首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ∼11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ∼2.7 × 105 M, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event.Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s−1 and 9.34 × 1039 erg s−1, and are in excess of the Eddington-limit of 1.5 M accreting source. Spectral analysis of these sources exhibit an absorbed-power law with the hydrogen column density higher than that derived from the optical measurements.  相似文献   

2.
Abstract— Films condensed from vapors containing SiO, Fe, or Mg showed an amorphous structure. Infrared (IR) spectra and electron microscopic characterization have been carried out on these films. After the heat treatment of these films in air, IR peaks at approximately 18–23 μm appeared, in addition to peaks attributable to SiO2. These peaks can be attributed to metallic oxides such as FeO, Fe2O3, and MgO. It can be concluded that Fe‐ or Mg‐bearing silicate minerals cannot be produced by the rapid cooling of SiO, Fe, or Mg vapors. Although IR spectra of FeO have been discussed in order to match some spectra obtained with the Infrared Space Observatory, the identification of FeO as the impurity would be very important because the IR spectra of FeO grains are very dependent on the shape and size of the grains. These impurities can also influence the IR spectral feature of SiO2.  相似文献   

3.
Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-volatile (<2 wt.%) silicate samples (90 rock slabs, corresponding powders, and 22 geostandards) were split into training, validation, and test sets. The LIBS spectra and chemical compositions of the training set were used with three multivariate methods to predict the chemical compositions of the test set. The methods were partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs. Both the full LIBS spectrum and the intensity at five pre-selected spectral channels per major element (feature selection) were used as input data for the multivariate calculations. The training spectra were supplied to the algorithms without averaging (i.e. five spectra per target) and with averaging (i.e. all spectra from the same target averaged and treated as one spectrum). In most cases neural networks did not perform better than PLS for our samples. PLS2 without spectral averaging outperformed all other procedures on the basis of lowest quadrature root mean squared error (RMSE) for both the full test set and the igneous rocks test set. The RMSE for PLS2 using the igneous rock slab test set is: 3.07 wt.% SiO2, 0.87 wt.% TiO2, 2.36 wt.% Al2O3, 2.20 wt.% Fe2O3, 0.08 wt.% MnO, 1.74 wt.% MgO, 1.14 wt.% CaO, 0.85 wt.% Na2O, 0.81 wt.% K2O. PLS1 with feature selection and averaging had a higher quadrature RMSE than PLS2, but merits further investigation as a method of reducing data volume and computation time and potentially improving prediction accuracy, particularly for samples that differ significantly from the training set. Precision and accuracy were influenced by the ratio of laser beam diameter (∼490 μm) to grain size, with coarse-grained rocks often resulting in lower accuracy and precision than analyses of fine-grained rocks and powders. The number of analysis spots that were normally required to produce a chemical analysis within one standard deviation of the true bulk composition ranged from ∼10 for fine-grained rocks to >20 for some coarse-grained rocks.  相似文献   

4.
Recently, an unidentified 3.3-3.4 μm feature found in the solar occultation spectra of the atmosphere of Titan observed by Cassini/VIMS was tentatively attributed to the C-H stretching mode of aliphatic hydrocarbon chains attached to large organic molecules, but without properly extracting the feature from adjacent influences of strong CH4 and weak C2H6 absorptions (Bellucci et al., 2009). In this work, we retrieve the detailed spectral feature using a radiative transfer program including absorption and fluorescent emission of both molecules, as well as absorption and scattering by haze particles. The spectral features of the haze retrieved from the VIMS data at various altitudes are similar to each other, indicating relatively uniform spectral properties of the haze with altitude. However, slight deviations observed near 127 km and above 300 km suggest inhomogeneity at these altitudes. We find that the positions of the major spectral peaks occur at 3.33-3.37 μm, which are somewhat different from the typical 3.3 μm aromatic or 3.4 μm aliphatic C-H stretches usually seen in the spectra of dust particles of the interstellar medium and comets. The peaks, however, coincide with those of the solid state spectra of C2H6, CH4, and CH3CN; and a broad shoulder from 3.37 to 3.50 μm coincides with those of C5H12 and C6H12 as well as those of typical aliphatic C-H stretches. This result combined with high-altitude (∼1000 km) haze formation process recently reported by Waite et al. (2007) opens a new question on the chemical composition of the haze particles. We discuss the possibility that the 3 μm feature may be due to the solid state absorption bands of these molecules (or some other molecules) and we advocate additional laboratory measurements for the ices of hydrocarbon and nitrogen-bearing molecules present in Titan's atmosphere for the identification of this 3 μm feature.  相似文献   

5.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

6.
We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing the presence of dusty plasma near Enceladus’ South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 102 cm−3 before the closest approach to 105 cm−3 just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature, we show that the power law size distribution must hold down to at least 0.03 μm such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus’ plume is of the order of 102 cm−3 reducing to 1 cm−3 in the E-ring. The dust density for micrometer and larger sized grains is estimated to be about 10−4 cm−3 in the plume while it is about 10−6-10−7 cm−3 in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 μm sized grains. The effective dusty plasma Debye length is estimated and compared with inter-grain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 μm sized grains just 1 min before the closest approach. The charging time decreases substantially in the plume where it is only a fraction of a second for 1 μm sized grains, 1 s for 0.1 μm sized grains and about 10 s for 0.03 μm sized grains.  相似文献   

7.
At present, there are few laboratory spectra of analogs of astrophysical interest in the far-infrared range (FIR). Laboratory infrared (IR) spectra of simple ices and its mixtures obtained at low temperature and pressure are found mainly up to 25 μm, and few up to 200 μm. On the other hand, there are some spectra for carbonaceous material and silicates up to 2000 μm. Our laboratory is equipped with an IR spectrometer that integrates a Michelson interferometer with a resolution better than 0.25 cm−1 and that operates under vacuum conditions of 10−1 mbar. There is also a silicon bolometer, a very high-sensitivity detector in comparison with the standard deuterated triglycine sulfate (DTGS) detectors. The use of the bolometer and the possibility of working under vacuum conditions inside the optics and the sample compartment of the spectrometer allow obtaining high-sensitivity spectra free from H2O vapor and CO2 gas bands. Those conditions are necessary to obtain high-quality spectra in the FIR where absorption bands are much less intense than those in the mid-IR region. In our laboratory there is also a high-vacuum chamber that allows different studies on ices deposited onto a cold finger. We have already carried out experiments on the study of ice density as a function of temperature, UV irradiation of ices, temperature-programmed desorption (TPD) and UV-vis reflectance. In this work, we present the design of the experimental setup we are building to carry out different experiments simultaneously on the same ice sample, including spectra measurements in the mid-IR range (MIR) and the FIR. This design integrates jointly the IR spectrometer, the high-vacuum chamber and the silicon bolometer. Lastly, we show a spectrum we have obtained of a solid of astrophysical interest such as crystalline forsterite grains by using the polyethylene pellet technique.  相似文献   

8.
Discs around young stars are the sites of planet formation. The first step in this process is the growth of submicron grains to larger sized grains. I will review evidence for dust growth in CS discs, based on ISO and Spitzer infrared spectroscopic observations. Intermediate-mass stars, solar-type stars and even brown dwarfs will be discussed in the context of dust evolution. Furthermore, I will compare objects of several star-forming regions of different ages, and discuss the influence of the stellar parameters and environment on dust evolution, as witnessed by the observed dust characteristics. The main focus lies on what one can learn from 10 micron spectroscopy, the region where most astronomical dust species have important spectral features.  相似文献   

9.
Abstract— Infrared spectra of mineral grains from primitive meteorites could be useful for comparison with astronomical infrared spectra since some of their grains might be similar to those formed in the planet‐forming disks around young stars or in the envelopes surrounding late‐type stars. To assess the usefulness of meteorite spectra, olivine grains separated from primitive meteorites have been analyzed using FTIR microscope techniques in the 2–16 μm wavelength range. The sub‐micron sizes of the grains made a complex preparation process necessary. Five characteristic bands were measured near 11.9, 11.2, 10.4, 10.1, and 10.0 μm. The results of 59 analyses allow the calculation of band positions for meteoritic olivines as a function of their iron and magnesium contents. Comparison of the meteoritic results with astronomical data for comets and dust around young and old stars, which exhibit bands similar to the strongest infrared bands observed in the grains (at 11.2 μm), show that the spectral resolution of the astronomical observations is too low to ascertain the exact iron and magnesium (Mg: Fe) ratio of the dust in the 8–13 μm wavelength range.  相似文献   

10.
The production of Fe2SiO4 (fayalite) crystalline grains was performed by two processes, namely, grain formation in a plasma field by evaporating a mixture powder of Fe and SiO and heat treatment of the product collected on the radio-frequency (RF) electrode side. Fe grains <20 nm in size covered with an amorphous SiO layer selectively formed Fe2SiO4 grains by heating at 800 °C. By heating at 600 °C, in addition to the formation of Fe2SiO4 crystal grains, the FeO phase appeared. The doping effect of excited oxygen in a plasma field into the Fe small grains may be the trigger on the formation of fayalite through the FeO phase formation. The present experimental result suggests that the probability of Fe2SiO4 grain formation in space is low.  相似文献   

11.
We used numerical simulations to model the orbital evolution of interplanetary dust particles (IDPs) evolving inward past Earth’s orbit under the influence of radiation pressure, Poynting–Robertson light drag (PR drag), solar wind drag, and gravitational perturbations from the planets. A series of β values (where β is the ratio of the force from radiation pressure to that of central gravity) were used ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm−3 these β values correspond to dust particle diameters ranging from 200 μm down to 25 μm. As the dust particle orbits decay past 1 AU between 4% (for β = 0.02, or 25 μm) and 40% (for β = 0.0025, or 200 μm) of the population became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, we found about a quarter of the co-orbital IDPs became trapped as so-called quasi-satellites. Quasi-satellite IDPs always remain relatively near to Earth (within 0.1–0.3 AU, or 10–30 Hill radii, RH) and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their orbital eccentricities continue to decrease under the influence of PR drag and solar wind drag, forcing the IDPs onto more Earth-like orbits. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the quasi-satellite IDPs. After 104–105 years in the quasi-satellite resonance dust particles are typically less than 10RH from Earth and consistently coming within about 3RH. In the late stages of evolution, as the dust particles are escaping the 1:1 resonance, quasi-satellite IDPs can have deep close-encounters with Earth significantly below RH. Removing the effects of Earth’s gravitational acceleration reveals that encounter velocities (i.e., velocities “at infinity”) between quasi-satellite IDPs and Earth during these close-encounters are just a few hundred meters per second or slower, well below the average values of 2–4 km s−1 for non-resonant Earth-crossing IDPs with similar initial orbits. These low encounter velocities lead to a factor of 10–100 increase in Earth’s gravitationally enhanced impact cross-section (σgrav) for quasi-satellite IDPs compared to similar non-resonant IDPs. The enhancement in σgrav between quasi-satellite IDPs and cometary Earth-crossing IDPs is even more pronounced, favoring accretion of quasi-satellite dust particles by a factor of 100–3000 over the cometary IDPs. This suggests that quasi-satellite dust particles may dominate the flux of large (25–200 μm) IDPs entering Earth’s atmosphere. Furthermore, because quasi-satellite trapping is known to be directly correlated with the host planet’s orbital eccentricity the accretion of quasi-satellite dust likely ebbs and flows on 105 year time scales synchronized with Earth’s orbital evolution.  相似文献   

12.
M. Krause  J. Blum  M. Trieloff 《Icarus》2011,214(1):286-296
We present a non-invasive technique for measuring the thermal conductivity of fragile and sensitive materials. In the context of planet-formation research, the investigation of the thermal conductivity of porous dust aggregates provide important knowledge about the influence of heating processes, like internal heating by radioactive decay of short-lived nuclei, e.g. 26Al, on the evolution and growth of planetesimals. The determination of the thermal conductivity was performed by a combination of laboratory experiments and numerical simulations. An IR camera measured the temperature distribution of the sample surface heated by a well-characterized laser beam. The thermal conductivity as free parameter in the model calculations, exactly emulating the experiment, was varied until the experimental and numerical temperature distributions showed best agreement. Thus, we determined for three types of porous dust samples, consisting of spherical, 1.5 μm-sized SiO2 particles, with volume filling factors in the range of 15-54%, the thermal conductivity to be 0.002-0.02 W m−1 K−1, respectively. From our results, we can conclude that the thermal conductivity mainly depends on the volume filling factor. Further investigations, which are planned for different materials and varied contact area sizes (produced by sintering), will prove the appropriate dependencies in more detail.  相似文献   

13.
Spectral types (M4–M6), effective temperatures T ef (2700–2900 K), and free fall accelerations logg (4.0–4.5) are determined for five M dwarfs using their energy distributions in the spectral range λλ = 680…840 nm. Stellar spectra with resolutions R = 4000 were obtained using the IMACS spectrograph mounted on the ESO Walter Baade 6.5-m telescope. The spectral types are derived from spectral indices and the effective temperatures of the stars are estimated based on their spectral types. Values of T ef and logg are also derived from the comparison between the observed and theoretical energy distributions, calculated both for dust-free, standard NextGen model atmospheres of red dwarfs, and for semiempirical models considering the presence of dust in stellar atmospheres according to the technique developed by Pavlenko et al. We determine dust parameters for stellar atmospheres of these stars, and establish that it is necessary to account for the decrease in concentration of TiO molecules due to their condensation on dust grains, when T ef < 3000 K. We conclude that the radiation scattering by dust grains does not have an appreciable effect on energy distributions in the spectra of the considered stars.  相似文献   

14.
Abstract— We have investigated the 7.5–13.5 μm spectra of 30 definite or candidate carbon stars. We discuss the discrepancies between properties of SiC grains found in meteorites and the spectral properties of dust emitting in red giant winds, where most of the meteoritic grains are believed to have formed. We have investigated the nature of carbon star SiC and its relationship to meteoritic SiC dust, by using a X2-minimisation routine to fit the observed SiC features with laboratory optical constants that have been published for a variety of SiC samples. All but one of the observed astronomical SiC features are best fitted by α-SiC grains. All but one of the sources with 8–13 μm colour temperatures >1200 K (corresponding to mass-loss rates at the bottom end of the range) are best fitted by α-SiC in pure emission; whereas, all but one of the sources with 8–13 μm colour temperatures <1200 K (corresponding to higher mass-loss rates) are best fitted using self-absorbed α-SiC emission. The four sources whose SiC features are in net absorption (and which have the lowest 8–13 μm colour temperatures and, therefore, presumably the highest mass-loss rates) are also well fitted by self-absorbed α-SiC emission but with higher optical depths. Given that β-SiC is the form most commonly found in meteorites, we have searched for evidence of β-SiC in the circumstellar shells of all these stars. However, our observations provide no unequivocal evidence for the presence of β-SiC around these stars. Other discrepancies between meteoritic SiC grains and astronomical spectra are discussed. The self-absorption that we find in the observed SiC emission features has not previously been taken into account in radiative transfer modeling and so the amount of SiC present in the outflows may have been underestimated in the past.  相似文献   

15.
A pulsed laser has been used to vaporize olivine, pyroxene, nickel-iron alloy, Al2O3, carbon, calcium carbonate, and silicon carbide, as well as mixtures of immiscible phases (Au–Al2O3 and Au-olivine) in oxidizing, reducing, and inert atmospheres. The collected condensates usually consist of strings of grains which have a median diameter of 20–30 nm, which is comparable to the calculated sizes of some interstellar and circumstellar dust grains. The silicate minerals vaporized in O2 as well as calcium carbonate and carbon vaporized in Ar or H2, are collected as glassy grains while the other materials produced crystalline grains. The systems of immiscible phases when vaporized produced condensates consisting of intermixed 2–50 nm grains of both components. The type of size distribution, crystal structures, and qualitiative elemental analyses of the condensates are given. Possible similarities between the mechanism of grain growth, structure, morphology, and chemistry of laboratory grains compared to interstellar and circumstellar grains, phases in meteorites and extraterrestrial dust collected in the stratosphere are examined. Applications of the experimental technique include the production of grain systems to serve as laboratory analogues for spectral studies of grain materials believed to exist in astronomical environments, and studies of the structure of grains condensed from complex gas mixtures.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

16.
We report an unexpected variability among mid-infrared spectra (IRTF and Spitzer data) of eight S-type asteroids for which all other remote sensing interpretations (e.g. VNIR spectroscopy, albedo) yield similar compositions. Compositional fitting making use of their mid-IR spectra only yields surprising alternative conclusions: (1) these objects are not “compositionally similar” as the inferred abundances of their main surface minerals (olivine and pyroxene) differ from one another by 35% and (2) carbonaceous chondrite and ordinary chondrite meteorites provide an equally good match to each asteroid spectrum.Following the laboratory work of Ramsey and Christensen (Ramsey, M.S., Christensen, P.R. [1998]. J. Geophys. Res. 103, 577-596), we interpret this variability to be physically caused by differences in surface particle size and/or the effect of space weathering processes. Our results suggest that the observed asteroids must be covered with very fine (<5 μm) dust that masks some major and most minor spectral features. We speculate that the compositional analysis may be improved with a spectral library containing a wide variety of well characterized spectra (e.g., olivine, orthopyroxene, feldspar, iron, etc.) obtained from very fine powders. In addition to the grain size effect, space weathering processes may contribute as well to the reduction of the spectral contrast. This can be directly tested via new laboratory irradiation experiments.  相似文献   

17.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   

18.
With the sample of 105 emission line galaxies selected from the Sloan Digital Sky Survey Data Release 4 (SDSS DR4), we have investigated the relations of the [OII]λ3727/Hα flux ratio with the dust extinction, the ionization state of interstellar gas and the metal abundance of galaxies. It is found that the dust extinction correction has a significant effect on the [OII]λ3727/Hα flux ratio. Before and after the dust distinction correction is made, the mean [OII]λ3727/Hα flux ratios are 0.48 and 0.89, respectively. After the dust extinction is corrected, the dispersion of the distribution of F([OII]λ3727) as a function of F(Hα) is obviously reduced. The [OII]λ3727/Hα flux ratio of metal-poor galaxies decreases with the increasing ionization degree of interstellar gas, but this relation does not exist in metal-rich galaxies. Besides, it is found that the [OII]λ3727/Hα flux ratio is correlated with the metal abundance. When 12 + lg(O/H) > 8.5, the [OII]λ3727/Hα flux ratio decreases with the increasing metal abundance; for the galaxies of 12 + lg(O/H) > 8.5, the spectral flux ratio correlates positively with the metal abundance. Finally, by using the parameters of gas ionization degree and metal abundances of galaxies, the formulae for calculating the [OII]λ3727/Hα flux ratios of different types of galaxies are given. With the [OII]λ3727/Hα flux ratio given by these formulae, the star formation rate can be derived by using the [OII]λ3727-line flux, for the galaxies of the redshift z > 0.4, such as the large number of galaxies to be observed by the LAMOST telescope.  相似文献   

19.
The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.  相似文献   

20.
Mid-infrared 2-D spectroscopic measurements from 8.0 to 12.7 μm of Mercury were taken using Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, 7-11 April 2006. Measurements reported here cover radar bright region C, a dark plains region west of Caloris Basin, and the interior of Caloris Basin. By use of spectral deconvolution with a large spectral library composed of many mineral compositions and grain size separates, we fitted, or “unmixed”, the Mercury spectra. We find mineral suites composed of magnesium-rich orthopyroxene and olivine, Ca-, Mg-, Na-rich clinopyroxene, potassium feldspar, and Na-bearing plagioclase feldspar. Both Ca- and Mg-rich garnet (pyrope and grossular, respectively) are apparently present in small amounts. Opaque minerals are required for spectral matching, with rutile (TiO2) repeatedly providing the “best fit”. However, in the case of the radar bright region C, perovskite also contributed to a very good fit. Caloris Basin infill is rich in both potassium feldspar and Na-rich plagioclase. There is little or no olivine in the Caloris interior smooth plains. Together with the high alkali content, this indicates that resurfacing magmas were low to intermediate in SiO2. Data suggest the dark plains exterior to Caloris are highly differentiated low-iron basaltic magmas resulting in material that might be classified as oligoclase basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号