR flux before flare onset suggest that the corona there had already been heated to some extent in the preflare phase. (2) The scales of the Caii 854.2 nm emission areas are very similar to those of the H line, but the emission profiles look like those of the Caii K line. Most of the Hei 1083 nm emissions exist in the bright H kernels and can last to the decay phase. (3) Flare spectra show that line shift and asymmetry are very common in this flare not only in the impulsive phase but also in the decay phase. The difference in the line shifts or asymmetry between Caii 854.2 nm and Hei 1083 nm, as well as the difference between the line center and wings of Caii 854.2 nm imply the existence of a velocity gradient in the line-of-sight direction. (4) Post-flare loops with very deep absorption (70%) and very-high-velocity red shifts (30–90 km s–1) were observed in Hei 1083 nm during the decay phase. However, only a slight dip can be found in the Caii 854.2 nm profile.  相似文献   

18.
Kulagin  E.S. 《Solar physics》1999,188(1):81-87
A narrow-band tunable solar filter was constructed for the near-infrared spectral region. It is a pre-monochromator consisting of a double monochromator with dispersion subtraction, while the final passband is formed by a scanning Fabry–Pérot interferometer. Such a filter can be realized in practice for any optical spectral region. The tuning range of the filter for the near-infrared is 9000–11000 Å, FWHM of the passband equals 0.24 Å at the Hei 10830 Å line. The angular field of view on the sky is 3.6 for a diameter of the telescope of 100 mm. Filtergrams of the active region NOAA 8076 in the Hei 10830 Å line were obtained on 28 August 1997, the profiles of this line in the selected points of the image, and radial velocity field are presented.  相似文献   

19.
Gouttebroze  P.  Vial  J.-C.  Bocchialini  K.  Lemaire  P.  Leibacher  J.W. 《Solar physics》1999,184(2):253-266
Variations of intensity and wavelength in several UV lines have been observed with the SUMER spectroheliometer onboard SOHO, and they have been analysed to obtain oscillation spectra and phase differences between lines of different ions. Lines intensities of neutral or singly ionized atoms (with temperature of formation 30000 K) exhibit an increase of oscillatory power between 2.5 and 7 mHz, which may be considered as the signature of p modes. Lines of highly ionized elements (with a temperature of formation 50000 K) yield power spectra which are continuously decreasing with frequency. Brightness variations of the continuum at different wavelengths between 1000 and 1400 Å present oscillations in the same frequency range. Thus, p modes seem to be efficiently stopped by the transition region. No clear evidence is found for the existence of a chromospheric oscillation mode. Phase comparisons between lines formed at different altitudes (in particular Sii and Siii) indicate that these lines oscillate in phase, within the precision of the measurements.  相似文献   

20.
McKeown  M.  Keenan  F.P.  Ramsbottom  C.A.  Bell  K.L.  Ryans  R.S.I.  Reid  R.H.G. 《Solar physics》1999,186(1-2):231-242
Recent calculations of electron and proton impact excitation rates in Nevii are used to calculate theoretical emission line ratios involving both n=0 (2–2) and n=1 (2–3) transitions in the 97–895 Å wavelength range. A comparison of these with existing solar observations, obtained by instruments on rocket flights and on the Skylab mission, reveals generally good agreement between theory and observation. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and implies that the latter may be applied with confidence to the analysis of solar and stellar spectra from current and future satellite missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号