首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional distribution and chemical composition of massive and disseminated chromitites through a Platreef sequence and along a strike distance of over ∼20 km were investigated to correlate them both within the framework of the northern limb and to the eastern and western limbs of the Bushveld Complex. The chromitite layers and seams of the Platreef form two main chromite-bearing zones: the Upper Chromitite that occurs as two to three discontinuous seams in feldspathic pyroxenite at approximately 20 m below the Platreef top contact and the Lower Chromitite that is composed of multiple seams in feldspathic harzburgite, pyroxenite and norite close to the bottom contact of the Platreef with footwall. Electron micro-probe analyses reveal that the chemical composition of chromite depends on the host rock type. Norite and pyroxenite host chromite with the highest Cr2O3 content while harzburgite-hosted chromites are Cr and Mg poor. The wide range in chromite compositions is explained by the influence of late-magmatic processes including post-cumulus growth and re-equilibration, interaction with fluid- and sulphide-saturated magmatic liquid and contact metamorphism. Each of these processes is characterised by its own distinct geochemical signature, but generally they lead to a decrease in Mg and Al and an increase in both di- and tri-valent Fe in the chromite. The occurrence of chromitite locally on the different distance from the contact between the upper Platreef sills and the overlying Main Zone magma suggests erosion of the upper Platreef by the Main Zone as it was emplaced. The localisation of chromitites supports an independent development of the northern limb during the Critical Zone emplacement although the chemical composition of chromite and co-existing silicates from ultramafic rocks suggest a Critical Zone affinity with the eastern and western limbs of the Bushveld Complex.  相似文献   

2.
Summary All analysed massive chromitite layers of the Critical Zone of the Bushveld Complex are enriched in PGE's over their silicate host rocks. The concentration factor has been found to increase with stratigraphic height. The PGE-distribution of the Lower Group and Middle Group chromitites shows a systematic relationship to the chromite mineralogy of the chromitites. The LG1- to LG4-chromitite layers are characterized by the dominance of the Ru-group elements (Ru, Os, Ir). The LG5- to LG7-chromitite layers contain almost equal amounts of the two PGE-groups and in the MG-chromitites the elements of the Pt-group (Pt, Pd, Rh) are the most abundant. The chromite mineralogy subdivides the chromitites in a similar way.
PGE-Verteilung in den Lower und Middle Group Chromititen des westlichen Bushveld Complexes
Zusammenfassung Alle untersuchten massiven Chromitite der Critical Zone des Bushveld Complexes sind im Hangenden ihrer silikatischen Nebengesteine an PGE's angereichert. Es stellte sich heraus, dass der Konzentrationsfaktor innerhalb der stratigraphischen Abfolge zum Hangenden hin zunimmt.Die PGE Verteilung in den Lower und Middle Group Chromititen ändert sich systematisch mit der Mineralogie der Chromite in den Chromititen. Die LG 1 bis LG 4 Chromititlagen sind durch ein Vorherrschen der Elemente der Ru-Gruppe (Ru, Os, Ir) gekennzeichnet.Die LG 5 bis LG 7 Chromititlagen enthalten beinahe die gleichen Gehalte an Elementen beider PGE-Gruppen. In den MG-Chromititen sind die Elemente der Pt Gruppe (Pt, Pd, Rh) am weitesten verbreitet. Mit Hilfe der Mineralogie der Chromite können die Chromitite auf ähnliche Weise untergliedert werden.


With 11 Figures  相似文献   

3.
Origin of the UG2 chromitite layer, Bushveld Complex   总被引:3,自引:0,他引:3  
Chromitite layers are common in large mafic layered intrusions.A widely accepted hypothesis holds that the chromitites formedas a consequence of injection and mixing of a chemically relativelyprimitive magma into a chamber occupied by more evolved magma.This forces supersaturation of the mixture in chromite, whichupon crystallization accumulates on the magma chamber floorto form a nearly monomineralic layer. To evaluate this and othergenetic hypotheses to explain the chromitite layers of the BushveldComplex, we have conducted a detailed study of the silicate-richlayers immediately above and below the UG2 chromitite and anotherchromitite layer lower in the stratigraphic section, at thetop of the Lower Critical Zone. The UG2 chromitite is well knownbecause it is enriched in the platinum-group elements and extendsfor nearly the entire 400 km strike length of the eastern andwestern limbs of the Bushveld Complex. Where we have studiedthe sequence in the central sector of the eastern Bushveld,the UG2 chromitite is embedded in a massive, 25 m thick plagioclasepyroxenite consisting of 60–70 vol. % granular (cumulus)orthopyroxene with interstitial plagioclase, clinopyroxene,and accessory phases. Throughout the entire pyroxenite layerorthopyroxene exhibits no stratigraphic variations in majoror minor elements (Mg-number = 79·3–81·1).However, the 6 m of pyroxenite below the chromitite (footwallpyroxenite) is petrographically distinct from the 17 m of hangingwall pyroxenite. Among the differences are (1) phlogopite, K-feldspar,and quartz are ubiquitous and locally abundant in the footwallpyroxenite but generally absent in the hanging wall pyroxenite,and (2) plagioclase in the footwall pyroxenite is distinctlymore sodic and potassic than that in the hanging wall pyroxenite(An45–60 vs An70–75). The Lower Critical Zone chromititeis also hosted by orthopyroxenite, but in this case the rocksabove and below the chromitite are texturally and compositionallyidentical. For the UG2, we interpret the interstitial assemblageof the footwall pyroxenite to represent either interstitialmelt that formed in situ by fractional crystallization or chemicallyevolved melt that infiltrated from below. In either case, themelt was trapped in the footwall pyroxenite because the overlyingUG2 chromitite was less permeable. If this interpretation iscorrect, the footwall and hanging wall pyroxenites were essentiallyidentical when they initially formed. However, all the modelsof chromitite formation that call on mixing of magmas of differentcompositions or on other processes that result in changes inthe chemical or physical conditions attendant on the magma predictthat the rocks immediately above and below the chromitite layersshould be different. This leads us to propose that the Bushveldchromitites formed by injection of new batches of magma witha composition similar to the resident magma but carrying a suspendedload of chromite crystals. The model is supported by the commonobservation of phenocrysts, including those of chromite, inlavas and hypabyssal rocks, and by chromite abundances in lavasand peridotite sills associated with the Bushveld Complex indicatingthat geologically reasonable amounts of magma can account foreven the massive, 70 cm thick UG2 chromitite. The model requiressome crystallization to have occurred in a deeper chamber, forwhich there is ample geochemical evidence. KEY WORDS: Bushveld complex; chromite; crystal-laden magma; crustal contamination; magma mixing; UG2 chromitite  相似文献   

4.
Halogen-bearing minerals, especially apatite, are minor butubiquitous phases throughout the Bushveld Complex. Interstitialapatite is near end-member chlorapatite below the Merensky reef(Lower and Critical Zones) and has increasingly fluorian compositionswith increasing structural height above the reef (Main and UpperZones). Cl/F variations in biotite are more limited owing tocrystal-chemical controls on halogen substitution, but are alsoconsistent with a decrease in the Cl/F ratio with structuralheight in the complex. A detailed section of the upper LowerZone to the Critical Zone is characterized by an upward decreasein sulfide mode from 0·01–0·1% to trace–0·001%.Cu tends to correlate with other incompatible elements in mostsamples, whereas the platinum-group elements (PGE) can behaveindependently, particularly in the Critical Zone. The decreasein the Cl/F ratio of apatite in the Main Zone is associatedwith a shift to more radiogenic Sr isotopic signature, implyingthat the unusually Cl-rich Lower and Critical Zones are notdue to assimilation of crustal rocks. Nor is the Main Zone moreCl rich where it onlaps the country rocks of the floor, suggestinglittle if any Cl was introduced by infiltrating country rockfluids. Instead, the results are consistent with other studiesthat suggest Bushveld volatile components are largely magmatic.This is also supported by apatite–biotite geothermometry,which gives typical equilibrium temperatures of 750°C. Theincreasingly fluorian apatite with height in the Upper Zonecan be explained by volatile saturation and exsolved a Cl-richvolatile phase. The high Cl/F ratio inferred for the Lower andCritical Zone magma(s) and the evidence for volatile saturationduring crystallization of the Upper Zone indicate the Lowerand Critical Zones magma(s) were unusually volatile rich andcould easily have separated a Cl-rich fluid phase during solidificationof the interstitial liquid. The stratigraphic distribution ofS, Cu and the PGE in the Critical Zone cannot readily be explainedeither by precipitation of sulfide as a cotectic phase or asa function of trapped liquid abundance. Evidence from potholesand the PGE-rich Driekop pipe of the Bushveld Complex implythat migrating Cl-rich fluids mobilized the base and preciousmetal sulfides. We suggest that the distribution of sulfideminerals and the chalcophile elements in the Lower and CriticalZones reflects a general process of vapor refining and chromatographicseparation of these elements during the evolution and migrationof a metalliferous, Cl-rich fluid phase. KEY WORDS: Bushveld Complex; chlorine; platinum-group elements; layered intrusions  相似文献   

5.
A new geological map of the Rustenburg Layered Suite south of the Ysterberg–Planknek fault of the northern/Potgietersrus limb of the Bushveld Complex is presented, displaying features that were not available for publication in the past and are considered contributing to the complexity of this region. The northern limb is known for the Platreef, atypical mafic lithologies in sections of the layered sequence and the unusual development of the ultramafic Lower Zone as satellite bodies or offshoots at the base of the intrusion. The outcrop and suboutcrop pattern of Lower Zone Grasvally body and its relation to the surrounding geology of Main Zone, Critical Zone, and floor rocks is described. The extent of the base metal sulfide (BMS) and platinum-group element (PGE)-mineralized cyclic unit 11 of the Drummonlea harzburgite–chromitite sub zone is shown. Only that which is considered to be the equivalents of the mafic Upper Critical Zone has thus far been traced south of Potgietersrus/Mokopane. The Platreef is traced from the farm Townlands and further northwards. The presence of Platreef proper south of Potgietersrus/Mokopane appears to be speculative. However, Merensky Reef, UG 2, and equivalent layers outcrop or were intersected to the south of the town. The Kleinmeid Syncline comprising Main Zone/Critical Zone layers and its structure is discussed. The lateral lithological transfomation of the Merensky Reef/UG 2 and equivalent layers south of the Ysterberg–Planknek fault to Platreef north of this fault is recorded. Attenuation of both the Main Zone and Upper Zone is observed from the northwest towards the town and resulted in only the lower units being developed. The lateral change of Main Zone and Upper Zone lithologies from the northwest towards the town is described. The PGE and BMS economic potential south of the town are briefly tabulated.  相似文献   

6.
The northern lobe of the Bushveld Complex is currently a highly active area for platinum-group element (PGE) exploration. This lobe hosts the Platreef, a 10–300-m thick package of PGE-rich pyroxenites and gabbros, that crops out along the base of the lobe to the north of Mokopane (formerly Potgietersrus) and is amenable to large-scale open pit mining along some portions of its strike. An early account of the geology of the deposit was produced by Percy Wagner where he suggested that the Platreef was an equivalent PGE-rich layer to the Merensky Reef that had already been traced throughout the eastern and western lobes of the Bushveld Complex. Wagner’s opinion remains widely held and is central to current orthodoxy on the stratigraphy of the northern lobe. This correlates the Platreef and an associated cumulate sequence that includes a chromitite layer—known as the Grasvally norite-pyroxenite-anorthosite (GNPA) member—directly with the sequence between the UG2 chromitite and the Merensky Reef as it is developed in the Upper Critical Zone of the eastern and western Bushveld. Implicit in this view of the magmatic stratigraphy is that similar Critical Zone magma was present in all three lobes prior to the development of the Merensky Reef and the Platreef. However, when this assumed correlation is examined in detail, it is obvious that there are significant differences in lithologies, mineral textures and chemistries (Mg# of orthopyroxene and olivine) and the geochemistry of both rare earth elements (REE) and PGE between the two sequences. This suggests that the prevailing interpretation of the stratigraphy of the northern lobe is not correct. The “Critical Zone” of the northern lobe cannot be correlated with the Critical Zone in the rest of the complex and the simplest explanation is that the GNPA-Platreef sequence formed from a separate magma, or mixture of magmas. Chilled margins of the GNPA member match the estimated initial composition of tholeiitic (Main Zone-type) magma rather than a Critical Zone magma composition. Where the GNPA member is developed over the ultramafic Lower Zone, hybrid rocks preserve evidence for mixing between new tholeiitic magma and existing ultramafic liquid. This style of interaction and the resulting rock sequences are unique to the northern lobe. The GNPA member contains at least seven sulphide-rich horizons with elevated PGE concentrations. Some of these are hosted by pyroxenites with similar mineralogy, crystallisation sequences and Pd-rich PGE signatures to the Platreef. Chill zones are preserved in the lowest Main Zone rocks above the GNPA member and the Platreef and this suggests that both units were terminated by a new influx of Main Zone magma. This opens the possibility that the Platreef and GNPA member merge laterally into one another and that both formed in a series of mixing/quenching events involving tholeiitic and ultramafic magmas, prior to the main influx of tholeiitic magma that formed the Main Zone.  相似文献   

7.
The Lower Zone of the Eastern Bushveld Complex in the Olifants River Trough   总被引:4,自引:4,他引:4  
The Lower Zone of the Eastern Bushveld Complex in the OlifantsRiver Trough reaches 1584 m in thickness and is divisible intoBasal subzone, Lower Bronzitite, Harzburgite subzone, and UpperBronzitite. The Lower Zone is directly and conformably overlainby the Critical Zone; there is no break between the two. The principal cumulus minerals in the Lower Zone are bronziteand olivine. Chromite is an accessory cumulus mineral in peridotites,especially in the Harzburgite subzone, and cumulus plagioclaseoccurs in two thin units in the Basal subzone. Elsewhere plagioclase,with or without chromian augite, is postcumulus in origin. Electron microprobe analyses show that the range in En and Focontents of bronzite and olivine, respectively, is only a fewper cent over the entire rock sequence. Highest values of bothare found in the Harzburgite subzone. From modal and mineralanalyses the bulk composition of the Lower Zone (wt. per cent)is calculated as SiO2—53.94, TiO2—0.08, Cr2O3—0.55,V2O3—0.01, Al2O3—2.64, NiO—0.09, FeO (totalFe as FeO)—9.62, MnO—0.20, MgO—31.72, CaO—1.48,K2O—0.1, Na2O—0.13. This composition is unlike thatof any magma type, indicating that the Lower Zone is indeeda pile of crystal cumulates. From the data for the Lower Zone, together with available datafor the Critical, Main, and Upper Zones, the average MgO contentof the Eastern Bushveld Complex is calculated as about 13 percent, the Cr content as in excess of 1000 ppm. Even if the Complexformed from a single body of magma, the magma cannot have beentholeiitic, but rather olivine tholeiitic or picritic. An hypothesis of evolution of the Lower Zone is presented. Shiftsin total pressure are inferred to have been a major factor inproducing the succession of rock types and in producing theextraordinarily persistent chromitites of the overlying CriticalZone. It is suggested that the extraordinary richness in chromiteof the Bushveld is related to its formation not from tholeiiticmagma, but from more Mg-rich, chromium-rich magma drawn froma deeper level of the mantle than that which has yielded thetholeiitic basalts.  相似文献   

8.
The Merensky Reef and the underlying Upper Group 2 chromitite layer, in the Critical Zone of the Bushveld Complex, host much of the world’s platinum-group element (PGE) mineralization. The genesis is still debated. A number of features of the Merensky Reef are not consistent with the hypotheses involving mixing of magmas. Uniform mixing between two magmas over an area of 150 by 300 km and a thickness of 3–30 km seems implausible. The Merensky Reef occurs at the interval where Main Zone magma is added, but the relative proportions of the PGE in the Merensky Reef are comparable to those of the Critical Zone magma. Mineral and isotopic evidence in certain profiles through the Merensky Unit suggest either mixing of minerals, not magmas, and in one case, the lack of any chemical evidence for the presence of the second magma. The absence of cumulus sulphides immediately above the Merensky Reef is not predicted by this model. An alternative model is proposed here that depends upon pressure changes, not chemical processes, to produce the mineralization in chromite-rich and sulphide-rich reefs. Magma was added at these levels, but did not mix. This addition caused a temporary increase in the pressure in the extant Critical Zone magma. Immiscible sulphide liquid and/or chromite formed. Sinking sulphide liquid and/or chromite scavenged PGE (as clusters, nanoparticles or platinum-group minerals) from the magma and accumulated at the floor. Rupturing of the roof resulted in a pressure decrease and a return to sulphur-undersaturation of the magma.  相似文献   

9.
Detailed mineralogical investigations of chromite in the Lower and Critical Zones in the northwestern sector of the Bushveld Complex have revealed significant compositional variations with regard to modal proportions, host-rock lithology, and stratigraphic height. Superimposed on these variations are long-range systematic trends in the composition of chromite in the massive layers. These long-range trends are closely linked with the evolution of the silicate cumulates. The massive chromitite layers are divided into two types. Type 1 comprises the chromitites hosted entirely within ultramafic cumulates, while Type 2 chromitites are within cyclic units in which plagioclase cumulates occur. The types are also distinguishable by their respective contents of platinum-group elements (PGEs) and distribution patterns thereof, viz. the ratios between Ru + Os + Ir and Pt + Pd + Rh, or relative element proportions, both of which display a systematic change with height in accordance with chromite composition. The relation between silicate geochemistry, chromite composition, and PGE tenor, leads to the development of a model explaining the formation of PGE-mineralized, sulphide-poor chromitite layers in the Critical Zone of the Bushveld Complex. Presented at the International Conference for Applied Mineralogy, Pretoria, September 1991  相似文献   

10.
This article reports a study of chromitites from the LG-1 to the UG-2/3 from the Bushveld Complex. Chromite from massive chromitite follows two compositional trends on the basis of cation ratios: trend A—decreasing Mg/(Mg + Fe) with increasing Cr/(Cr + Al); trend B—decreasing Mg/(Mg + Fe) with decreasing Cr/(Cr + Al). The chromitites are divided into five stages on the basis of which trend they follow and the data of Eales et al. (Chemical Geology 88:261–278, 1990) on the behaviour of the Mg/Fe ratio of the pyroxene and whole rock Sr isotope composition of the environment in which they occur. Following Eales et al. (Chemical Geology 88:261–278, 1990), the different characteristics of the stages are attributed to the rate at which new magma entered the chamber and the effect of this on aAl2O3 and, in the case of stage 5, the appearance of cumulus plagioclase buffering the aAl2O3. The similarity of PGE profiles across the MG-3 and MG-4 chromitites that are separated laterally by up to 300 km and the variation in V in the UG-2 argue that the chromitites have largely developed in situ. Modelling using the programme MELTS shows that increase in pressure, mixing of primitive and fractionated magma, felsic contamination of primitive magma or addition of H2O do not promote crystallization of spinel before orthopyroxene (in general they hinder it) and that the Cr2O3 content of the magma was of the order of 0.25 wt.%. Less than 20% of the chromite in the magma is removed before orthopyroxene joins chromite, which implies a >13-km thickness of magma for the Critical Zone. It is suggested that the large excess of magma has escaped up marginal structures such as the Platreef. The PGE profile of chromitites depends on whether sulphide accumulated or not along with chromite. Modelling shows that contamination of Critical Zone magma with a felsic melt will induce sulphide immiscibility, although not chromite precipitation. The LG-1 to LG-4 chromitites developed without sulphide, whilst those from the LG-5 upwards had associated liquid sulphide. Much of the sulphide originally in the LG-5 and above has been destroyed as a result of reaction with the chromite.  相似文献   

11.
R. Grant Cawthorn   《Lithos》2007,95(3-4):381-398
Large layered intrusions are almost certainly periodically replenished during their protracted cooling and crystallization. The exact composition(s) of the replenishing magma(s) in the case of the Bushveld Complex, South Africa, has been debated, mainly on the basis of major element composition and likely crystallization sequences. The intrusion is dominated by orthopyroxene and plagioclase, and so their Cr and Sr contents, and likely partition coefficient values, can be used to re-investigate the appropriateness of the various proposed parental magmas. One magma type, with about 12% MgO, 1000 ppm Cr and 180 ppm Sr, can explain the genesis of the entire Lower and Critical Zones. A number of other magma compositions proposed to produce the Critical Zone fail to match these trace-element constraints by being too poor in Cr. A fundamentally different magma type was added at the base of the Main Zone, but none of the proposed compositions is consistent with the trace-element requirements. Specifically, the Cr contents are higher than predicted from pyroxene compositions. A further geological constraint is demonstrated from a consideration of the Cr budget at this level. There is an abrupt decrease from about 0.4% to 0.1% Cr2O3 in orthopyroxene across this Critical Zone–Main Zone transition. No realistic proportions of mixing between the residual magma at the top of the Critical Zone and any proposed added magma composition can have produced a composition that could have crystallized these low-Cr orthopyroxenes. Instead, it is suggested that the resident magma from the Upper Critical Zone was expelled from the chamber, possibly as sills into the country rocks, during influx of a dense, differentiated magma. Near the level of the Pyroxenite Marker in the Main Zone, there is further addition of a ferrobasaltic magma, with 6% MgO, 111 ppm Cr and 350 ppm Sr, that is consistent with the geochemical requirements.  相似文献   

12.
In the present study, we document the nature of contact-style platinum-group element (PGE) mineralization along >100 km of strike in the northern lobe of the Bushveld Complex. New data from the farm Rooipoort are compared to existing data from the farms Townlands, Drenthe, and Nonnenwerth. The data indicate that the nature of the contact-style mineralization shows considerable variation along strike. In the southernmost portion of the northern Bushveld, on Rooipoort and adjoining farms, the mineralized sequence reaches a thickness of 700 m. Varied-textured gabbronorites are the most common rock type. Anorthosites and pyroxenites are less common. Chromitite stringers and xenoliths of calcsilicate and shale are largely confined to the lower part of the sequence. Layering is locally prominent and shows considerable lateral continuity. Disseminated sulfides may reach ca. 3 modal % and tend to be concentrated in chromitites and melanorites. Geochemistry indicates that the rocks can be correlated with the Upper Critical Zone. This model is supported by the fact that, in a down-dip direction, the mineralized rocks transform into the UG2-Merensky Reef interval. Between Townlands and Drenthe, the contact-mineralized sequence is thinner (up to ca. 400 m) than in the South. Chromitite stringers occur only sporadically, but ultramafic rocks (pyroxenites, serpentinites, and peridotites) are common. Xenoliths of calcsilicate, shale, and iron formation are abundant indicating significant assimilation of the floor rocks. Sulfides may locally form decimeter- to meter-sized massive lenses. PGE grades tend to be higher than elsewhere in the northern Bushveld. The compositions of the rocks show both Upper Critical Zone and Main Zone characteristics. At Nonnenwerth, the mineralized interval is up to ca. 400 m thick. It consists largely of varied-textured gabbronorites, with minor amounts of igneous ultramafic rocks and locally abundant and large xenoliths of calcsilicate. Layering is mostly weakly defined and discontinuous. Disseminated sulfides (<ca. 3 modal %) occur throughout much of the sequence. Geochemistry indicates that the rocks crystallized mainly from tholeiitic magma and thus have a Main Zone signature. The implication of our findings is that contact-style PGE mineralization in the northern lobe of the Bushveld Complex cannot be correlated with specific stratigraphic units or magma types, but that it formed in response to several different processes. At all localities, the magmas were contaminated with the floor rocks. Contamination with shale led to the addition of external sulfur to the magma, whereas contamination with dolomite may have oxidized the magma and lowered its sulfur solubility. In addition to contamination, some of the magmas, notably those of Upper Critical Zone lineage present at the south-central localities, contained entrained sulfides, which precipitated during cooling and crystallization.  相似文献   

13.
The layered Bushveld Complex hosts a number of chromitite layers, which were found to contain significant amounts of zircon grains compared with adjacent silicate rocks. Cathodoluminescent-dark, partially metamict cores and transparent rims of composite zircon grains were analyzed for trace elements with SIMS and LA-ICPMS techniques. The cores are enriched in REE, Y, Th and U and are characterized by distinctly flatter REE patterns in contrast to those of the rims and transparent homogenous crystals. Zircon from the different stratigraphic units has specific Th/U ratios, the highest of which (1.5–4) occurs in a Merensky Reef zircon core. The Ti content of Bushveld zircon ranges from 12 to 52 ppm correlating to a crystallization temperature range of 760–930 °C. The geochemical characteristics of the first zircon generation are consistent with its high-temperature crystallization as the first major U, Th and REE acceptor from a highly-evolved residue of the high-Mg basalt magma, whereas the rims and coreless crystals have crystallized from percolating intercumulus liquid of new influx of the same magma. U-Pb SHRIMP dating of zircon cores and rims does not reveal a distinguishable difference between their ages indicating the absence of inherited zircon. Concordia ages of 2,051?±?9 Ma (2σ, MSWD?=?0.1) and 2,056?±?5 Ma (2σ, MSWD?=?0.05) for zircons from the Merensky Reef and the Upper Platreef located equally near the top of the Critical Zone are in agreement with published ages for the Merensky Reef. Zircon from the deeper-seated Lower Group, Middle Group and Lower Platreef chromitites yields younger concordia ages that may reflect prolonged late-stage volatile activity.  相似文献   

14.
The thickness of the crystal mush on magma chamber floors can be constrained using the offset between the step-change in the median value of dihedral angles formed at the junctions between two grains of plagioclase and a grain of another phase (typically clinopyroxene, but also orthopyroxene and olivine) and the first appearance or disappearance of the liquidus phase associated with the step-change in median dihedral angle. We determined the mush thickness in the Rustenburg Layered Suite of the Bushveld Complex at clinopyroxene-in (in Lower Main Zone) and magnetite-in (in Upper Zone). We also examined an intermittent appearance of cumulus apatite in Upper Zone, using both the appearance and disappearance of cumulus apatite. In all cases, the mush thickness does not exceed 4 m. These values are consistent with field observations of a mechanically rigid mush at the bases of both magnetitite and chromitite layers overlying anorthosite. Mush thickness of the order of a few metres suggests that neither gravitationally-driven compaction nor compositional convection within the mush layer is likely to have been important processes during solidification: adcumulates in the Bushveld are most likely to have formed at the top of the mush during primary crystallisation. Similarly, it is unlikely either that migration of reactive liquids occurs through large stretches of stratigraphy, or that layering is formed by mechanisms other than primary accumulation.  相似文献   

15.
One of the most puzzling features of the UG1 chromitite layers in the famous exposures at Dwars River, Eastern Bushveld Complex, is the bifurcation, i.e. convergence and divergence of layers along strike that isolate lenses of anorthosite. The bifurcations have been variously interpreted as resulting from: (1) the intermittent accumulation of plagioclase on the chamber floor as lenses, terminated by crystallization of continuous chromitite layers (the depositional model); (2) late-stage injections of chromite mush or chromite-saturated melt along anastomosing fractures that dismembered semi-consolidated plagioclase cumulates (the intrusive model); (3) post-depositional deformation of alternating plagioclase and chromite cumulates, resulting in local amalgamation of chromitite layers and anorthosite lenses that wedge out laterally (the deformational model). None of these hypotheses account satisfactorily for the following field observations: (a) wavy and scalloped contacts between anorthosite and chromitite layers; (b) abrupt lateral terminations of thin anorthosite layers within chromitite; (c) in situ anorthosite inclusions with highly irregular contacts and delicate wispy tails within chromitite; many of these inclusions are contiguous with footwall and hanging wall cumulates; (d) transported anorthosite fragments enclosed by chromitite; (e) disrupted anorthosite and chromitite layers overlain by planar chromitite; (f) protrusions of chromitite into underlying anorthosite; (g) merging of chromitite layers around anorthosite domes. We propose a novel hypothesis that envisages basal flows of new dense and superheated magma that resulted in intense thermo-chemical erosion of the temporary floor of the chamber. The melting and dissolution of anorthosite was patchy and commonly inhibited by chromitite layers, resulting in lens-like remnants of anorthosite resting on continuous layers of chromitite. On cooling, the magma crystallized chromite on the irregular chamber floor, draping the remnants of anorthosite and merging with pre-existing chromitite layers excavated by erosion. With further cooling, the magma crystallized chromite-bearing anorthosite. Emplacement of multiple pulses of magma led to repetition of this sequence of events, resulting in a complex package of anorthosite lenses and bifurcating chromitite layers. This hypothesis is the most satisfactory explanation for most of the features of this enigmatic igneous layering in the Bushveld Complex.  相似文献   

16.
We report the first Nd isotopic data on the cumulate rocks of the Bushveld Complex, South Africa. We analysed 17 whole-rock samples covering 4700 m of stratigraphy through the Lower, Critical and Main Zones of the intrusion at Union Section, north-western Bushveld Complex. The basal ultramafic portions of the complex have markedly higher ɛNd(T) (−5.3 to −6.0) than the gabbronoritic Main Zone (ɛNd(T) −6.4 to −7.9). The rocks of the Upper Critical Zone have intermediate values. These results are in agreement with new Nd isotope data on marginal rocks and sills in the floor of the complex that are generally interpreted as representing chilled parental magmas, and with published Sr isotopic data, all of which show a larger crustal component in the upper part of the intrusion. In contrast, the concentrations of many highly incompatible trace elements are decoupled from the isotopic signatures. The basal portions of the complex have higher ratios of incompatible to compatible trace elements than the upper portions. The variations of isotopic and trace-element compositions are interpreted in terms of a change in the nature of the crustal material that contaminated Bushveld magmas. Those magmas that fed into the lower part of the complex had assimilated a relatively small amount of incompatible trace-element-rich partial melt of upper crust, whereas magmas parental to the upper part of the complex had assimilated a higher proportion of the incompatible trace-element-poor residue of partial melting. Received: 5 October 1999 / Accepted: 7 July 2000  相似文献   

17.
Discordant ultramafic pipes cut most of the layered sequence of the Bushveld Complex. We have studied one pipe in detail, the Tweefontein pipe, which cuts the Critical Zone, eastern Bushveld Complex, because it is well-exposed in a new road cutting. Field relations suggest that these pipes were emplaced while the layered rocks were extremely hot and incapable of brittle failure. The existence of displaced chromitite and anorthosite fragments in this discordant body is suggestive of an intrusive magmatic, rather than metasomatic, mode of emplacement. Initial Sr isotopic ratios of plagioclase from the pipe are in the range 0.7073 to 0.7079, which contrast with typical ratios of 0.7055 to 0.7065 for the Critical Zone, and >0.708 for Main Zone. These data preclude an origin for the pipe as residual magmas from the adjacent layered rocks. The compositions of, and extensive exsolution in, pyroxenes in the pipe indicate temperatures of formation comparable to those of the layered sequence itself, and that they underwent slow cooling comparable to the surrounding layered rocks, such that they both have similar closure temperatures. Preferential replacement of leuconoritic layers suggests a temperature of emplacement in excess of the plagioclase–pyroxene cotectic temperature. The per mil δ18O difference between plagioclase and pyroxene (Δplag–px) for samples from within the pipes ranges from 0.4 to 1.0, and averages 0.7 (for nine pairs), compared to Δplag–px of 0.4 to 0.6 for host rocks, again consistent with magmatic temperatures of formation. Oxygen isotope ratios for plagioclase and pyroxene in the pipes and layered host rocks are comparable, and preclude a significant fluid contribution from metamorphosed sediments in the floor of the Bushveld Complex in the formation of the primary mineralogy. The presence of hornblende, and occasional higher Δplag–px values than in the normal layered sequence rocks suggest lower temperature equilibration in the pipe, probably in the presence of a fluid. Higher absolute δ18O values for both minerals in a few of the pipe and host samples suggest reaction with a later fluid. These discordant ultramafic pipes are considered to form by emplacement of magma batches, which are Sr-isotopically distinct from those which produced the adjacent layered rocks of the Bushveld Complex, but were nevertheless extremely closely related in time to the main intrusive events. Dissolution of host rocks, rather than purely mechanical dilation, provided the space for pipe emplacement. However, the pipe may have acted ultimately as a channelway for low-temperature hydrothermal fluids related to later faulting in the immediate vicinity. Received: 10 October 1998 / Accepted: 22 May 2000  相似文献   

18.
This study of a part of the lower Critical Zone, Farm Ruighoek,Western Bushveld, is based mainly on selected drill core samplesfrom two sections approximately 1.2 miles apart. The 1300-ftsequence investigated consists of pyroxenites with two harzburgitebands and sixteen chromitite seams. Results obtained are consistent with the hypothesis that evolutionof the sequence was a cyclic process in which cumulate mineralscrystallized in a zone near the floor of accumulation undergenerally quiescent conditions. Compositional changes of cumulateminerals reflect the influence of a separate intrusion of undifferentiatedparent magma or refusion at depth of crystals formed near thetop of the magma chamber. Interstitial mineral content and plagioclasecomposition reflect changing rates of crystal accumulation.Orthopyroxene grain size and sorting coefficient reflect, inpart, the vertical distance over which crystallization occurred.Textural features and contact relations of chromitite seamsare consistent with the hypothesis that most chromite crystallizedfrom the silicate magma and accumulated during a period of littleor no crystallization of silicate minerals. It is postulatedthat this loose crystal assemblage was enriched by co-accumulationand partial in situ crystallization of chromite-rich immiscibleliquid. Textural, mineralogical, and compositional changes infootwalls and hanging walls of chromitite seams are thoughtto reflect in situ reactions.  相似文献   

19.
The formation of anorthosites in layered intrusions has remained one of petrology's most enduring enigmas. We have studied a sequence of layered chromitite, pyroxenite, norite and anorthosite overlying the UG2 chromitite in the Upper Critical Zone of the eastern Bushveld Complex at the Smokey Hills platinum mine. Layers show very strong medium to large scale lateral continuity, but abundant small scale irregularities and transgressive relationships. Particularly notable are irregular masses and seams of anorthosite that have intrusive relationships to their host rocks. An anorthosite layer locally transgresses several 10 s of metres into its footwall, forming what is referred to as a "pothole" in the Bushveld Complex. It is proposed that the anorthosites formed from plagioclase-rich crystal mushes that originally accumulated at or near the top of the cumulate pile. The slurries were mobilised during tectonism induced by chamber subsidence, a model that bears some similarity to that generally proposed for oceanic mass flows. The anorthosite slurries locally collapsed into pull-apart structures and injected their host rocks. The final step was down-dip drainage of Fe-rich intercumulus liquid, leaving behind anorthosite adcumulates.  相似文献   

20.
Analyses of stream sediment and soil samples from the Bushveld Complex, South Africa have revealed enhanced precious metal concentrations, which can be related both to mining activities and the presence of hidden concentrations of platinum-group elements (PGEs) and gold. The economically important PGE deposits hosted by the Upper Critical Zone of the Rustenburg Layered Suite are revealed by a high PGE and Au content in the overlying soils. A second zone of elevated precious metal concentrations straddles the boundary between the Main and Upper Zones and has to date been traced for more than 100 km. This zone follows the igneous layering of the Rustenburg Layered Suite and is offset by the Brits Graben. It is therefore thought to be the reflection of a magmatic PGE-Au mineralisation. Received: 31 May 1996 / Accepted: 7 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号