首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
利用超导重力仪观测数据精确测定低于1 mHz的地球自由振荡简正模式的分裂频率,是在不与任何弹性系数发生联系的情况下改善一维密度模型的有效方法.但在该频段台站局部气压变化对重力观测数据的影响成为主要干扰来源,且具有频率依赖特性,因此精细地开展气压改正成为利用超导重力数据检测低频自由振荡信号的必要手段.本文基于EEMD方法,提出了一种具有频率依赖特性的气压改正方法.该方法将重力观测和气压变化分解成处于不同频段的本征模态函数,并在相应频段上分别进行重力-气压变化的回归分析,计算得到具有频率依赖特性的气压导纳值,精细地消除气压变化对重力观测的影响,并以此对微弱低频地球自由振荡信号开展高分辨率分析.基于本文提出的气压改正方法,利用大地震后的超导重力数据检测了频率小于1.5 mHz的低频地球自由振荡及其频谱分裂现象.研究结果表明:利用该方法进行气压改正后检测得到的各简正模具有更高的信噪比,估计的本征频率误差水平明显降低,获得的基频球型振荡0S20S3以及一阶球型振荡1S2的分裂谱峰的估计精度更高,同时还检测到了部分环型振荡在重力观测中的耦合现象.对低频地球振荡的高分辨率检测结果验证了基于EEMD分解提出的气压改正方法的有效性,同时再次证明了超导重力仪观测数据在低频地球自由振荡检测中的优势.  相似文献   

2.
New generation superconducting gravimeters (SGs), which have been demonstrated to be better than the best seismometers STS-1 at frequencies below 1 mHz, can be accepted as the quietest vertical seismometers for observation of long-period earth free oscillations. Wavelet filtering with narrow band-pass frequency response as shown in this paper is very helpful in removing at- mospheric pressure effects from on gravity records in long-period seismic mode frequency bands. The processing of high quality SG records after the great Sumatra earthquake (Dec. 26, 2004) with wavelet filtering leads to clear observations of all coupled toroidal modes below 1.5 mHz except these for 0T5, 0T7 and 1T1; moreover 1T2 and 1T3 are, for the first time, unambiguously revealed in the vertical components of the free oscillations. The three well-resolved splitting singlets of overtones 2S1 are observed from a single SG record for the first time.  相似文献   

3.
We investigate in this paper various approaches to correct gravity changes for the effect of atmospheric pressure changes. Two specific locations are considered: Strasbourg (France) as mid-latitude station, where regular pressure fronts occur and Djougou (Benin) as equatorial station with large thermally driven S1 and S2 waves of planetary extent. We first review the classical approaches based on a constant or frequency-dependent admittance using only local pressure and gravity data. We consider then a model of atmospheric loading and show the barometric admittance in terms of elastic, Newtonian and total load, as a function of the distance from the station. We consider both a 2D pressure model (surface loading) and a 2.5D model, where the density decreases with height (standard atmosphere). Assuming horizontal advection in the atmospheric dynamics, we convert this spatially dependent admittance into a frequency-dependent admittance. Using global pressure data from European Centre for Medium-Range Weather Forecasts (ECMWF) at about 12 km spatial resolution and 3 h sampling, we compute the model-predicted pressure admittance for Djougou and Strasbourg and we simulate the frequency dependence inferred from gravity and pressure observations below 4 cycle per day. A long gravity and pressure data set (1996–2013) from Strasbourg is used to investigate the low frequency part of the pressure admittance while a common 2.5 year data set (August 2010–February 2013) for Strasbourg and Djougou is then analyzed to investigate the high frequency part of the admittance. In both cases, our results are in close agreement with the predictions inferred from an atmospheric 2.5D loading model with a distance–time relationship due to horizontal advection. The frequency dependence of the barometric admittance is explained by the competing contributions of Newtonian attraction and elastic surface deformation according to the distance from the gravimeter. In the far field (low frequencies), the magnitude of the admittance decreases with frequency because of the combined elasticity effect and Newtonian attraction (when the atmosphere is below the horizon) while, on the contrary, in the near field (high frequencies), elasticity becomes negligible and the pressure admittance mainly decreases with increasing frequency because of the decreasing attraction effect of the atmospheric masses inside the cylindrical pressure cell centered on the sensor location of decreasing radius. In the last part, we show that there is variability in time in the pressure admittance for both stations.  相似文献   

4.
《Journal of Geodynamics》2010,49(3-5):371-377
The influence of the atmosphere on gravity measurements by Newtonian attraction and vertical displacements due to surface loading is well known and studied especially at frequencies below 1 mHz. Less work has been done at the higher seismic frequencies where inertial effects come into play. The sensor mass of a vertical accelerometer responds to several forces caused by the atmosphere, on global, regional and local scales. For the seismic frequencies the atmosphere above the observation site has the largest influence. A simple “Gedankenexperiment” demonstrates that the gravitational effect on one hand and the free air and inertial effects due to deformation on the other have opposite sign. Since the inertial effect is strongly frequency-dependent there should be a crossover-frequency where the pressure admittance to gravity changes sign. Simple analytical models clearly show this property near frequencies of a few mHz and are used here to amplify the variance reduction of the gravity residuals. The crossover-frequency depends on the properties of the models of the atmospheric phenomena and the elasticity of the Earth’s crust. Therefore in reality it must be expected to vary in time and space.We show one extremely clear example of this sign-reversal detected in the gravity data from the superconducting gravimeter GWR-C025 in Vienna among other examples which demonstrate the reality of this effect.  相似文献   

5.
We develop a new approach for the spectral analysis of the superconducting gravimeter data to search for the spheroidal oscillation 1S1 of the Earth solid inner core. The new method, which we call least-squares (LS) self-coherency analysis, is based on the product of the least-squares spectra of segments of the time series under consideration. The statistical foundation of this method is presented in the new least-squares product spectrum theorem that establishes rigorously confidence levels for detecting significant peaks. We apply this approach along with a number of other innovative ideas to a 6-year long gravity series collected at the Canadian Superconducting Gravimeter Installation (CSGI) in Cantley, Canada, by splitting it into 72 statistically independent monthly records. Each monthly record is analysed spectrally and all monthly LS spectra are multiplied to construct the self-coherency spectrum of the 6-year gravity series. The self-coherency spectrum is then used to detect significant peaks in the band 3-7 h at various significant levels with the aim to identify a triplet of periods associated with the rotational/ellipsoidal splitting of 1S1 (Slichter triplet). From all the Slichter periods predicted by various researchers so far, Smylie's triplet appears to be the most supported one, albeit very weakly, both, before and after the atmospheric pressure effect is removed from the series. Using the viscous splitting law [Smylie, D.E., 1992. The inner core translational triplet and the density near Earth's center. Science 255, 1678-1682] as guide, we can also see one interesting and statistically significant triplet with periods A = {4.261 h, 4.516 h, 4.872 h}, which changes slightly to A′ = {4.269 h, 4.516 h, 4.889 h} after the atmospheric pressure correction is applied to the gravity series.  相似文献   

6.
Effective barometric admittance and gravity residuals   总被引:1,自引:0,他引:1  
In the analysis of surface gravity signals that may originate from the Earth's core, the step of correcting for the atmospheric pressure fluctuations is one that must be done carefully. We apply two techniques for determining the local, or effective, barometric admittance function between simultaneous observations of surface gravity and pressure. The first is a frequency domain fit that computes the admittance on a band-by-band basis. Using data from both the Canadian and French superconducting gravimeters we determined that the magnitude of the local, or background, admittance increases smoothly and monotonically from about 0.2 μgal mbar−1 at long periods (> 10 days) to about 0.35 μgal mbar−1 at frequencies greater than 3 cycles per day (c.p.d.); the phase lag is within a few degrees of 180°. By comparison, the effective admittances of the large-scale harmonics of the solar heating tide (S1---S7) are much smaller, between 0.1 and 0.3 μgal mbar−1, for most of the harmonics of a day. In the second approach we fit a symmetrical time domain admittance function having lengths between 1 and 19 h using both a standard least-squares fit to a white noise residual and a new, and clearly superior, fit assuming a brown noise residual. Both time and frequency domain approaches give comparable results and contribute to a significant lowering of the residual level in non-tidal bands.  相似文献   

7.
This paper examines the possibility of using superconducting gravimeter (SG) observations without a tilt compensation system. SG data obtained at Syowa Station, Antarctica, were recorded without tilt compensation from April 5, 2001 to January 4, 2002, however, tilt signals were registered during this time period. A tilt correction was applied to gravity data from August 2, 2001 to January 4, 2002. After the tilt correction, errors of tidal parameters were dramatically reduced and tidal parameters themselves almost coincide with those from the same length of tilt-controlled gravity data recorded in 2000, when tilt compensation system was used. The noise level of the thermal leveler in the seismic band was also investigated. Averaged power spectra of gravity from 15 quiet days each in 2000 and 2001 recorded with and without the tilt compensation system, respectively, were compared. ‘Quiet’ in this case, means very low earthquake activity and calm wind conditions. No significant difference in the seismic band, except at the frequency of 2 mHz, was noticed. The difference at 2 mHz occurred because of room temperature variations caused by the water cooler, which cools down a compressor by automatically switching on and off.  相似文献   

8.
Marine hypoxic episodes are affecting both marine and freshwater bodies all over the world. Yet, limited data exists with regard to the effects of decreasing oxygen on protist metabolism. Three ciliate species were therefore isolated from Hong Kong coastal waters. Controlled hypoxic conditions were simulated in the lab environment, during which time growth, respiration and grazing rates were measured. Euplotes sp. and a Oxytrichidae-like ciliate showed decreased growth and respiration below 2.5 mg O2 L−1, however Uronema marinum kept steady growth and respiration until below 1.5 mg O2 L−1. Euplotes sp. and the Oxytrichidae-like ciliate had the highest ingestion rate, which dropped significantly below 3.0 mg O2 L−1. U.marinum grazing rates were affected at and below 1.5 mg O2 L−1, correlating with their drop in growth and respiration at this lower concentration. This study illustrates the slowing metabolism of key grazing protists, as well as species-specific tolerance in response to hypoxia.  相似文献   

9.
Loading by atmosphere and by the Baltic Sea cause gravity change at Metsähovi, located 15 km from the open sea. Gravity is changed by both the Newtonian attraction of the loading mass and by the crustal deformation. We have performed loading calculations using appropriate Green's function for both gravity and deformation, for both atmospheric and Baltic loading. The loading by atmosphere has been computed using a detailed surface pressure field from high resolution limited area model (HIRLAM) for north Europe up to 10° distances. Baltic Sea level is modelled using tide gauge records. Calculations show that 1 m of uniform layer of water corresponds to 31 nm s−2 in gravity and −11 mm in height. Modelled loading is compared with observations of the superconducting gravimeter T020 for years 1994–2002. The combination of HIRLAM and a tide gauge record decreases RMS of gravity residuals by 14% compared to single admittance in air pressure corrections without sea level data. Regression of gravity residuals on the tide gauge record at Helsinki (at 30 km distance) gives a gravity effect of 26 nm s−2 m−1 for Baltic loading.The gravity station is co-located with a permanent GPS station. We have also associated the loading effects of the atmosphere and of the Baltic Sea with temporal height variations. The range of modelled vertical motion due to air pressure was 46 mm and that due to sea level 18 mm. The total range was 38 mm. The effects of the Baltic Sea and of the atmosphere partly cancel each other, since at longer periods the inverse barometer assumption is valid. Regression of the modelled height on local air pressure gives −0.37 mm hPa−1, corresponding approximately to width 6° for pressure system.We have tested the models using one year of daily GPS data. Multilinear regression on local air pressure and sea level in Helsinki gives the coefficient −0.34 mm hPa−1 for pressure, and −11 mm m−1 for sea level. These match model values. Loading by air pressure and Baltic Sea explains nearly 40% of the variance of daily GPS height solutions.  相似文献   

10.
The redistribution of air masses induces gravity variations (atmospheric pressure effect) up to about 20 μgal. These variations are disturbing signals in gravity records and they must be removed very carefully for detecting weak gravity signals. In the past, different methods have been developed for modelling of the atmospheric pressure effect. These methods use local or two-dimensional (2D) surface atmospheric pressure data and a standard height-dependent air density distribution. The atmospheric pressure effect is consisting of the elastic deformation and attraction term. The deformation term can be well modelled with 2D surface atmospheric pressure data, for instance with the Green's function method. For modelling of the attraction term, three-dimensional (3D) data are required. Results with 2D data are insufficient.From European Centre for Medium-Range Weather Forecasts (ECMWF) 3D atmospheric pressure data are now available. The ECMWF data used here are characterised by a spacing of Δ and Δλ = 0.5°, 60 pressure levels up to a height of 60 km and an interval of 6 h. These data are used for modelling of the atmospheric attraction term. Two attraction models have been developed based on the point mass attraction of air segments and the gravity potential of the air masses. The modelling shows a surface pressure-independent part of gravity variations induced by mass redistribution of the atmosphere in the order of some μgal. This part can only be determined by using 3D atmospheric pressure data. It has been calculated for the Vienna Superconducting Gravimeter site.From this follows that the gravity reduction can be improved by applying the 3D atmospheric attraction model for analysing long-periodic tidal waves including the polar tide. The same improvement is expected for reduction of long-term absolute gravity measurements or comparison of gravity measurements at different seasonal times. By using 3D atmospheric pressure data, the gravity correction can be improved up to some μgal.  相似文献   

11.
Evaporation from small reservoirs, wetlands, and lakes continues to be a theoretical and practical problem in surface hydrology and micrometeorology because atmospheric flows above such systems can rarely be approximated as stationary and planar-homogeneous with no mean subsidence (hereafter referred to as idealized flow state). Here, the turbulence statistics of temperature (T) and water vapor (q) most pertinent to lake evaporation measurements over three water bodies differing in climate, thermal inertia and degree of advective conditions are explored. The three systems included Lac Léman in Switzerland (high thermal inertia, near homogeneous conditions with no appreciable advection due to long upwind fetch), Eshkol reservoir in Israel (intermediate thermal inertia, frequent strong advective conditions) and Tilopozo wetland in Chile (low thermal inertia, frequent but moderate advection). The data analysis focused on how similarity constants for the flux-variance approach, CT/Cq, and relative transport efficiencies RwT/Rwq, are perturbed from unity with increased advection or the active role of temperature. When advection is small and thermal inertia is large, CT/Cq < 1 (or RwT/Rwq > 1) primarily due to the active role of temperature, which is consistent with a large number of studies conducted over bare soil and vegetated surfaces. However, when advection is significantly large, then CT/Cq > 1 (orRwT/Rwq < 1). When advection is moderate and thermal inertia is low, then CT/Cq ∼ 1. This latter equality, while consistent with Monin–Obukhov similarity theory (MOST), is due to the fact that advection tends to increase CT/Cq above unity while the active role of temperature tends to decrease CT/Cq below unity. A simplified scaling analysis derived from the scalar variance budget equation, explained qualitatively how advection could perturb MOST scaling (assumed to represent the idealized flow state).  相似文献   

12.
本文对琼中台连续重力观测数据进行收集整理并处理,基于处理后的数据,进行了潮汐分析和非潮汐分析。潮汐分析采用VAV调和分析方法;非潮汐分析则分别进行了零漂改正、固体潮改正、气压改正和海潮改正。其中,零漂改正采用一般多项式拟合零漂的方法;气压改正采用VAV软件;海潮改正运用SPOTL程序,以NAO.99b潮汐模型计算了琼中台海潮负荷值。最终获得了改正后的琼中台重力非潮汐变化,结果表明琼中台的重力气压导纳值为-0.34×10-8m/s2/mbar,气压改正幅度约为10×10-8m/s2,海潮改正幅度约为5×10-8m/s2。改正后,琼中台重力非潮汐变化数据,比仅进行零漂固体潮改正后的重力非潮汐变化数据中的潮汐信号更加微弱,说明进行海潮改正后的效果是明显的,该方法可进一步去除其中的潮汐信号。  相似文献   

13.
利用不同倾斜仪和应变仪检测地球自由振荡的对比与分析   总被引:1,自引:1,他引:0  
孟方杰  张燕 《中国地震》2018,34(1):133-140
中国地震局地壳形变观测台网布设有垂直摆倾斜仪、钻孔倾斜仪、洞体应变仪、分量式钻孔应变仪与体应变仪等地形变观测仪器。这些观测仪器均记录到了2011年日本M_W9.0大地震激发的自由振荡信号。本文分别利用单台数据和多台数据叠积,检测到_0S_3~_0S_(30)全部的球型自由振荡基频振型和_0T_3~_0T_(20)全部的环型自由振荡基频振型及部分谐频振型。此外,通过对这些检测结果的对比,分析了它们对不同自由振荡类型、不同频段的振型检测能力。分析发现垂直摆倾斜仪对球型自由振荡的检测结果最佳,且由于在低频段有较高的噪声干扰,钻孔倾斜仪无法检测到低阶的球型自由振荡。对于环型自由振荡的检测,分量式钻孔应变仪检测结果最佳。  相似文献   

14.
Diverse linear and nonlinear statistical parameters of rainfall under aggregation in time and the kind of temporal memory are investigated. Data sets from the Andes of Colombia at different resolutions (15 min and 1-h), and record lengths (21 months and 8-40 years) are used. A mixture of two timescales is found in the autocorrelation and autoinformation functions, with short-term memory holding for time lags less than 15-30 min, and long-term memory onwards. Consistently, rainfall variance exhibits different temporal scaling regimes separated at 15-30 min and 24 h. Tests for the Hurst effect evidence the frailty of the R/S approach in discerning the kind of memory in high resolution rainfall, whereas rigorous statistical tests for short-memory processes do reject the existence of the Hurst effect.Rainfall information entropy grows as a power law of aggregation time, S(T) ∼ Tβ with 〈β〉 = 0.51, up to a timescale, TMaxEnt (70-202 h), at which entropy saturates, with β = 0 onwards. Maximum entropy is reached through a dynamic Generalized Pareto distribution, consistently with the maximum information-entropy principle for heavy-tailed random variables, and with its asymptotically infinitely divisible property. The dynamics towards the limit distribution is quantified. Tsallis q-entropies also exhibit power laws with T, such that Sq(T) ∼ Tβ(q), with β(q) ? 0 for q ? 0, and β(q) ? 0.5 for q ? 1. No clear patterns are found in the geographic distribution within and among the statistical parameters studied, confirming the strong variability of tropical Andean rainfall.  相似文献   

15.
In situ synchrotron X-ray diffraction experiments were conducted using the SPEED-1500 multi-anvil press at SPring-8 on majoritic garnet synthesized from natural mid-ocean ridge basalt (MORB), whose chemical composition is close to the average of oceanic crust, at 19 GPa and 2200 K. Pressure-volume-temperature data were collected using a newly developed high-pressure cell assembly to 21 GPa and 1273 K. Data were fit to the high-temperature Birch-Murnaghan equation of state, with fixed values for the ambient cell volume (V0 = 1574.14(4) Å3) and the pressure derivative of the isothermal bulk modulus (KT = 4). This yielded an isothermal bulk modulus of KT0 = 173(1) GPa, a temperature derivative of the bulk modulus (∂KT/∂T)P = −0.022(5) GPa K−1, and a volumetric coefficient of thermal expansivity α = a + bT with values of a = 2.0(3) × 10−5 K−1 and b = 1.0(5) × 10−8 K−2. The derived thermoelastic parameters are very similar to those of pyrope. The density of subducted oceanic crust compared to pyrolitic mantle at the conditions in Earth's transition zone (410-660 km depth) was calculated using these results and previously reported thermoelastic parameters for MORB and pyrolite mineral assembledges. These calculations show that oceanic crust is denser than pyrolitic mantle throughout the mantle transition zone along a normal geotherm, and the density difference is insensitive to temperature at the pressures in lower part of the transition zone.  相似文献   

16.
This paper aims to review the main scientific achievements which were obtained in the first phase (1997–2003) of the Global Geodynamics Project (GGP) consisting of a worldwide network of superconducting gravimeters (SG) of about 20 instruments. We show that the low noise levels reached by these instruments in various frequency bands allow us either to investigate new signals of very small amplitude or to better determine other signals previously seen. We first report new results in the long-period seismic band with special emphasis on the detection of the 2S1 normal mode and the splitting of the fundamental spheroidal mode 2S0 after the magnitude 8.4 Peru earthquake in 2001. We also discuss briefly the ‘hum’, which consists of a sequence of fundamental normal modes existing between 2 and 7 mHz even in the lack of any seismic excitation, and was first discovered on the Syowa (in Antarctica) instrument in 1998. We will comment on the search for the Slichter mode 1S1 of degree 1 which is associated with a translational motion of the inner core inside the liquid core. Atmospheric effects are reviewed from the local to the global scale and the improvement due to pressure loading computations on residual gravity signals is shown. An interesting study exhibiting the gravity consequence due to sudden rainfall and vertical mass motion in the atmosphere (without ground pressure change) is presented. The precision of the SGs leads to some convincing results in the tidal domain, concerning the fluid core resonance effect (free core nutation (FCN)) on diurnal tides or various loading effects (linear, non-linear) from the oceans. In particular, SGs gravity measurements are shown to be useful validating tools for ocean tides, especially if they are small and/or confined to coastal regions. The low instrumental drift of the SGs also permits to investigate non-tidal effects in time-varying gravity, especially of annual periodicity. Hydrology has also a signature which can be seen in SG measurements as shown by several recent studies. At even lower frequency, there is the Chandler motion of 435-day period which leads to observable gravity changes at the Earth's surface. We finally report on the progress done in the last years in the problem of calibrating/validating space satellite data with SG surface gravity measurements.  相似文献   

17.
The air–sea ice CO2 flux was measured over landfast sea ice in the Chukchi Sea, off Barrow, Alaska in late May 2008 with a chamber technique. The ice cover transitioned from a cold early spring to a warm late spring state, with an increase in air temperature and incipient surface melt. During melt, brine salinity and brine dissolved inorganic carbon concentration (DIC) decreased from 67.3 to 18.7 and 3977.6 to 1163.5 μmol kg−1, respectively. In contrast, the salinity and DIC of under-ice water at depths of 3 and 5 m below the ice surface remained almost constant with average values of 32.4±0.3 (standard deviation) and 2163.1±16.8 μmol kg−1, respectively. The air–sea ice CO2 flux decreased from +0.7 to −1.0 mmol m−2 day−1 (where a positive value indicates CO2 being released to the atmosphere from the ice surface). During this early to late spring transition, brought on by surface melt, sea ice shifted from a source to a sink for atmospheric CO2, with a rapid decrease of brine DIC likely associated with a decrease in the partial pressure of CO2 of brine from a supersaturated to an undersaturated state compared to the atmosphere. Formation of superimposed ice coincident with melt was not sufficient to shut down ice–air gas exchange.  相似文献   

18.
Abstract

It is shown that magnetic fields generated by flows v r,(r,t)er+vT where vT is an arbitrary toroidal component (er˙vT≡V≡vT≡0), cannot be maintained indefinitely against ohmic dissipation. The poloidal field variable max |r 2 B r| is shown to decay strictly monotonically with an undetermined decay rate. A bound on the growth of the toroidal field norm ∥T1 is established solely dependent on the rate of conversion of poloidal to toroidal field, so that when the poloidal field is negligible then ∥T1 decays strictly monotonically. The main application of these results is to models of stellar evolution based on axisymmetric differential rotation and spherically symmetric contraction. This symmetric velocity theorem overlaps with two already known theorems, namely the toroidal velocity theorem where v r≡0 and the radial velocity theorem where vT≡0. The new theorem does not entirely include the already established ones, principal differences being in the rates of decay and the field variables for which the decay is proven (see Table 1).  相似文献   

19.
The southern Yellow Sea (SYS), located to the north of the East China Sea (ECS), was considered part of the ECS when Tsunogai et al. (1999) proposed the “continental shelf pump” (CSP) hypothesis. However, the original CSP carbon dioxide (CO2) uptake flux (2.9 mol C m−2 yr−1) appears to have been overestimated, primarily due to the differences between the SYS and the ECS in terms of their CO2 system. In this paper, we estimated air-sea CO2 fluxes in the SYS using the surface water partial pressure of CO2 (pCO2) measured in winter, spring, and summer, as well as that estimated in fall via the relationship of pCO2 with salinity, temperature, and chlorophyll a. The results indicate that overall, the entire investigated area was a net source of atmospheric CO2 during summer, winter, and fall, whereas it was a net sink during spring. Spatially, the nearshore area was almost a permanent CO2 source, while the central SYS shifted from being a CO2 sink in spring to a source in the other seasons of the year. Overall, the SYS is a net source of atmospheric CO2 on an annual scale, releasing ∼7.38 Tg C (1 Tg=1012 g) to the atmosphere annually. Thus, the updated CO2 uptake flux in the combined SYS and ECS is reduced to ∼0.86 mol C m−2 yr−1. If this value is extrapolated globally following Tsunogai et al. (1999), the global continental shelf would be a sink of ∼0.29 Pg C yr−1, instead of 1 Pg C yr−1 (1 Pg=1015 g).The SYS as a net annual source of atmospheric CO2 is in sharp contrast to most mid- and high-latitude continental shelves, which are CO2 sinks. We argue that unlike the ECS and the North Sea where carbon on the shelf could be exported to the open ocean, the SYS lacks the physical conditions required by the CSP to transport carbon off the shelf effectively. The global validity of the CSP theory is thus questionable.  相似文献   

20.
Semi-diurnal and fortnightly surveys were carried out to quantify the effects of wind- and navigation-induced high-energy events on bed sediments above intertidal mudflats. The mudflats are located in the upper fluvial part (Oissel mudflat) and at the mouth (Vasière Nord mudflat) of the macrotidal Seine estuary. Instantaneous flow velocities and mudflat bed elevation were measured at a high frequency and high resolution with an acoustic doppler velocimeter (ADV) and an ALTUS altimeter, respectively. Suspended particulate matter concentrations were estimated by calibrating the ADV acoustic backscattered intensity with bed sediments collected at the study sites. Turbulent bed shear stress values were estimated by the turbulent kinetic energy method, using velocity variances filtered from the wave contribution. Wave shear stress and maximum wave–current shear stress values were calculated with the wave–current interaction (WCI) model, which is based on the bed roughness length, wave orbital velocities and the wave period (TS). In the fluvial part of the estuary, boat passages occurred unevenly during the surveys and were characterized by long waves (TS>50 s) induced by the drawdown effect and by short boat-waves (TS<10 s). Boat waves generated large bottom shear stress values of 0.5 N m−2 for 2–5 min periods and, in burst of several seconds, larger bottom shear stress values up to 1 N m−2. At the mouth of the estuary, west south-west wind events generated short waves (TS<10 s) of HS values ranging from 0.1 to 0.3 m. In shallow-water environment (water depth <1.5 m), these waves produced bottom shear stress values between 1 and 2 N m−2. Wave–current shear stress values are one order of magnitude larger than the current-induced shear stress and indicate that navigation and wind are the dominant hydrodynamic forcing parameters above the two mudflats. Bed elevation and SPM concentration time series showed that these high energy events induced erosion processes of up to several centimetres. Critical erosion shear stress (τce) values were determined from the SPM concentration and bed elevation measurements. Rough τce values were found above 0.2 N m−2 for the Oissel mudflat and about 1 N m−2 for the Vasière Nord mudflat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号