首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High sensitivity observations were performed at 1.2- and 3-mm wavelengths with the IRAM 30-m telescope (Spain) between April 1996 and December 1999 to investigate the nitrile composition of Titan's stratosphere. A part of our dataset consists of high resolution spectra of HC14N taken at 88.6 GHz as well as spectra of HC15N recorded at 258.16 GHz. From a thorough analysis of both lines and with the help of appropriate radiative transfer calculations we show that the isotopic ratio 15N/14N is strongly enhanced compared to the terrestrial value. We propose that the range 3.9-4.5 should be considered as a basis for the enrichment factor. Five individual lines of HC3N were measured at 39-kHz resolution using a frequency-switched technique. Several CH3CN features were recorded at 78-kHz resolution in two transitions around 147.6 and 220.7 GHz. The high spectral resolution and the good signal-to-noise ratio affecting the spectra permit us to retrieve disk-averaged vertical profiles for HCN up to 450 km and for HC3N and CH3CN up to 500 km. Comparison of our inferred vertical profiles with relevant results of presently published photochemical models is presented. We show that the profiles of HCN and HC3N predicted by various authors below 450-km altitude appear inconsistent with our new observations. We find that the three distributions present very different gradients of abundance below 200-km altitude down to the condensation levels around 80 km. In the upper stratosphere HC3N and CH3CN have approximately the same mixing ratio of about 4×10−8 at 450 km, at least one order of magnitude lower than that of HCN. In the same time, another nitrile HC5N has been searched for by observing four transitions located between 109 and 221 GHz. As no spectral features could be detected after several hours of integration time, we propose an upper limit for the mixing ratio equal to 4×10−10 assuming a uniform distribution of this compound in the lower stratosphere.  相似文献   

2.
Up to now, there has been no corroboration from Cassini CIRS of the Voyager IRIS-discovery of cyanoacetylene (HC3N) ice in Titan’s thermal infrared spectrum. We report the first compelling spectral evidence from CIRS for the ν6 HC3N ice feature at 506 cm−1 at latitudes 62°N and 70°N, from which we derive particle sizes and column abundances in Titan’s lower stratosphere. We find mean particle radii of 3.0 μm and 2.3 μm for condensed HC3N at 62°N and 70°N, respectively, and corresponding ice phase molecular column abundances in the range 1-10 × 1016 mol cm−2. Only upper limits for cloud abundances can be established at latitudes of 85°N, 55°N, 30°N, 10°N, and 15°S. Under the assumption that cloud tops coincide with the uppermost levels at which HC3N vapor saturates, we infer geometric thicknesses for the clouds equivalent to 10-20 km or so, with tops at 165 km and 150 km at 70°N and 62°N, respectively.  相似文献   

3.
R.K. Khanna 《Icarus》2005,178(1):165-170
Infrared spectra of crystalline HC3N and C2H2 were investigated at several temperatures between 15 and 150 K. The characteristics of the 505 and 753 cm−1 bands of HC3N are in complete agreement with the emission spectral data on Titan obtained by the Voyager IRIS instrument, thus confirming the identification of crystalline HC3N on Titan. A composite spectrum in the 720-800 cm−1 region, with contributions from HC3N and C2H2 in crystalline phases, reproduces the Voyager emission data in that region, thus providing a suggestion for the identification of crystalline C2H2 on Titan.  相似文献   

4.
Mid- and far-infrared spectra from the Composite InfraRed Spectrometer (CIRS) have been used to determine volume mixing ratios of nitriles in Titan's atmosphere. HCN, HC3N, C2H2, and temperature were derived from 2.5 cm−1 spectral resolution mid-IR mapping sequences taken during three flybys, which provide almost complete global coverage of Titan for latitudes south of 60° N. Three 0.5 cm−1 spectral resolution far-IR observations were used to retrieve C2N2 and act as a check on the mid-IR results for HCN. Contribution functions peak at around 0.5-5 mbar for temperature and 0.1-10 mbar for the chemical species, well into the stratosphere. The retrieved mixing ratios of HCN, HC3N, and C2N2 show a marked increase in abundance towards the north, whereas C2H2 remains relatively constant. Variations with longitude were much smaller and are consistent with high zonal wind speeds. For 90°-20° S the retrieved HCN abundance is fairly constant with a volume mixing ratio of around 1 × 10−7 at 3 mbar. More northerly latitudes indicate a steady increase, reaching around 4 × 10−7 at 60° N, where the data coverage stops. This variation is consistent with previous measurements and suggests subsidence over the northern (winter) pole at approximately 2 × 10−4 m s−1. HC3N displays a very sharp increase towards the north pole, where it has a mixing ratio of around 4 × 10−8 at 60° N at the 0.1-mbar level. The difference in gradient for the HCN and HC3N latitude variations can be explained by HC3N's much shorter photochemical lifetime, which prevents it from mixing with air at lower latitude. It is also consistent with a polar vortex which inhibits mixing of volatile rich air inside the vortex with that at lower latitudes. Only one observation was far enough north to detect significant amounts of C2N2, giving a value of around 9 × 10−10 at 50° N at the 3-mbar level.  相似文献   

5.
S. Carles  J.-C. Guillemin 《Icarus》2011,211(1):901-905
Rate coefficient of the cyanide anion (CN) with cyanoacetylene (HC3N) reaction, has been studied in gas phase at room temperature using a Flowing Afterglow Langmuir Probe - Mass Spectrometer (FALP-MS) apparatus. The rate constant for the CN + HC3N reaction is k = 4.8 × 10−9 cm3/s with an uncertainty of 30%.  相似文献   

6.
Mid-infrared limb spectra in the range 600-1400 cm−1 taken with the Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft were used to determine vertical profiles of HCN, HC3N, C2H2, and temperature in Titan's atmosphere. Both high (0.5 cm−1) and low (13.5 cm−1) spectral resolution data were used. The 0.5 cm−1 data gave profiles at four latitudes and the 13.5 cm−1 data gave almost complete latitudinal coverage of the atmosphere. Both datasets were found to be consistent with each other. High temperatures in the upper stratosphere and mesosphere were observed at Titan's northern winter pole and were attributed to adiabatic heating in the subsiding branch of a meridional circulation cell. On the other hand, the lower stratosphere was much colder in the north than at the equator, which can be explained by the lack of solar radiation and increased IR emission from volatile enriched air. HC3N had a vertical profile consistent with previous ground based observations at southern and equatorial latitudes, but was massively enriched near the north pole. This can also be explained in terms of subsidence at the winter pole. A boundary observed at 60° N between enriched and un-enriched air is consistent with a confining polar vortex at 60° N and HC3N's short lifetime. In the far north, layers were observed in the HC3N profile that were reminiscent of haze layers observed by Cassini's imaging cameras. HCN was also enriched over the north pole, which gives further evidence for subsidence. However, the atmospheric cross section obtained from 13.5 cm−1 data indicated a HCN enriched layer at 200-250 km, extending into the southern hemisphere. This could be interpreted as advection of polar enriched air towards the south by a meridional circulation cell. This is observed for HCN but not for HC3N due to HCN's longer photochemical lifetime. C2H2 appears to have a uniform abundance with altitude and is not significantly enriched in the north. This is consistent with observations from previous CIRS analysis that show increased abundances of nitriles and hydrocarbons but not C2H2 towards the north pole.  相似文献   

7.
G. Paubert  D. Gautier  R. Courtin 《Icarus》1984,60(3):599-612
The flux emitted by Titan's disk in millimeter lines of HCN, HC3N, CH3CN, and CO is calculated by means of a radiative transfer formulation which takes into account the sphericity of the atmosphere. It is demonstrated that the plane-parallel approximation for radiative transfer is no longer valid, especially in the core of emission lines, when Titan is not spatially resolved. The antenna temperatures which would be measured by large radiotelescopes observing Titan at frequencies of (1?0) and (2?1) transitions of CO, of (1?0), (2?1), and (3?2) transitions of HCN, and of selected transitions of HC3N and CH3CN in the range 80–300 GHz are calculated. The observability of these transitions is investigated. It is concluded that there is the possibility of inferring the vertical stratospheric distribution of these species from line shape measurements to be achieved with existing or forthcoming radioastronomical instrumentation. The determination of the CO abundance by D. O. Muhleman, G. L. Berge, and R. T. Clancy (1984, (Science (Washington, D.C.), 223, 393–396) from measurements at 115.3 GHz in two 200 MHz bands, is reinterpreted by means of this radiative transfer formulation. A CO mixing ratio between 3 × 10?5 and 18 × 10?5, with a most plausible value of 7.5 × 10?5, is found.  相似文献   

8.
We present 1.25-19 μm infrared spectra of pure solid CH4 and H2O/CH4=87, 20, and 3 solid mixtures at temperatures from 15 to 150 K. We compare and contrast the absorptions of CH4 in solid H2O with those of pure CH4. Changes in selected peak positions, profiles, and relative strength with temperature are presented, and absolute strengths for absorptions of CH4 in solid H2O are estimated. Using the two largest (ν3+ν4) and (ν1+ν4) near-IR absorptions of CH4 at 2.324 and 2.377 μm (4303 and 4207 cm−1), respectively, as examples, we show that peaks of CH4 in solid H2O are at slightly shorter wavelength (higher frequency) and broader than those of pure solid CH4. With increasing temperature, these peaks shift to higher frequency and become increasingly broad, but this trend is reversible on re-cooling, even though the phase transitions of H2O are irreversible. It is to be hoped that these observations of changes in the positions, profiles, and relative intensities of CH4 absorptions with concentration and temperature will be of use in understanding spectra of icy outer Solar System bodies.  相似文献   

9.
Sang J. Kim  T.R. Geballe 《Icarus》2005,179(2):449-458
We have used synthetic spectra to analyze a medium resolution 2.9-4.2 μm spectrum of Saturn's temperate region observed at UKIRT using CGS4. The synthetic spectra include CH4, PH3, and NH3 lines, for which mixing ratios were adopted from recent Cassini results. The observed absorption features in the spectrum are well accounted for by lines of these molecular species formed 22 +/− 8 km above the 1 bar pressure level at ∼610 mbar. The influence of optically thin haze particles at higher altitudes on the spectrum is not pronounced, with higher spectral resolution probably required to constrain the effects of haze in this wavelength region. Fluorescent line emission by CH4 in its ν3 and ν3+ν4ν4 bands, detected in the 3.2-3.5 μm region, originates between 400 km (∼0.06 mbar) and 800 km (∼0.01 μbar) above the 1 bar level, with peak contributions from the two major contributing bands at 550 km (∼3 μbar) and 700 km (∼0.1 μbar), respectively.  相似文献   

10.
A spectrum of Jupiter between 6000 and 12 000 cm? at high resolution (0.05 cm?) was recorded with a Michelson interferometer at Palomar Mountain in October 1974. An analysis of the R branch of the 3ν3CH4 band with the reflecting-layer model, taking into account the H2 absorption which occurs in the same spectral range, leads to a Lorentzian half-width of 0.09 ± 0.02 cm?1, a rotational temperature of 175 ± 10° K, and a CH4 abundance of order 52m atm. Five lines of the 13CH43ν3 band have been identified; a comparison with new laboratory spectra indicates that the 13CH4/12CH4 ratio in the Jupiter atmosphere is close to the terrestrial ratio.  相似文献   

11.
We report the detection of 13CH3D in Titan's stratosphere from Cassini/CIRS infrared spectra near 8.7 μm. Fitting simultaneously the ν6 bands of both 13CH3D and 12CH3D and the ν4 band of CH4, we derive a D/H ratio equal to and a 12C/13C ratio in deuterated methane of , consistent with that measured in normal methane.  相似文献   

12.
We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν2+ν3 band of CH3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν3 band of C2H2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C2H2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν3+ν9+ν11 band of C2H6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C2H6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH4 to the ν7 band of C2H6, and derive a mixing ratio of 9±4×10−6 for this species. Most of the C2H6 3.3 μm line emission arises in the altitude range 460-620 km (at ∼μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (∼30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (∼12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that they are composed of hydrocarbons.  相似文献   

13.
The reaction of CN? with cyanoacetylene (HC3N), has been studied as a function of the HC3N pressure in a quadrupole tandem mass spectrometer. The mass spectra revealed the fast depletion of the CN? parent ion and formation of larger anions of rapidly growing size. Most of the ions observed were found to belong to two series of products: (HC3N)x·C2p+1N? and (HC3N)x·C2pN? resulting from the sequential additions of HC3N molecules and loss of HCN or HCCN molecules. The mechanism and energetics of the first two reaction steps are briefly discussed. The laboratory data are compared with those from the Cassini CAPS-ELS spectrometer. It is believed that the reactions observed could account for the growth of anions in Titan’s ionosphere.  相似文献   

14.
We present near-IR spectra of solid CO2 in H2O and CH3OH, and find they are significantly different from that of pure solid CO2. Peaks not present in either pure H2O or pure CO2 spectra become evident when the two are mixed. First, the putative theoretically forbidden CO2 (2ν3) overtone near 2.134 μm (4685 cm−1), that is absent from our spectrum of pure solid CO2, is prominent in the spectra of H2O/CO2=5 and 25 mixtures. Second, a 2.74-μm (3650 cm−1) dangling OH feature of H2O (and a potentially related peak at 1.89 μm) appear in the spectra of CO2-H2O ice mixtures, but are probably not diagnostic of the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with H2O. Warming causes some peak positions and profiles in the spectrum of a H2O/CO2=5 mixture to take on the appearance of pure CO2. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 (2ν3) overtone near 2.134 μm (4685 cm−1) is not present in pure CO2 but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies.  相似文献   

15.
Far-IR (25-50 μm, 200-400 cm−1) nadir and limb spectra measured during Cassini's four year prime mission by the Composite InfraRed Spectrometer (CIRS) instrument have been used to determine the abundances of cyanogen (C2N2), methylacetylene (C3H4), and diacetylene (C4H2) in Titan's stratosphere as a function of latitude. All three gases are enriched at northern latitudes, consistent with north polar subsidence. C4H2 abundances agree with those derived previously from mid-IR data, but C3H4 abundances are about 2 times lower, suggesting a vertical gradient or incorrect band intensities in the C3H4 spectroscopic data. For the first time C2N2 was detected at southern and equatorial latitudes with an average volume mixing ratio of 5.5±1.4×10−11 derived from limb data (>3-σ significance). This limb result is also corroborated by nadir data, which give a C2N2 volume mixing ratio of 6±3×10−11 (2-σ significance) or alternatively a 3-σ upper limit of 17×10−11. Comparing these figures with photochemical models suggests that galactic cosmic rays may be an important source of N2 dissociation in Titan's stratosphere. Like other nitriles (HCN, HC3N), C2N2 displays greater north polar relative enrichment than hydrocarbons with similar photochemical lifetimes, suggesting an additional loss mechanism for all three of Titan's main nitrile species. Previous studies have suggested that HCN requires an additional sink process such as incorporation into hazes. This study suggests that such a sink may also be required for Titan's other nitrile species.  相似文献   

16.
New laboratory spectra of crystalline and amorphous diacetylene ice have been recorded in the range of 7000-500 cm−1 (1.4-20 μm) to aid in the identification of solid diacetylene on Saturn's moon Titan. We have established that amorphous diacetylene ice is stable only at temperatures less than 70±1 K. With respect to observations on Titan, the best approach would be to utilize future space-based telescopes to search for the ν4 (3277/3271 cm−1) in absorption against the reflected light from the sun and the slightly weaker ν8 absorption bands (676/661 cm−1) in absorption against the continuum emission.  相似文献   

17.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

18.
We have used the spectra obtained by the Composite Infrared Spectrometer (CIRS) onboard the Cassini spacecraft to search for latitudinal variation in the 15N/14N ratio on Jupiter. We found no variations statistically significant given the observational and model uncertainties. The absence of latitudinal variations demonstrates that 15NH3 is not fractionated in Jupiter's atmosphere, and that the measured 15N/14N represents Jupiter's global value. Our mean value for the global jovian 15N/14N ratio of (2.22±0.52)×10−3 agrees with previous measurements made by Fouchet et al. (2000, Icarus 143, 223-243) and Owen et al. (2001, Astrophys. J. 553, L77-L79). We argue that the jovian isotopic 15N/14N ratio must represent the solar nitrogen isotopic composition. The solar 15N/14N ratio hence significantly differs from the terrestrial value: (15N/14N)=3.68×10−3. This supports the proposition that terrestrial nitrogen originates from a nitrogen reservoir isolated from the main nitrogen reservoir in the proto-solar nebula. The origin and carrier of this isolated reservoir are still unknown.  相似文献   

19.
We have studied the excitation of the Cameron bands of carbon monoxide (a3πX1Σ+) by electron impact on CO and CO2. This investigation was prompted by a recent study of the Martian airglow by Conway (1981) who concluded that the cross section for the dissociative excitation of the Cameron bands is seven times larger than the laboratory value reported by Ajello (1971a) and by a perplexing inconsistency between the optical cross section and CO(a3π) time-of-flight experiments. We have found now that three factors have contributed to these discrepancies: (1) spectral contamination of the (1,4) Cameron band used by Ajello to normalize the entire Cameron band cross section, (2) major revisions in the magnitude of the CO(a3π) radiative lifetime, and (3) new insights into the effects of the CO(a3π) velocity distribution on the field of view of the emission experiments. The new results largely reconcile the TOF and emission measurements, but they also suggest that the calculated photoelectron fluxes in the Martian atmosphere may be too large by a factor of 3.  相似文献   

20.
R. Courtin  D. Gautier  A. Marten  V. Kunde 《Icarus》1983,53(1):121-132
The 12C/13C ratio in Jupiter has been derived from the analysis of the ν4 band of CH4 in the spectra recorded by the Voyager 1 IRIS experiment. It is found to be 160?55+40, i.e., 1.8?0.6+0.4 times the terrestrial value. Instrumental noise as well as systematic sources of error were taken into account for the estimate of the uncertainty. No plausible theory predicts such a difference between the values of the 12C/13C ratio in the inner solar system and in Jupiter. However, values of this ratio in the solar neighborhood 4.5 by ago inferred—through the use of models of chemical evolution of the Galaxy —from recent interstellar medium measurements are compatible with the present determination in Jupiter. The Jovian value, rather than the terrestrial one, could then be representative of the ratio in the primitive solar nebula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号