首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In subsurface flow modeling, compositional simulation is often required to model complex recovery processes, such as gas/CO 2 injection. However, compositional simulation on fine-scale geological models is still computationally expensive and even prohibitive. Most existing upscaling techniques focus on black-oil models. In this paper, we present a general framework to upscale two-phase multicomponent flow in compositional simulation. Unlike previous studies, our approach explicitly considers the upscaling of flow and thermodynamics. In the flow part, we introduce a new set of upscaled flow functions that account for the effects of compressibility. This is often ignored in the upscaling of black-oil models. In the upscaling of thermodynamics, we show that the oil and gas phases within a coarse block are not at chemical equilibrium. This non-equilibrium behavior is modeled by upscaled thermodynamic functions, which measure the difference between component fugacities among the oil and gas phases. We apply the approach to various gas injection problems with different compositional features, permeability heterogeneity, and coarsening ratios. It is shown that the proposed method accurately reproduces the averaged fine-scale solutions, such as component overall compositions, gas saturation, and density solutions in the compositional flow.  相似文献   

2.
In this paper the ability of analytical solutions for four-component three-phase flow to predict displacement efficiency in water alternating gas (WAG) injection processes is studied. First analytical solutions for Riemann problems with injection compositions that are the average water and gas mixture for various WAG injection schemes are presented. These solutions are compared to numerical calculations with variable slug sizes and used to explore the effect of slug size, injecting water vs gas first, and the average injection composition on displacement efficiency in compositional WAG schemes. The example model is partially miscible WAG injection of water and CO2 into an oil reservoir containing C10 and CH4 with and without a mobile aqueous phase present initially. The trailing end of the water and gas profiles are sensitive to whether water or gas is injected first, but the magnitude of the oil bank and the breakthrough time of the injected fluids are accurately predicted by the analytical solutions, even for displacements where large water and gas slugs are injected. Fluctuations in the saturation and composition profiles resulting from the alternating injection sequence in the WAG simulations appear as super-imposed on top of the sequence of rarefaction and shock waves predicted by analytical solutions. As the number of slugs increases, the effect of alternating boundary conditions diminishes and the displacements predicted by numerical calculations converge to the analytical solutions.  相似文献   

3.
Mathematicians and geochemists have long realized that compositional data intrinsically exhibit a structure prone to spurious and induced correlations. This paper demonstrates, using the Na–Cl–Br system, that these mathematical problems are exacerbated in the study of sedimentary basin brines by such processes as the evaporation or dissolution of salts owing to their high salinities. Using two published datasets of Na–Cl–Br data for fluids from the Appalachian Basin, it is shown that log concentration and Na/Br versus Cl/Br methods for displaying solute chemistry may lead to misinterpretation of mixing trends between meteoric waters (for example shallow drinking water aquifers) and basinal brines, partially due to spurious mathematical relationships. An alternative approach, based on the isometric log-ratio transformation of molar concentration data, is developed and presented as an alternative method, free from potential numerical problems of the traditional methods. The utility, intuitiveness, and potential for mathematical problems of the three methods are compared and contrasted. Because the Na–Cl–Br system is a useful tool for sourcing solutes and investigating the evolution of basinal brines, results from this research may impact such critical topics as evaluating sources of brine contamination in the environment (possibly related to oil and gas production), evaluating the behavior of fluids in the reservoir during hydraulic fracturing, and tracking movement of fluids as a result of geologic CO2 sequestration.  相似文献   

4.
The direction of oil charges within a field in the Niger Delta, Nigeria was determined by the sum of differences ranking method of carbazole concentrations after ascertaining other possible geological constraints on their compositional variations. The principle is that the smaller the sum, the closer the well to the source kitchen. The approach makes use of carbazoles’ interaction with the matrix, which leads to a reduction in their concentration with increasing distance from the source kitchen, allowing prediction of the charging direction. A wide range of compositional variations was observed for C1 (806.72–2152.90 μg/g) and C2 (767–2469.72 μg/g) carbazoles within the field. Based on these results, we inferred a filling pathway orientation from west to east. This suggests that the source kitchen—the most promising region for oil exploration—is located in the western part of the oil field.  相似文献   

5.
Adjoint-based gradient computations for oil reservoirs have been increasingly used in closed-loop reservoir management optimizations. Most constraints in the optimizations are for the control input, which may either be bound constraints or equality constraints. This paper addresses output constraints for both state and control variables. We propose to use a (interior) barrier function approach, where the output constraints are added as a barrier term to the objective function. As we assume there always exist feasible initial control inputs, the method maintains the feasibility of the constraints. Three case examples are presented. The results show that the proposed method is able to preserve the computational efficiency of the adjoint methods.  相似文献   

6.
The Fully Implicit Method (FIM) is often the method of choice for the temporal discretization of the partial differential equations governing multiphase flow in porous media. The FIM involves solving large coupled systems of nonlinear algebraic equations. Newton-based methods, which are employed to solve the nonlinear systems, can suffer from convergence problems—this is especially true for large time steps in the presence of highly nonlinear flow physics. To overcome such convergence problems, the time step is usually reduced, and the Newton steps are restarted from the solution of the previous (converged) time step. Recently, potential ordering and the reduced-Newton method were used to solve immiscible three-phase flow in the presence of buoyancy and capillary effects (e.g., Kwok and Tchelepi, J. Comput. Phys. 227(1), 706–727 9). Here, we improve the robustness of the potential-based ordering method in the presence of gravity. Furthermore, we also extend this nonlinear approach to interphase mass transfer. Our algorithm deals effectively with mass transfer between the liquid and gas phases, including phase disappearance (e.g., gas going back in solution) and reappearance (e.g., gas coming out of solution and forming a separate phase), as a function of pressure and composition. Detailed comparisons of the robustness and efficiency of the potential-based solver with state-of-the-art nonlinear/linear solvers are presented for immiscible two-phase (Dead-Oil), Black-Oil, and compositional problems using heterogeneous models. The results show that for large time steps, our nonlinear ordering-based solver reduces the number of nonlinear iterations significantly, which leads to gains in the overall computational cost.  相似文献   

7.
The Fully Implicit method (FIM) is often the method of choice for the temporal discretization of the partial differential equations governing multiphase flow in porous media. The FIM involves solving large coupled systems of nonlinear algebraic equations. Newton-based methods, which are employed to solve the nonlinear systems, can suffer from convergence problems—this is especially true for large time steps in the presence of highly nonlinear flow physics. To overcome such convergence problems, the time step is usually reduced, and the Newton steps are restarted from the solution of the previous (converged) time step. Recently, potential ordering and the reduced-Newton method were used to solve immiscible three-phase flow in the presence of buoyancy and capillary effects (e.g., Kwok and Tchelepi, J. Comput. Phys. 227(1), 706–727 2007). Here, we improve the robustness of the potential-based ordering method in the presence of gravity. Furthermore, we also extend this nonlinear approach to interphase mass transfer. Our algorithm deals effectively with mass transfer between the liquid and gas phases, including phase disappearance (e.g., gas going back in solution) and reappearance (e.g., gas coming out of solution and forming a separate phase), as a function of pressure and composition. Detailed comparisons of the robustness and efficiency of the potential-based solver with state-of-the-art nonlinear/linear solvers are presented for immiscible two-phase (Dead-Oil), Black-Oil, and compositional problems using heterogeneous models. The results show that for large time steps, our nonlinear ordering-based solver reduces the number of nonlinear iterations significantly, which leads to gains in the overall computational cost.  相似文献   

8.
伴随数据同化法反演涌潮河口开边界   总被引:3,自引:1,他引:3       下载免费PDF全文
构造了非线性守恒型浅水方程的伴随方程,并给出无结构三角网格的开边界校正表达式,利用Godunov格式和Riemann间断解Roe通量格式的设计思想,建立了无结构三角网格有限体积法的伴随开边界反演模型。进行了概化涌潮河口和钱塘江涌潮河口M2分潮开边界反演的数值实验,经过同化得到开边界上振幅的平均误差分别为0.000 6 m和0.053 3 m,证实了本文构造有限体积伴随模型的可行性,也表明本模型能够适应间断解问题。  相似文献   

9.
In this work, the analytical and numerical solutions for modeling miscible gas and water injection into an oil reservoir are presented. Conservation laws with three levels of complexity are considered. Only the most complex model has the correct phase behavior for the example system, which is a multicontact miscible condensing gas drive with simultaneous water and gas injection. Example displacements in which one or both of the simpler models result in accurate simulations in a fraction of the computation time are presented, along with an example in which neither simplified thermodynamic model achieves a truly satisfactory result. A methodology is presented that can be used to establish the accuracy of simplified models in 1-D simulation based on convergence to analytical solutions for the full three-phase system.  相似文献   

10.
One of the challenges for reservoir simulation is numerical dispersion. For waterflooding applications the effect is controlled due to the self-sharpening nature of a Buckley–Leverett shock. However, for multi-component flow simulations, incorrect wavespeeds can develop leading to the excessive smearing of fronts because of the coupling of compositional dispersion with the fractional flow. Rather than implementing a higher-order discretization method, we propose a simple scheme based on segregation-in-flow within a gridblock to control numerical dispersion. We extend the method originally proposed for polymer flooding to augmented waterflooding simulations in general as well as simulations of miscible or near miscible gas injection. For compositional simulations of gas injection, this is done through a coupled limited-flash/upstream-exclusion assumption. To test the scheme, an in-house streamline simulator has been modified and validated for modeling low-salinity floods as well as ternary two-phase displacements. Simulation results presented with and without segregation demonstrate the potential of the approach as a heuristic method to control numerical dispersion in multi-component flow simulations.  相似文献   

11.
The Gibbs method permits simultaneous evaluation of the relationships among all intensive thermodynamic variables of a heterogeneous system in equilibrium. Addition of mass balance constraints permits simultaneous evaluation of both intensive and extensive variables so that changes in phase chemistry and modes may be monitored. Assumption of closed system behavior results in a system of equations with two degrees of freedom, regardless of the thermodynamic variance, as specified by Duhem's theorem. Open system behavior increases the number of degrees of freedom by the number of components to which the system is open. The methodology presented is therefore a formal statement of the constraints among the differential of all of the intensive and extensive variables of a heterogeneous system.Examples of the application of this formalism include contouring pressure-temperature space for mineral composition, modal changes and reaction progress; contouring reaction space with pressure, temperature and mineral composition; and calculation of compositional and modal changes of phases for prescribed changes in pressure and temperature, as, for example, in the calculation of synthetic garnet zoning profiles or liquid lines of descent in crystallizing magmas.  相似文献   

12.
加速遗传算法在地下水位动态分析中的应用   总被引:25,自引:4,他引:21  
提出了一种改进的遗传算法-加速遗传算法,分析了它的原理,控制参数的设置,收敛性,全局优化性能和适用性,并把它成苗地应用于地下水位动态分析中。  相似文献   

13.
This paper analyzes the adjoint equations and boundary conditions for porous media flow models, specifically the Buckley-Leverett equation, and the compressible two-phase flow equations in mass conservation form. An adjoint analysis of a general scalar hyperbolic conservation law whose primal solutions include a shock jump is initially presented, and the results are later specialized to the Buckley-Leverett equation. The non-convexity of the Buckley-Leverett flux function results in adjoint characteristics that are parallel to the shock front upstream of the shock and emerge from the shock front downstream of the shock. Thus, in contrast to the behavior of Burgers’ equation where the adjoint is continuous at a shock, the Buckley-Leverett adjoint, in general, contains a discontinuous jump across the shock. Discrete adjoint solutions from space-time discontinuous Galerkin finite element approximations of the Buckley-Leverett equation are shown to be consistent with the derived closed-form analytical solutions. Furthermore, a general result relating the adjoint equations for different (though equivalent) primal equations is used to relate the two-phase flow adjoints to the Buckley-Leverett adjoint. Adjoint solutions from space-time discontinuous Galerkin finite element approximations of the two-phase flow equations are observed to obey this relationship.  相似文献   

14.
The formulation of viscoelastic solutions from elastic equations using the ‘correspondence principle’ and an inverse Laplace transform has been discussed extensively in the literature. Because this method has been developed, many time-dependent solutions can be obtained from closed form elastic solutions and conditions have been delineated in which the ‘quasi-elastic’ approximation of the viscoelastic solution is within acceptable tolerance. This communication shows the feasibility of the application of these methods to formulate approximate nonlinear viscoelastic solutions with nonlinear stress-strain materials, and for want of a specific nonlinear model to demonstrate this, the hyperbolic model was selected. The ‘power law’ is used to model the relaxation modulus of the viscoelastic materials. There are five related development that are discussed here using a simple numerical example to illustrate each of them and they are: (1) a linear elastic solution, (2) a linear viscoelastic solution, (3) a nonlinear elastic solution, (4) a nonlinear viscoelastic solution and finally, (5) a ‘regression’ approximation of the nonlinear viscoelastic solution which is suggested by the series form of the elastic solution. All of these are related to one another and each provides an acceptably accurate solution of the problem it addresses. The latter is of particular practical interest since it can be used to provide answers to problems involving nonlinear viscoelastic materials while requiring only very small calculation times. The problem used as an example is the calculation of the displacement of a circular hole in an infinite plate made of a material with a nonlinear time-dependent stress-strain relationship. The nonlinear elastic form of the solution was developed by matching results from nonlinear finite element analysis.  相似文献   

15.
伴随数据同化方法是一个基于梯度法的反演技巧,尤其适用于对非线性问题的反演。最近几年里,该方法在地球物理问题中的应用取得了长足发展。文中试图从理论推导到其在地幔对流中的应用对该方法进行系统阐述,并附例图加以说明。伴随数据同化方法的基础是扰动理论,将模型输出与观测值的差别归因于模型输入中存在的误差,而该输入误差可以通过输出误差的最小二乘对输入条件的一阶倒数(梯度)来表示,这个联系就称作伴随算子。非线性问题的反演需要用到多次迭代;对输入误差的预估程度会直接影响计算和结果收敛的速度。作为描述当前地幔结构最有力证据的地震层析成像技术的不断进步,不论是在区域还是全球尺度上,都为地幔对流的反演提供了一个出发点。通过进一步同化或者比较相关的地质学证据特别是地表动力沉降观测,地幔对流反演可以克服目前仍然存在的地幔动力学各参数的不确定性的影响,从而进一步揭示壳幔系统的动力学机制。讨论的一个实际的例子是如何使用该方法反推出Farallon板块于晚白垩世时期在北美板块下的平俯冲过程以及该研究所导致的地球物理学及地质学意义。  相似文献   

16.
A method for history matching of an in-house petroleum reservoir compositional simulator with multipoint flux approximation is presented. This method is used for the estimation of unknown reservoir parameters, such as permeability and porosity, based on production data and inverted seismic data. The limited-memory Broyden–Fletcher–Goldfarb–Shanno method is employed for minimization of the objective function, which represents the difference between simulated and observed data. In this work, we present the key features of the algorithm for calculations of the gradients of the objective function based on adjoint variables. The test example shows that the method is applicable to cases with anisotropic permeability fields, multipoint flux approximation, and arbitrary fluid compositions.  相似文献   

17.
In this work, we consider a new model for flow in a multiporosity shale gas reservoir constructed within the framework of an upscaling procedure where hydraulic fractures are treated as (\(n-1\)) interfaces (\(n=2,3\)). Within this framework, the hydrodynamics is governed by a new pressure equation in the shale matrix which is treated as a homogenized porous medium composed of organic matter (kerogen aggregates with nanopores) and inorganic impermeable solid (clay, calcite, quartz) separated from each other by a network of interparticle pores of micrometer size. The solution of the pressure equation is strongly influenced by the constitutive response of the retardation parameter and effective hydraulic conductivity where the former incorporates gas adsorption/desorption in the nanopores of the kerogen. By focusing our analyses on this nonlinear diffusion equation in the domain occupied by the shale matrix, an optimization strategy seated on the adjoint sensitivity method is developed to minimize a cost functional related to gas production and net present value in a single hydraulic fracture. The gradient of the objective functional computed with the adjoint formulation is explored to update the controlled pressure drop aiming to optimize production in a given window of time. The combination of the direct approach and gradient-based optimization using the adjoint formulation leads to the construction of optimal production scenarios under controlled pressure decline in the well. Numerical simulations illustrate the potential of the methodology proposed herein in optimizing gas production.  相似文献   

18.
Here we examined the light hydrocarbon and nitrogen content and isotopic signatures of eleven gaseous samples in order to evaluate lateral intra-reservoir continuity in a Venezuelan reservoir in the central area of Lake Maracaibo Basin. At least three single compartments, located in the northern-central and southern parts of the reservoir, are revealed by nitrogen concentrations showing clear step-like compositional breaks. The occurrence of step-breaks was also supported by the isotopic signature of individual hydrocarbon compounds in the range of C1–C4 alkanes. Samples presented only slight differences in N2 and hydrocarbon gas compositions within the central and northern parts of the reservoir, and therefore it was not possible to infer structural barriers in coherence with the geological section. Some oil bulk parameters corroborate gradual changes that provide additional information on the reservoir-filling history, thus suggesting that the lateral physical–chemical equilibrium of fluids was not reached in this reservoir.  相似文献   

19.
Aquifer systems are an important part of an integrated water resources management plan as foreseen in the European Union’s Water Framework Directive (2000). The sustainable development of these systems demands the use of all available techniques capable of handling the multidisciplinary features of the problems involved. The formulation and resolution of an optimization model is described for a planning and management problem based on the Palmela aquifer (Portugal), developed to supply a given number of demand centres. This problem is solved using one of the latest optimization techniques, the simulated annealing heuristic method, designed to find the optimal solutions while avoiding falling into local optimums. The solution obtained, providing the wells location and the corresponding pumped flows to supply each centre, are analysed taking into account the objective function components and the constraints. It was found that the operation cost is the biggest share of the final cost, and the choice of wells is greatly affected by this fact. Another conclusion is that the solution takes advantage of the economies of scale, that is, it points toward drilling a large capacity well even if this increases the investment cost, rather than drilling several wells, which together will increase the operation costs.  相似文献   

20.
In oil field development, the optimal location for a new well depends on how it is to be operated. Thus, it is generally suboptimal to treat the well location and well control optimization problems separately. Rather, they should be considered simultaneously as a joint problem. In this work, we present noninvasive, derivative-free, easily parallelizable procedures to solve this joint optimization problem. Specifically, we consider Particle Swarm Optimization (PSO), a global stochastic search algorithm; Mesh Adaptive Direct Search (MADS), a local search procedure; and a hybrid PSO–MADS technique that combines the advantages of both methods. Nonlinear constraints are handled through use of filter-based treatments that seek to minimize both the objective function and constraint violation. We also introduce a formulation to determine the optimal number of wells, in addition to their locations and controls, by associating a binary variable (drill/do not drill) with each well. Example cases of varying complexity, which include bound constraints, nonlinear constraints, and the determination of the number of wells, are presented. The PSO–MADS hybrid procedure is shown to consistently outperform both stand-alone PSO and MADS when solving the joint problem. The joint approach is also observed to provide superior performance relative to a sequential procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号