首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
Through solving the single electron equation of motion and the Fokker-Planck equation including the terms of electric field strength and ion-acoustic turbulence, we study the influence of the ion-acoustic wave on the electron acceleration in turbulent reconnecting current sheets. It is shown that the ion-acoustic turbulence which causes plasma heating rather than particle acceleration should be considered. With typical parameter values, the acceleration time scale is around the order of 10^-6 s, the accelerated electrons may have approximately a power-law distribution in the energy range 20 ~100 keV and the spectral index is about 3~10, which is basically consistent with the observed hard X-ray spectra in solar flares.  相似文献   

2.
The understanding of the gravitational properties of the quantum vacuum might be the next scientific revolution. It was recently proposed that the quantum vacuum contains the virtual gravitational dipoles; we argue that this hypothesis might be tested within the Solar System. The key point is that the quantum vacuum (“enriched” with the gravitational dipoles) induces a retrograde precession of the perihelion. It is obvious that this phenomenon might eventually be revealed by more accurate studies of orbits of planets and orbits of the artificial Earth satellites. However, we suggest that potentially the best “laboratory” for the study of the gravitational properties of the quantum vacuum is the recently discovered dwarf planet Eris with its satellite named Dysnomia; the distance of nearly 100 AU from the Sun makes it the unique system in which the precession of the perihelion of Dysnomia (around Eris) is strongly dominated by the quantum vacuum.  相似文献   

3.
Infrared spectra obtained from the Mariner 9 spacecraft during the 1971–1972 dust storm are used to derive information on the composition and particle size distribution of the dust and to study the time evolution of the storm. The dust is not composed of pure granite, basalt, basaltic glass, obsidian, quartz, andesite, or montmorillonite. The infrared spectra suggest that the dust is a mixture of materials, dominated by igneous silicates with >62;60% SiO2, or weathering products such as clay minerals, but the dust could possibly have a significant component of lower SiO2 materials such as basalt. Substantial quantities of carbonates, nitrates, or carbon suboxide are excluded from the mixture. All infrared, visible, and ultraviolet data on the Martian surface composition seem consistent with a mixture of basalt and clay minerals or high SiO2 igneous rocks, with a surface patina of oxides of iron. For all candidate compositions, the data are best matched with a size distribution that approximates a differential power law function of slope ?4. This size distribution is quite similar to terrestial size distributions in regions remote from sources of dust. The relative abundance of particles between 1- and 10-μm radius did not change during the Mariner 9 mission; thus suspended particles did not experience Stokes-Cunningham fallout but instead were supported by turbulence with an eddy diffusion coefficient, Ke ? 7 × 106cm2sec?1. The aerosol optical depth, standardized to 0.3-μm wavelength, varied from about 1.5 early in the mission to about 0.2 at Orbit 200.  相似文献   

4.
5.
The physical properties of the quiet solar chromosphere–corona transition region are studied. Here the structure of the solar atmosphere is governed by the interaction of magnetic fields above the photosphere. Magnetic fields are concentrated into thin tubes inside which the field strength is great. We have studied how the plasma temperature, density, and velocity distributions change along a magnetic tube with one end in the chromosphere and the other one in the corona, depend on the plasma velocity at the chromospheric boundary of the transition region. Two limiting cases are considered: horizontally and vertically oriented magnetic tubes. For various plasma densities we have determined the ranges of plasma velocities at the chromospheric boundary of the transition region for which no shock waves arise in the transition region. The downward plasma flows at the base of the transition region are shown to be most favorable for the excitation of shock waves in it. For all the considered variants of the transition region we show that the thermal energy transfer along magnetic tubes can be well described in the approximation of classical collisional electron heat conduction up to very high velocities at its base. The calculated extreme ultraviolet (EUV) emission agrees well with the present-day space observations of the Sun.  相似文献   

6.
Based on a dynamic model for turbulent convection, we investigate the effects of dissipation and anisotropy of the turbulence on the convective energy transport. We introduce two time scales to describe the dissipation of the turbulence, and approximate the anisotropy of the turbulence by Rotta‘s proposal of “return to isotropy”. The improved turbulence model results in an equation to determine the temperature gradient in the convection zone, which is of similar from as that of the MLT. We apply the improved MLT to solar modes, and find that the increases of the anisotropy and decreases of the dissipation of the turbulence reduce the value of the convection parameter α, because these process enhance the convective energy transfer rate. Compared with the observed solar p-mode frequencies, it is plausible that the dissipation of the turbulence in the solar convection zone should be fairly strong, while the degree of anisotropy of the turbulence plays a less significant role on the structure of the solar convection zone.  相似文献   

7.
We reveal sufficient evidence that the physical characteristics of Ap stars are related to binarity. The Ap star peculiarity [represented by the  Δ( V 1- G )  value and magnetic field strength] diminishes with eccentricity, and it may also increase with orbital period ( P orb). This pattern, however, does not hold for large orbital periods. A striking gap that occurs in the orbital period distribution of Ap binaries at 160–600 d might well mark a discontinuity in the above-mentioned behaviour. There is also an interesting indication that the Ap star eccentricities are relatively lower than those of corresponding B9–A2 normal binaries for   P orb>10 d  . All this gives serious support to the pioneering idea of Abt & Snowden concerning a possible interplay between the magnetism of Ap stars and their binarity. Nevertheless, we argue instead in favour of another mechanism, namely that it is binarity that affects magnetism and not the opposite, and suggest the presence of a new magnetohydrodynamical mechanism induced by the stellar companion and stretching to surprisingly large P orb.  相似文献   

8.
Photogrammetry is a low-cost, nondestructive approach for producing 3-D models of meteorites for the purpose of determining sample bulk density. Coupled with the use of a nondestructive magnetic susceptibility/electrical conductivity field probe, we present measurements for the interrogation of several physical properties, on a set of Antarctic meteorites. Photogrammetry is an effective technique over a range of sample sizes, with meteorite bulk density results that are closely comparable with literature values, determined using Archimedean glass bead or laser scanning techniques. The technique is completely noncontaminating and suitable for the analysis of rare or fragile samples, although there are limitations for analyzing reflective samples. It is also flexible, and, with variations in equipment setup, may be appropriate for samples of a wide range of sizes. X-ray computed tomography analyses of the same meteorite samples yielded slightly different bulk density results, predominantly for samples below 10 g, although the reason for this is unclear. Such analyses are expensive and potentially damaging to certain features of the sample (e.g., organic compounds), but may be useful in expanding the measurements to accommodate an understanding of internal voids within the sample, lending itself to measurement of grain density. Measurements of bulk density are valuable for comparisons with estimates of the bulk densities of asteroids that are suggested as meteorite parent bodies.  相似文献   

9.
We re-formulate the 3+1 GRMHD equations for the Schwarzschild black hole in a Veselago medium. Linear perturbation in rotating (non-magnetized and magnetized) plasma is introduced and their Fourier analysis is considered. We discuss wave properties with the help of wave vector, refractive index and change in refractive index in the form of graphs. It is concluded that some waves move away from the event horizon in this unusual medium. We conclude that for the rotating non-magnetized plasma, our results confirm the presence of Veselago medium while the rotating magnetized plasma does not provide any evidence for this medium.  相似文献   

10.
11.
Measurements of both solar irradiance and p-mode oscillation frequencies indicate that the structure of the Sun changes with the solar cycle. Balmforth, Gough & Merryfield investigated the effect of symmetrical thermal disturbances on the solar structure and the resulting pulsation frequency changes. They concluded that thermal perturbations alone cannot account for the variations in both irradiance and p-mode frequencies, and that the presence of a magnetic field affecting acoustical propagation is the most likely explanation of the frequency change, in the manner suggested earlier by Gough & Thompson and by Goldreich et al. Numerical simulations of Boussinesq convection in a magnetic field have shown that at high Rayleigh number the magnetic field can modify the preferred horizontal length scale of the convective flow.
Here, we investigate the effect of changing the horizontal length scale of convective eddies on the linewidths of the acoustic resonant mode peaks observed in helioseismic power spectra. The turbulent fluxes in these model computations are obtained from a time-dependent, non-local generalization of the mixing-length formalism. The modelled variations are compared with p-mode linewidth changes revealed by the analysis of helioseismic data collected by the Birmingham Solar-Oscillations Network (BiSON); these low-degree (low- l ) observations cover the complete falling phase of solar activity cycle 22. The results are also discussed in the light of observations of solar-cycle variations of the horizontal size of granules and with results from 2D simulations by Steffen of convective granules.  相似文献   

12.
Using a non-local theory of convection, we calculated the structure of the solar convection zone, paying special attention to the detailed structure of the lower overshooting zone. Our results show that an extended transition zone exists near the bottom of the convection zone, where the temperature gradient turns smoothly from adiabatic in the convection zone to radiative in solar interior. A super-radiative temperature region is found in the overshooting zone under the solar convection zone, where     ,     ,     and     . The extension of the super-radiative region (defined by     l is about 0.63  H P (0.053 R). A careful comparison of the distribution of adiabatic sound speed and density with the local one is carried out. It is found, strikingly, that the distribution of adiabatic sound speed and density of our model is roughly consistent with the results of reversion from solar oscillation observations.  相似文献   

13.
A set of smoothed temperature gradient profiles around overshooting layers at the solar convective zone bottom is considered. In classical local theories of convection the one point defined according to the Schwarzschild criterion is enough to describe a convective boundary. To get a sophisticated picture of the overshooting we use four points to compute the transition overshooting functions. Analyzing the transition gradient profiles we found that the overshooting convective flux may be either positive or negative. A negative overshooting flux appears in nonlocal convective theories and causes a steep temperature gradient profile. But we propose an evenly smoothed gradient which corresponds to a convective flux positive everywhere. To outline the effect of the temperature gradient on the solar oscillations the squared Brunt–Väisälä frequency N 2 is calculated. In local convective theories the N 2 profile shows the discontinuity of the first derivative at the convective boundary, while all smoothed profiles eliminate the break.  相似文献   

14.
An attempt is made to infer the structure of the solar convection zone from observedp-mode frequencies of solar oscillations. The differential asymptotic inversion technique is used to find the sound speed in the solar envelope. It is found that envelope models which use the Canuto-Mazzitelli (CM) formulation for calculating the convective flux give significantly better agreement with observations than models constructed using the mixing length formalism. This inference can be drawn from both the scaled frequency differences and the sound speed difference. The sound speed in the CM envelope model is within 0.2% of that in the Sun except in the region withr > 0.99R . The envelope models are extended below the convection zone, to find some evidence for the gravitational settling of helium beneath the base of the convection zone. It turns out that for models with a steep composition gradient below the convection zone, the convection zone depth has to be increased by about 6 Mm in order to get agreement with helioseismic observations.  相似文献   

15.
1 INTRODUCTIONThe maing-length theory (MLT) is the most commonly used approach to calculate convective energy transport in stars and other astrophysical situations. Based on the original idea ofPrandtl (1952) that turbulent parcels trallsfer heat in a similar way as molecules of gas do inthermal conduction, the MLT assumes that convection cells, drived by buoyancy, move thlougha ~ng length 1 and release the heat they carry when they merge with their environment. Themost widely adopted f…  相似文献   

16.
The discrepancy between observed and theoretical mode frequencies can be used to examine the reliability of the standard solar model as a faithful representation of solar real situation. With the help of an improved time-dependent convective model that takes into account contribution of the full spatial and temporal turbulent energy spectrum, we study the influence of turbulent pressure on structure and solar p-mode frequencies. For the radial modes we find that the Reynolds stress produces signification modifications in structure and p-mode spectrum. Compared with an adiabatic approximation, the discrepancy is largely removed by the turbulent correction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Turbulent convection models (TCMs) based on hydrodynamic moment equations are compared with the classical mixing-length theory (MLT) in solar models. The aim is to test the effects of some physical processes on the structure of the solar convection zone, such as the dissipation, diffusion and anisotropy of turbulence that have been ignored in the MLT. Free parameters introduced by the TCMs are also tested in order to find appropriate values for astrophysical applications. It is found that the TCMs usually give larger convective heat fluxes than the MLT does, and the heat transport efficiency is sensitively related to the dissipation parameters used in the TCMs. As a result of calibrating to the present solar values, our solar models usually have rather smaller values of the mixing length to local pressure scaleheight ratio than the standard solar model. The turbulent diffusion is found to have important effects on the structure of the solar convection zone. It leads to significantly lowered and expanded profiles for the Reynolds correlations, and a larger temperature gradient in the central part of the superadiabatic convection region but a smaller one near the boundaries of the convection zone. It is interesting to note that, due to a careful treatment of turbulence developing towards isotropic state, our non-local TCM results in radially dominated motion in the central part and horizontally dominated motion near the boundaries of the convection zone, just as what has been observed in many 3D numerical simulations. Our solar models with the TCMs give small but meaningful differences in the temperature and sound speed profiles compared with the standard solar model using the MLT.  相似文献   

18.
In the solar convection zone, acoustic waves are scattered by turbulent sound speed fluctuations. In this paper the scattering of waves by convective cells is treated using Rytov's technique. Particular care is taken to include diffraction effects, which are important, especially for high-degree modes that are confined to the surface layers of the Sun. The scattering leads to damping of the waves and causes a phase shift. Damping manifests itself in the width of the spectral peak of p-mode eigenfrequencies. The contribution of scattering to the linewidths is estimated and the sensitivity of the results to the assumed spectrum of the turbulence is studied. Finally, the theoretical predictions are compared with recently measured linewidths of high-degree modes.  相似文献   

19.
Based on the turbulent convection model(TCM),we investigate chemical mixing in the bottom overshooting region of the convective envelope of intermediatemass stars,focusing on its influence on the formation and extension of blue loops in the Hertzsprung-Russell(HR) diagram.A diffusive mixing model is adopted during the Red Giant Branch(RGB) phase.The properties of the blue loop are changed by modification of the element profiles above the H-burning shell,which results from the incomplete mixing in the bottom...  相似文献   

20.
The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2?–?10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号