首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Drag Instability     
With the ionization rate of neutral particles caused by cosmic rays and balanced by the recombination rate of ions for a cold, weakly ionized fluid threaded by stressed magnetic fields, we show that a local perturbation can evolve to a traveling wave with its perturbed quantities growing with time so long as the drift velocity between neutrals and ions is comparable to the Alfven speed of the fluid. Since the large drift velocity is one of the key assumptions to drive this instability, we name it the “drag instability”. We suggest that the drag instability might occur in the regions where magnetic fields are highly stressed such as a C-shock front or a collapsing proto-stellar cloud.  相似文献   

2.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

4.
We revisit the problem of clump formation due to thermal instabilities in a weakly ionized plasma with the help of a linear perturbation analysis, as discussed by Nejad-Asghar & Ghanbari. In the absence of a magnetic field and ambipolar diffusion the characteristic equation reduces to the thermal instability described by Field. We derive the critical wavelengths, which separate the spatial ranges of stability and instability. Contrary to the original analysis of Nejad-Asghar & Ghanbari, perturbations with a wavelength larger than the critical wavelength destabilize the cloud. Moreover, the instability regime of isentropic perturbations is drastically reduced. Isobaric modes with real values of the critical wavelength appear only if the density dependence of the cooling rate is more pronounced than the temperature dependence. Isentropic modes arise only if the power of the density in the cooling rate is smaller than 1/2, which is not fulfilled for CO cooling. We find that ambipolar diffusion is not a dominating heating process in molecular gas.  相似文献   

5.
Electromagnetic waves propagating transverse to the magnetic field, containing inhomogenous and loss cone plasma, may become unstable due to the excitation of resonant proton, resonant electron and drift cyclotron instabilities. Resonant proton instability gets excited in inhomogenous plasma, irrespective of the presence of temperature anisotropy, loss cone or temperature gradient. However, the growth rate of this instability is much smaller than the other two instabilities. The maximum growth rates of resonant electron instability are enhanced with the increase of loss cone index, gradients in transverse temperature and magnetic field, and with the decrease of temperature anisotropy and gradients in density and parallel temperature. The drift cyclotron instability exists in a bounded range of wave numbers and its growth rate increases with the increase of electron temperature, density and magnetic field gradient, and with the decrease of proton temperature and temperature anisotropy. In the region of ring current for beyond plasmapause the resonant proton and resonant electron instabilities have the characterstic frequencies around 0.1Ωp and growth rates ~10?6Ωp and 10?3Ωp, respectively. In the ring current region the drift cyclotron instability is not excited whereas in the plasma sheet region the frequency and growth rate of this instability are around Ωp and 10?2Ωp, respectively. These instabilities can accelerate the ring current particles along the magnetic field lines and dump them into the auroral region.  相似文献   

6.
A body moving in an ionized atmosphere acquires an electric charge through the processes of accretion of charged particles and emission of electrons by high energy photons. The moving charged body may then interact with the charged particles of the atmosphere and any pervading magnetic field to excite plasma waves. Of particular interest is the situation in which the body collects an ionized cloud in front of it. The motion of this ionized cloud in the atmosphere induces an electrostatic instability and causes a column of ionized gas to move ahead of the body. The electrostatic instability is conducive to the excitation of electrostatic oscillations which if already present are further enhanced. A magnetic field along the direction of motion assists in the formation of the ionized cloud. If the pervading magnetic field is of suitable weak strength, it may excite extraordinary electromagnetic waves. A pervading transverse magnetic field of suitable strength may cause the excitation of magnetohydrodynamic waves.  相似文献   

7.
A criterion for the magnetorotational instability of a protostellar disk in which the dust particles are assumed to be well mixed with the gas over the entire disk volume has been obtained within the framework of Hall magnetohydrodynamics. It is shown that the dusty plasma component affects significantly the Hall current and, under certain conditions, can cause its direction to be reversed compared to the case of a weakly ionized electron-ion plasma. A significant expansion of the range of wave numbers for unstable magnetic fluctuations is a consequence of the Hall current reversal. The spatial localization of the regions of protostellar disks in which not only the long-wavelength Alfvén disturbances but also the short-wavelength ones are subject to the magnetorotational instability is investigated. Possible physical consequences of the presence of anomalously active zones in cold disks for their structure and evolution are pointed out.  相似文献   

8.
The exact nonlinear cylindrical solution for incompressible Hall – magnetohydrodynamic (HMHD) waves, including dissipation, essentially from electron – neutral collisions, is obtained in a uniformly rotating, weakly ionized plasma such as exists in photospheric flux tubes. The ω – k relation of the waves, called here Hall – MHD waves, demonstrates the dispersive nature of the waves, introduced by the Hall effect, at large axial and radial wavenumbers. The Hall – MHD waves are in general elliptically polarized. The partially ionized plasma supports lower frequency modes, lowered by the factor δ≡ratio of the ion mass density to the neutral particle mass density, as compared to the fully ionized plasma (δ=1). The relation between the velocity and the magnetic field fluctuations departs significantly from the equipartition found in Alfvén waves. These short-wavelength and arbitrarily large amplitude waves could contribute toward the heating of the solar atmosphere.  相似文献   

9.
A one-dimensional model is being considered where a fully ionized plasma is separated from a neutral gas by a homogeneous magnetic field directed along the plasma boundary. The plasma and the neutral gas consist of two different types of ions and neutral particles. In a stationary state the outflux of plasma by diffusion across the magnetic field is compensated by an influx of neutrals which are ionized in a partially ionized boundary region. It is found that the ratio between the ion densities in the fully ionized region will in general differ from the density ratio of the two types of neutrals being present in the gas region. This provides a separation mechanism with applications both to cosmical and laboratory plasmas, such as in the following cases:
  1. The abundance anomalies in magnetic variable stars and in the solar wind.
  2. Separation processes of non-identical ions and neutral atoms in gas blanket systems.
  相似文献   

10.
The gravitational instability of an infinite homogeneous self-gravitating mixture through porous medium in the presence of a variable horizontal magnetic field varying in vertical directions has been considered to include, separately, the effects due to suspended particles and collisions between ionized and neutral components. The dispersion relations in both cases have been obtained. It has been found that Jeans's criterion of instability holds good even if the effects due to suspended particles, collisions, porosity, and variable magnetic field are considered.  相似文献   

11.
A unified theory of low frequency instabilities in a two component (cold and hot) finite-β magnetospheric plasma is suggested. It is shown that the low frequency oscillations comprise two wave modes : compressional Alfvén and drift mirror mode. No significant coupling between them is found in the long-wave approximation. Instabilities due to spontaneous excitation of these oscillations are considered. It is found that the temperature anisotropy significantly influences the instability growth rate at low frequency. A new instability due to the temperature anisotropy and density gradient appears when the frequency of compressional Alfvén waves is close to the drift mirror mode frequency. The theoretical predictions are compared in detail with the Pc5 event of 27 October 1978 observed simultaneously by the GEOS 2 satellite and the STARE radar facility. It is shown that the experimental results can be interpreted in terms of a compressional Alfvén wave driven by the drift anisotropy instability.  相似文献   

12.
The spatial structure and stability properties of the coupled Alfvén and drift compressional modes in a space plasma are studied in a gyrokinetic framework in a model taking into account field-line curvature and plasma and magnetic field inhomogeneity across the magnetic shells. The perturbation is found to be localized in two transparent regions, the Alfvén and drift compressional transparent regions, where the wave vector radial component squared is positive. Both regions are bounded by the resonance and cut-off surfaces, where the wave vector radial component turns into infinity and zero, respectively. An existence of the drift compressional resonance is one of the most important results of this work. It is argued that on the surface of this resonance the longitudinal and azimuthal components of the wave's magnetic field have a pole and logarithmic singularities, respectively. The instability conditions and expressions for the growth rate of the coupled modes have been obtained. In the Alfvénic transparent region, an instability occurs in the presence of the negative plasma temperature gradient. This instability does not lead to a non-stationary wave behavior: all the energy gained from the resonance particles was finally absorbed owing to any dissipation process. In a drift compressional transparent region, a necessary condition for the instability is the growth of the temperature with the radial coordinate. The growth rate is almost independent of the radial coordinate, which means that the wave energy gained from the particles cannot disappear. It will lead to an ever increasing wave amplitude, and no stationary picture for the unstable drift compressional mode is possible.  相似文献   

13.
According to a widespread point of view, intensive electrostatic structures in the E‐region of the auroral ionosphere can be a consequence of the excitation of the modified two‐stream or Farley‐Buneman (FB) plasma turbulence. But in spite of the successes of the theoretical and experimental research of the auroral radar scattering, it is impossible to explain the existence of auroral echoes with large aspect angles (> 2 deg.), the wave propagation perpendicular to the electron drift velocity and wave scales less than 1 m. In this paper the coherent nonlinear interactions of three and four electrostatic FB‐waves are considered analytically and numerically. The evolution of the nonlinear waves is described by a system of magnetohydrodynamic equations. 1) It is shown that the interaction of three and four coherent waves is the main physical mechanism which leads to the saturation of the FB‐instability. 2) If no dissipative and dispersive effects occur, an explosive instability may be excited. 3) The main result of the interaction of coherent waves is the generation of nonlinear waves and nonlinear structures when the waves are damped linearly and propagate perpendicular to the electron drift velocity. This region corresponds to large aspect angles of the small‐scale waves. 4) Further, the wave interaction causes a nonlinear stabilization of the growth of the high‐frequency waves and a formation of local density structures of the charged particles. The results of the numerical models allow to analyse the possibility of scenarios of the two‐stream plasma instability in the collisional auroral E‐region.  相似文献   

14.
The gravitational instability of an infinite homogeneous self-gravitating plasma through porous medium is considered to include, separately, the effects due to rotation and collisions between ionized and neutral components. The dispersion relations are obtained in both cases. It is found that the gravitational instability of a composite and rotating plasma in the presence of a variable horizontal magnetic field through porous medium is determined by the Jeans's criterion.  相似文献   

15.
We consider nonaxisymmetric magnetosonic oscillations of a radially stratified, weakly ionized protoplanetary disk with a vertical magnetic field. The combined effect of the Hall electric field and the density and magnetic field inhomogeneities present in the disk has been previously predicted to lead to an instability of its small azimuthal perturbations. We revise the previous results and take into account the effect of inhomogeneous ionization of the protoplanetary material related to the inhomogeneity of the disk medium. We show that the instability criterion is governed by three parameters: the magnetic field and ionization fraction gradients and the plasma β. We have found that at high values of β typical of protoplanetary disks, the instability does not manifest itself if the gradients are directed oppositely. In the case of codirectional gradients, the interaction of magnetosonic fluctuations with inhomogeneities of a fixed size is resonant in character, giving rise to an instability in a narrow range of wave numbers.  相似文献   

16.
The electrostatic ion-cyclotron instability (EICI) in low β (ratio of plasma to magnetic pressure), anisotropic, inhomogeneous plasma is studied by investigating the trajectories of the particles using the general loss-cone distribution function (Dory-Guest-Harris type) for the plasma ions. In particular, the role of the loss-cone feature as determined by the loss-cone indices, in driving the drift-cyclotron loss-cone (DCLC) instability is analysed. It is found that for both long and short wavelength DCLC mode the loss-cone indices and the perpendicular thermal velocity affect the dispersion equation and the growth rate of the wave by virtue of their occurrence in the temperature anisotropy. The dispersion relation for the DCLC mode derived here using the particle aspect analysis approach and the general loss-cone distribution function considers the ion diamagnetic drift and also includes the effects of the parallel propagation and the ion temperature anisotropy. It is also found that the diamagnetic drift velocity due to the density gradient of the plasma ions in the presence of the general loss-cone distribution acts as a source of free energy for the wave and leads to the generation of the DCLC instability with enhanced growth rate. The particle aspect analysis approach used to study the EICI in inhomogeneous plasma gives a fairly good explanation for the particle energisation, wave emission by the wave–particle interaction and the results obtained using this particle aspect analysis approach are in agreement with the previous theoretical findings using the kinetic approach.  相似文献   

17.
In an earlier paper, Bowers (1973), ion plasma oscillations were found to be unstable in the steady state developed by Cowley (1972) for the neutral sheet in the Earth's geomagnetic tail. In this paper a similar stability analysis is carried out but for a different steady state, suggested by Dungey, with the result that unstable waves with frequencies near the electron plasma frequency are found. In the Dungey steady state the current necessary for magnetic field reversal is carried by plasma originating from both the magnetosheath and the lobes of the tail. This modifies the steady state proposed by Alfvén and subsequently developed by Cowley in which all the current is carried by plasma from the lobes of the tail thereby fixing the cross-tail potential Φ. With magnetosheath plasma present the value of Φ is no longer fixed solely by parameters in the lobes of the tail but the cross-tail electric field is still assumed localised in the dusk region of the sheet as in the Cowley model due to the balance of charge required in the neutral sheet. The value of Φ can be expected to increase as magnetic flux is transported to the tail which inflates and causes flux annihilation because the magneto-sheath plasma in the neutral sheet has insufficient pressure to keep the two lobes of the tail apart. The Vlasov-Maxwell set of equations is perturbed and linearised enabling a critical condition for instability to be found for modes propagating across the tail. Typically, this condition requireseΦ≳KT m whereT m is the temperature of magnetosheath electrons. The instability occurs in the presence of cold plasma which hasE×B drifted into the neutral sheet from the lobes of the tail. This contrasts with the usual two stream instability which is stabilised by the cold plasma. Once precipitated the instability may be explosive provided current disruption occurs, for then a further increase in Φ will result which drives a greater range of wave numbers unstable thereby causing even more turbulence and an even larger cross-tail electric field. Because of this behaviour the instability may be a trigger for a substorm.  相似文献   

18.
Diffusion in a weakly ionized plasma composed of negative ions as well as positive ions is examined using appropriate linearized fluid equations. For initial, electrically neutral, density perturbations of the form exp(ikx) the diffusion process is characterized by electrical non-neutrality and by three stages or time scales. For equal positive and negative ion diffusion coefficients these stages are in general (1) equilibration of the electron gas so that pressure gradient and electric forces are balanced (2) ambipolar-like diffusion of all three species, and concluding with (3) free ion diffusion. The details of the process are governed by the product e (wave number times electron Debye length) and the ambient ratio of negative ion to electron number density. Numerical and analytic results for separate positive and negative diffusion coefficients show added complexity which is briefly described. These results or the more complete numerical solutions find application to the lower D region of the ionosphere.  相似文献   

19.
20.
A dusty plasma model is presented to study the small scale structures of plasma densities in mesopause region associated with polar mesosphere summer echoes (PMSE). The heavy dust grains (ice particles) are treated as a flowing background of negative charge. Numerical results show that the electron and ion densities drop rapidly while the electric field increases dramatically within a short distance of several meters. The scalelengths of the electron density are comparable to the typical wavelength of the PMSE radars, which may be responsible for strong radar backscatter. Furthermore, the increase of the ice particle concentration results in the reduction of the density gradient and electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号