首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   

2.
In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5?C6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4?C5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet??s semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5?C2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet?Cplanet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.  相似文献   

3.
The long-term evolution of stellar orbits bound to a massive centre is studied in order to understand the cores of star clusters in central regions of galaxies. Stellar trajectories undergo tiny perturbations, the origins of which are twofold: (i) the gravitational field of a thin gaseous disc surrounding the galactic centre, and (ii) cumulative drag arising from successive interactions of the stars with the material of the disc. Both effects are closely related because they depend on the total mass of the disc, assumed to be a small fraction of the central mass. It is shown that, in contrast to previous works, most of the retrograde (with respect to the disc) orbits are captured by the central object, presumably a massive black hole. Initially prograde orbits are also affected, so that statistical properties of the central star cluster in quasi-equilibrium may differ significantly from those deduced in previous analyses.  相似文献   

4.
Understanding the evolution of asteroid spin states is challenging work, in part because asteroids have a variety of orbits, shapes, spin states, and collisional histories but also because they are strongly influenced by gravitational and non-gravitational (YORP) torques. Using efficient numerical models designed to investigate asteroid orbit and spin dynamics, we study here how several individual asteroids have had their spin states modified over time in response to these torques (i.e., 951 Gaspra, 60 Echo, 32 Pomona, 230 Athamantis, 105 Artemis). These test cases which sample semimajor axis and inclination space in the inner main belt, were chosen as probes into the large parameter space described above. The ultimate goal is to use these data to statistically characterize how all asteroids in the main belt population have reached their present-day spin states. We found that the spin dynamics of prograde-rotating asteroids in the inner main belt is generally less regular than that of the retrograde-rotating ones because of numerous overlapping secular spin-orbit resonances. These resonances strongly affect the spin histories of all bodies, while those of small asteroids (?40 km) are additionally influenced by YORP torques. In most cases, gravitational and non-gravitational torques cause asteroid spin axis orientations to vary widely over short (?1 My) timescales. Our results show that (951) Gaspra has a highly chaotic rotation state induced by an overlap of the s and s6 spin-orbit resonances. This hinders our ability to investigate its past evolution and infer whether thermal torques have acted on Gaspra's spin axis since its origin.  相似文献   

5.
By considering model comet nuclei with a wide range of sizes, prolate ellipsoidal shapes, spin axis orientations, and surface activity patterns, constraints have been placed on the nucleus properties of the primary Rosetta target, Comet 67P/Churyumov-Gerasimenko. This is done by requiring that the model bodies simultaneously reproduce the empirical nucleus rotational lightcurve, the water production rate as function of time, and non-gravitational changes (per apparition) of the orbital period (ΔP), longitude of perihelion (Δ?), and longitude of the ascending node (ΔΩ). Two different thermophysical models are used in order to calculate the water production rate and non-gravitational force vector due to nucleus outgassing of the model objects. By requiring that the nominal water production rate measurements are reproduced as well as possible, we find that the semi-major axis of the nucleus is close to 2.5 km, the nucleus axis ratio is approximately 1.4, while the spin axis argument is either 60°±15° or 240°±15°. The spin axis obliquity can only be preliminarily constrained, indicating retrograde rotation for the first argument value, and prograde rotation for the second suggested spin axis argument. A nucleus bulk density in the range 100-370 kg m−3 is found for the nominal ΔP, while an upper limit of 500 kg m−3 can be placed if the uncertainty in ΔP is considered. Both considered thermophysical models yield the same spin axis, size, shape, and density estimates. Alternatively, if calculated water production rates within an envelope around the measured data are considered, it is no longer possible to constrain the size, shape, and spin axis orientation of the nucleus, but an upper limit on the nucleus bulk density of 600 kg m−3 is suggested.  相似文献   

6.
Asteroid families are the remnants of catastrophic collisions, and their fundamental physical properties provide us the information of their parent bodies and thereafter dynamical evolutions. Especially, the orbit and spin characteristics can reveal the influences of the Yarkovsky effect and the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect on the evolution of the asteroid family, respectively. Based on the Asteroid Lightcurve Database (LCDB), the spin rate distribution of the Flora asteroid family is studied, and a tendency that the spin rates of the small Flora family members concentrate primarily in the range of 3–5 d?1 is found. The analysis on the spin states of the Flora family asteroids tells that most of these asteroid family members are in the prograde spinning state. However, for the Flora family members with an orbital semi-major axis smaller than 2.2 au, the ratio between the number of prograde spinning members and that of retrograde ones is close to that of the near-Earth asteroids, namely 1 : 3. Furthermore, for those prograde spinning Flora family asteroids with an orbital semi-major axis larger than 2.2 au, a portion of them exhibit the aggregation in the distribution of orbital semi-major axis against the absolute magnitude, and in which nine members show the features similar to the Slivan state.  相似文献   

7.
Rotational Properties of Cometary Nuclei   总被引:1,自引:0,他引:1  
We review several techniques used to retrieve rotational parameters from observations. The spin period of a dozen of comets retrieved with these techniques are summarized. We describe how the spin period of comet Hale-Bopp (C/1995 O1) has been calculated with a high accuracy (11.30–11.34 h). Although several authors converged to a spin axis orientation at (α,δ) = (275 ± 15°, -55 ± 5°), detailed studies indicate that the dust jets morphology in 1996–1997 may be incompatible with this orientation. Comet 19P/Borrelly has been recently observed by the Deep Space 1 spacecraft. At the same time, its spin axis orientation and period have been determined by several authors to be respectively (α,δ) = (225 ± 15°, -10 ± 10°)and 26h. These two comets are likely to be in (or close to) a principal axis spin state. We discuss new modeling of the spin state of comet 46P/Wirtanen, the target of the Rosetta mission. The model involves a three-dimensional shape and thermal model, from which the torque of the non gravitational force is calculated at each time step. The moments of inertia are computed for each irregular shape. The results from numerical integrations show that this comet can remain in a principal axis spin state during more than 10 orbits if the spin period does not get above~6 h. If the spin period increases, its nucleus gets rapidly into excited spin states. It shows that even small and very active short-period comets are not necessarily in non principal axis spin states. In the last section, the consequences of recent observations and modeling of the rotational parameters of comet nuclei are discussed, and unsolved problems are presented.  相似文献   

8.
Hirayama (1927) studied secular perturbations between a retrograde body and a prograde body by considering that the mean motion of the retrograde body is negative. In this paper we discuss the same problem by measuring angle variables from the departure point and keeping the mean motions positive for both the retrograde body and the prograde body, and compare the analytical solutions with numerically integrated orbits.  相似文献   

9.
The results of Chernous'ko are extended numerically in order to investigate the character of locked-in rotational motion for orbits of arbitrary eccentricity. It is found that for certain ranges of eccentricity, the rotational lock for the higher spin rates in stronger than that of a 1/1 rotational lock in a circular orbit. Furthermore the limiting values of the instantaneous spin rate of the satellite are established for any given rotational lock.  相似文献   

10.
A.G.W. Cameron 《Icarus》1975,24(3):280-284
The cosmogony of Uranus is discussed within the context of a picture in which solid condensed materials accumulate to form a large body, which then acquires significant amounts of gas from the primitive solar nebula. Of prime cosmogonical importance is the tilt of the equatorial plane of the planet and of the plane of tilt of the planet can easily occur as a result of a major collision during the formation process; it seems most likely that the tilt of the satellite orbits requires that they were formed from a gaseous disc rotating about the planet after the tilt of the planetary rotational axis had occurred. Possible methods for tilting this gaseous disc are discussed. A strong early magnetic field may have helped in this and may have played an essential role in showing down the spin of the planet to the present observed value. These processes may have produced significant compositional differences between the satellites of Uranus and those of Jupiter and Saturn.  相似文献   

11.
We consider a model of spin-orbit interaction, describing the motion of an oblate satellite rotating about an internal spin-axis and orbiting about a central planet. The resulting second order differential equation depends upon the parameters provided by the equatorial oblateness of the satellite and its orbital eccentricity. Normal form transformations around the main spin-orbit resonances are carried out explicitly. As an outcome, one can compute some invariants; the fact that these quantities are not identically zero is a necessary condition to prove the existence of nearby periodic orbits (Birkhoff fixed point theorem). Moreover, the nonvanishing of the invariants provides also the stability of the spin-orbit resonances, since it guarantees the existence of invariant curves surrounding the periodic orbit.  相似文献   

12.
We carried out new observations of the binary asteroid 22 Kalliope (S2/2001) with the Shane 3-m telescope of the Lick observatory in October and November 2001. With a FWHM (full width at half maximum) of 0″.2, Kalliope (apparent size of about 0″.15) was not resolved but it was possible to separate the secondary from its primary whose apparent separation was of the order of 0″.7 with a magnitude difference of 3.22±0.20. As each set of observations spanned a few days of time, they are well distributed along the secondary's orbit, enabling us to accurately estimate its orbit.The satellite orbits 22 Kalliope in a prograde manner with respect to Kalliope's rotational spin (which is in a retrograde sense relative to its orbit around the Sun), on a highly inclined (i=19.8±2.0 with respect to the equator of 22 Kalliope) and moderately eccentric orbit (e=0.07±0.02) with an orbital period of 3.58±0.08 days. The semi-major axis is 1020±40 km. Using Kalliope's diameter as determined from IRAS data, the asteroid's bulk density is about 2.03±0.16 g cm−3, suggestive of a highly porous body with a porosity of 70% considering that the grain density of its meteoritic analog is of ∼7.4 g cm−3. This suggests a rubble pile, rather than solid, body. The measured nodal precession rate of the secondary's orbit seems to be much higher than expected from Kalliope's oblateness, assuming a homogeneous body (constant density). This suggests that Kalliope may be 60% more elongated or 35% larger than presently believed or/and that its internal structure is highly inhomogeneous with a denser outer shell.  相似文献   

13.
小行星族作为灾变碰撞的残留物,其基础物理性质提供了其母体以及后续演化信息.其中轨道以及自转特性分别反映了Yarkovsky效应以及Yarkovsky-O’Keefe-Radzievskii-Paddack效应(YORP效应)对于小行星族演化的影响.基于小行星光变数据库(Asteroid Lightcurve Database),通过对Flora小行星族自转速率分布进行研究,发现随着直径减小,族成员自转速率倾向于主要集中在3–5 d-1的范围内.同时,可以注意到Flora小行星族整体表现出更倾向于顺行自转状态的现象,但对于轨道半长轴小于2.2au的成员来说,其顺行自转与逆行自转状态成员数目比接近于近地小行星中顺逆行自转状态源1:3的比例;此外,对于轨道半长轴大于2.2 au且具有顺行自转状态的部分族成员,在轨道半长轴-绝对星等分布中表现出聚集现象,并在聚集区域中有9颗成员展现出类似Slivan状态特征.  相似文献   

14.
The resonance C7 is a 1:1 eccentricity (apsidal) resonance between the longitude of a satellite's pericentre and the mean longitude of the Sun. A previous paper by the author (Breiter, 1999) identified it as the strongest of the lunisolar apsidal resonances. After the reduction to a single degree of freedom, the problem is studied qualitatively for the prograde orbits around the Earth and Mars. Pitchfork, saddle-node, and saddle connection bifurcations give rise to a complicated phase flow, which may involve up to nine critical points. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Let a rigid satellite move in a circular orbit about a spherically symmetric central body, taking into account only the main term of the gravitational torque. We shall investigate and find all solutions of the following problem: Let the satellite be permitted to spin about an axis that is fixed in the orbit frame; the satellite need not be symmetric, the spin not uniform, and the spin axis not a principal axis of inertia. The complete discussion of this type of spin reveals that the cases found by Lagrange and by Pringle - and the well-known spin about a principal axis of inertia orthogonal to the orbit plane — are essentially the only ones possible; the only further (degenerate) case is uniform spin of a two-dimensional, not necessarily symmetric satellite about certain axes that are orthogonal to the plane containing the body and to the orbit of the satellite around the central body.  相似文献   

16.
In extending the analysis of the four secular resonances between close orbits in Li and Christou (Celest Mech Dyn Astron 125:133–160, 2016) (Paper I), we generalise the semianalytical model so that it applies to both prograde and retrograde orbits with a one-to-one map between the resonances in the two regimes. We propose the general form of the critical angle to be a linear combination of apsidal and nodal differences between the two orbits \( b_1 \Delta \varpi + b_2 \Delta \varOmega \), forming a collection of secular resonances in which the ones studied in Paper I are among the strongest. Test of the model in the orbital vicinity of massive satellites with physical and orbital parameters similar to those of the irregular satellites Himalia at Jupiter and Phoebe at Saturn shows that \({>}20\) and \({>}40\%\) of phase space is affected by these resonances, respectively. The survivability of the resonances is confirmed using numerical integration of the full Newtonian equations of motion. We observe that the lowest order resonances with \(b_1+|b_2|\le 3\) persist, while even higher-order resonances, up to \(b_1+|b_2|\ge 7\), survive. Depending on the mass, between 10 and 60% of the integrated test particles are captured in these secular resonances, in agreement with the phase space analysis in the semianalytical model.  相似文献   

17.
第三体摄动分析解的一种表达式   总被引:2,自引:0,他引:2  
季江徽  刘林  张伟 《天文学报》2000,41(1):79-92
在太阳系中,大行星、小行星和卫星(包括自然卫星和人造卫星)等对应的运动问题,都可以处理成受摄二体问题,而摄动源又多为第三体,作为第三体的摄动天体,有的比运动天体离中心天体近,有的则相反,前者称为内摄内体,全者则称为外摄天体,对一个具体的运动天体,可以同时出现这两个摄动天体,但是,只要运动天体与摄动天体的轨道都建立在以中心天体(质心)为坐标原点的同一坐标系内,那么在一定条件下(即除运动天体与摄动天体  相似文献   

18.
We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entire domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin–orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenter’s dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.  相似文献   

19.
Asteroids have a wide range of rotation states. While the majority spin a few times to several times each day in principal axis rotation, a small number spin so slowly that they have somehow managed to enter into a tumbling rotation state. Here we investigate whether the Yarkovsky-Radzievskii-O'Keefe-Paddack (YORP) thermal radiation effect could have produced these unusual spin states. To do this, we developed a Lie-Poisson integrator of the orbital and rotational motion of a model asteroid. Solar torques, YORP, and internal energy dissipation were included in our model. Using this code, we found that YORP can no longer drive the spin rates of bodies toward values infinitely close to zero. Instead, bodies losing too much rotation angular momentum fall into chaotic tumbling rotation states where the spin axis wanders randomly for some interval of time. Eventually, our model asteroids reach rotation states that approach regular motion of the spin axis in the body frame. An analytical model designed to describe this behavior does a good job of predicting how and when the onset of tumbling motion should take place. The question of whether a given asteroid will fall into a tumbling rotation state depends on the efficiency of its internal energy dissipation and on the precise way YORP modifies the spin rates of small bodies.  相似文献   

20.
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号