首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 3D structural modelling of the Permian–Mesozoic Polish Basin was performed in order to understand its structural and sedimentary evolution, which led to basin maturation (Permian–Cretaceous) and its tectonic inversion (Late Cretaceous–Paleogene). The model is built on the present-day structure of the basin and comprises 13 horizons within the Permian to Quaternary rocks. The analysis is based on 3D depth views and thickness maps. The results image the basin-scale symmetry, the perennial localization of the NW–SE-oriented basin axis, the salt movements due to tectonics and/or burial, and the transverse segmentation of the Polish Basin. From these observations, we deduce that salt structures are correlated to the main faults and tectonic events. From the model analysis, we interpret the stress conditions, the timing, and the geometry of the tectonic inversion of the Polish Basin into a NW–SE-oriented central horst (Mid-Polish Swell) bordered by two lateral troughs. Emphasis is placed on the Zechstein salt, considering its movements during the Mesozoic sedimentation and its decoupling effect during the tectonic inversion. Moreover, we point to the structural control of the Paleozoic basement and the crustal architecture (Teisseyre–Tornquist Zone) on the geometry of the Polish Basin and the Mid-Polish Swell.  相似文献   

2.
The Teisseyre-Tornquist Zone that separates the East European Craton from the Palaeozoic Platform forms one of the most fundamental lithospheric boundaries in Europe. Devonian to Cretaceous-Paleogene evolution of the SE segment of this zone was analyzed using high-quality seismic reflection data that provided detailed information regarding entire Palaeozoic and Mesozoic sedimentary cover, with particular focus on problems of Late Carboniferous and Late Cretaceous-Paleogene basin inversion and uplift. Two previously proposed models of development and inversion of the Devonian-Carboniferous Lublin Basin seem to only partly explain configuration of this sedimentary basin. A new model includes Late Devonian-Early Carboniferous reverse faulting within the cratonic area NE from the Kock fault zone, possibly first far-field effect of the Variscan orogeny. This was followed by Late Carboniferous inversion of the Lublin Basin. Inversion tectonics was associated with strike-slip movements along the Ursynów-Kazimierz fault zone, and thrusting along the Kock fault zone possibly triggered by deeper strike-slip movements. Late Carboniferous inversion-related deformations along the NE boundary of the Lublin Basin were associated with some degree of ductile (quasi-diapiric) deformation facilitated by thick series of Silurian shales. During Mesozoic extension and development of the Mid-Polish Trough major fault zones within the Lublin Basin remained mostly inactive, and subsidence centre moved to the SW, towards the Nowe Miasto-Zawichost fault zone and further to the SW into the present-day Holy Cross Mts. area. Late Cretaceous-Paleogene inversion of the Mid-Polish Trough and formation of the Mid-Polish Swell was associated with reactivation of inherited deeper fault zones, and included also some strike-slip faulting. The study area provides well-documented example of the foreland plate within which repeated basin inversion related to compressive/transpressive deformations was triggered by active orogenic processes at the plate margin (i.e. Variscan or Carpathian orogeny) and involved important strike-slip reactivation of crustal scale inherited fault zones belonging to the Teisseyre-Tornquist Zone.  相似文献   

3.
The SW Baltic Sea occupies an area where crustal-scale regional tectonic zones of different age merge and overlap, creating a complex tectonic pattern. This pattern influenced the evolution of the Mesozoic sedimentary basin in this area. We present an interpretation of new high-resolution seismic data from the SW Baltic Sea which provided new information both on modes of the Late Cretaceous inversion of this part of the Danish–Polish Mesozoic basin system as well as on relationship between tectonic processes and syn-tectonic depositional systems. Within the Bornholm–Dar owo Fault Zone, located between the Koszalin Fault and Christiansø Block, both strike-slip and reverse faulting took place during the inversion-related activity. The faulting was related to reactivation of extensional pre-Permian fault system. Syn-tectonic sedimentary features include a prominent, generally S- and SE-directed, progradational depositional system with the major source area provided by uplifted basement blocks, in particular by the Bornholm Block. Sediment progradation was enhanced by downfaulting along a strike-slip fault zone and related expansion of accommodation space. Closer to the Christiansø Block, some syn-tectonic deposition also took place and resulted in subtle thickness changes within the hinge zones of inversion-related growth folds. Lack of significant sediment supply from the inverted and uplifted offshore part of the Mid-Polish Trough suggests that in this area NW–SE-located marginal trough parallel to the inversion axis of the Mid-Polish Trough did not form, and that uplifted Bornholm Block played by far more prominent role for development of syn-inversion depositional successions.  相似文献   

4.
The CELEBRATION 2000 together with the earlier POLONAISE'97 deep seismic sounding experiments was aimed at the recognition of crustal structure in the border zone between the Precambrian East European Craton (Baltica) and Palaeozoic Europe. The CEL02 profile of the CELEBRATION family is a 400-km long SW–NE transect, running in Poland from the Upper Silesia Block (USB), across the Małopolska Block (MB) and the Trans-European Suture Zone (TESZ) to the East European Craton (EEC). The structure along CEL02 was interpreted using both 2D tomography and forward ray-tracing techniques as well as 2D gravity modelling.The crustal thickness along CEL02 varies from 32–35 km in the USB to 45–47 km beneath the TESZ and the EEC. The USB is a clearly distinctive crustal block with the characteristic high velocity lower crust (7.1–7.2 km/s), interpreted as a fragment of Gondwana. The Kraków–Lubliniec Fault is a terrane boundary produced by soft docking of the USB with the MB. The Małopolska crust fundamentally differs from the USB and has a strong connection with Baltica. It is a transitional, 150- to 200-km wide unit composed of the extended Baltican lower crust and the overlying low velocity (5.15–5.9 km/s) Neoproterozoic metasediments in the up to 18-km thick upper crust. The Łysogóry Unit has its crustal structure identical with that of Małopolska, thus it is connected with Baltica and cannot be interpreted as a Gondwana-derived terrane. Higher velocity and density bodies found below the Mazovia–Lublin Graben at a depth of 12 km and at the base of the lower crust, might be a result of mantle-derived mafic intrusions accompanying the extension of Baltica. By the preliminary 2D gravity modelling, we have reconfirmed the need for considering the increased TESZ mantle density in comparison to the EEC and USB mantle.  相似文献   

5.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   

6.
Abundant gold deposits are distributed along the margins of the North China Craton (NCC). Occurring throughout the Precambrian basement and located in or proximal to Mesozoic granitoids, these deposits show a consistent spatial–temporal association with Late Jurassic–Early Cretaceous magmatism and are characterized by quartz lode or disseminated styles of mineralization with extensive alteration of wall rock. Their ages are mainly Early Cretaceous (130–110 Ma) and constrain a very short period of metallogenesis. Sr–Nd–Pb isotopic tracers of ores, minerals and associated rocks indicate that gold and associated metals mainly were derived from multi-sources, i.e., the wall rocks (Precambrian basement and Mesozoic granites) and associated mafic rocks.Previous studies, including high surface heat flow, uplift and later basin development, slow seismic wave speeds in the upper mantle, and a change in the character of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, have been used to suggest that ancient, cratonic mantle lithosphere was removed from the base of the NCC some time after the Ordovician, and replaced by younger, less refractory lithospheric mantle. The geochemistry and isotopic compositions of the mafic rocks associated with gold mineralization (130–110 Ma) indicate that they were derived from an ancient enriched lithospheric mantle source; whereas, the mafic dikes and volcanic rocks younger than 110 Ma were derived from a relatively depleted mantle source, i.e., asthenospheric mantle. According to their age and sources, relation to magmatism and geodynamic framework, the gold deposits were formed during lithospheric thinning. The removal of lithospheric mantle and the upwelling of new asthenospheric mantle induced partial melting and dehydration of the lithospheric mantle and lower crust due to an increase of temperature. The fluids derived from the lower crust were mixed with magmatic and meteoric waters, and resulted in the deposition of gold and associated metals.  相似文献   

7.
合肥盆地基底构造属性   总被引:33,自引:4,他引:29       下载免费PDF全文
根据合肥盆地及周边地表地质、地震剖面、同位素测年及MT等新资料的综合研究,提出中-新生代合肥盆地的基底是一个不同构造类型基底的叠合与复合.上古生界以前的基底以六安断裂为界,其北为华北板块陆壳型-过渡壳型结晶基底及其上的华北克拉通-被动大陆边缘盆地沉积的上元古-下古生界基底;其南为大别型结晶基底及其上的北淮阳弧后盆地沉积的上元古-下古生界变质基底,而上古生界基底属于弧后前陆盆地型沉积.六安断裂是合肥盆地部位北大别弧、北淮阳晚元古-早古生代弧后盆地在早古生代晚期-晚古生代早期与华北板块的弧-陆碰撞缝合线.  相似文献   

8.
This paper presents relative secular variations of the total intensity of the geomagnetic field against a background of results of magnetic anomaly interpretation along seismic profile P4. Profile P4 crosses a Variscan folding zone in the Paleozoic Platform (PLZ), the Trans-European Suture Zone (TESZ), and the Polish part of the East European Craton (EEC). Secular geomagnetic field variations measured in 1966–2000 along a line adjacent to seismic profile P4 were analysed. The study of secular variations, reduced to the base recordings at the Belsk Magnetic Observatory, showed that the growth of geomagnetic field at the East European Craton was slower than in the Trans-European Suture Zone and the Paleozoic Platform.A 2D crustal magnetic model was interpreted as a result of magnetic modelling, in which seismic, geological and geothermal data were also used. The modelling showed that there were significant differences in the magnetic model for geotectonic units, which had been earlier determined based on deep seismic survey data. It should be noted that a fundamental change of trend of the relative secular variations was observed at the slope of the Precambrian Platform. After analysing the geomagnetic field observed along profile P4, the hypothesis that the contact between Phanerozoic and Precambrian Europe lies in Poland's territory can be proven.  相似文献   

9.
试论新疆成矿体系与时空演化模式   总被引:2,自引:1,他引:1  
文章探讨了成矿体系的内涵,在以往研究成果和编制1∶1 500 000中国新疆维吾尔自治区矿床成矿系列图的基础上,根据先时间、后空间、再成因的总体思路,完善了新疆前寒武纪、早古生代、晚古生代、中生代、新生代五个时段成矿体系,初步构建了各时段成矿体系的时空演化模式,总结出5个时段成矿体系的特点是:前寒武纪为基底陆壳的形成与发展各具特色的成矿体系;早古生代板块体制早期发育具中亚成矿域特色的成矿体系;晚古生代板块体制晚期发育具中亚成矿域特色的成矿体系;中生代新疆北部发育板内西域成矿特色的成矿体系和新疆南部发育特提斯成矿域特色的成矿体系;新生代发育板内西域成矿特色的大陆成矿体系。  相似文献   

10.
华北克拉通的形成演化与成矿作用   总被引:64,自引:4,他引:60  
翟明国 《矿床地质》2010,29(1):24-36
华北克拉通具有38亿年的漫长历史,特别是与其他克拉通相比,它有更为复杂的多阶段的构造演化史,记录了几乎所有的地壳早期发展与中生代以来的重大构造事件。在太古宙,华北克拉通经历了>3.0Ga的陆核与微陆块的形成;2.7~2.9Ga的陆壳增生;2.5Ga的岩浆、变质作用与克拉通化;2.3~1.9Ga的古元古代活动(造山)带;1.8Ga的基底隆升与裂谷-非造山岩浆事件。在新元古代—古生代,华北克拉通处于相对稳定的地台状态,其南、北缘受到秦岭造山带和中亚造山带的影响;在中生代,华北克拉通则经历了强烈的中生代构造格局的转变和克拉通的破坏与重建;在新生代,华北克拉通的东缘属于环太平洋构造带的一部分。与上述重大构造事件相对应,华北克拉通出现大规模的成矿作用,形成了丰富多样的固体矿产资源。华北克拉通的形成与演化及其不同类型的成矿系统,为深刻理解大地构造背景对成矿作用的制约提供了范例。  相似文献   

11.
The Precambrian Aksu blueschist is located in the northwestern margin of the Tarim Block, NW China. In recent decades, many studies were carried out with focus on the metamorphic age. However, a complete understanding of the evolution of the Tarim Block requires the cooling history of the Precambrian metamorphic rocks and the time–temperature paths as determined by low-temperature thermochronometry. Therefore, apatite fission track (AFT) technique was applied on the Precambrian Aksu blueschist to reveal the thermo–tectonic evolution of the north Tarim basement. All of the six blueschist samples analysed in this study yielded AFT ages spanning 107.5–62.5 Ma, much younger than the blueschist facies metamorphic age of Neoproterozoic, and confined track lengths are between 10.46 and 12.12 µm. Based on regional stratigraphic sequences, the AFT thermal history modeling as well as previous chronological results, the thermo–tectonic evolution of the Aksu blueschist can be roughly reconstructed with four stages: (1) the Precambrain Aksu blueschist exhumed to the surface soon after its formation. Erosion during the Early Sinian is indicated by the lack of sedimentation until the Late Sinian; (2) the Late Sinian strata are continuous, while the Middle–Upper Silurian and the Lower–Middle Carboniferous strata are absent. The total thickness of the Late Sinian and Paleozoic strata probably reached 10,000 m and resulted in the total annealing and thermal resetting of AFT ages; (3) the AFT ages in the Cretaceous are related with the widespread uplift in Tian Shan and its adjacent regions that restarted the AFT clock during the Late Mesozoic. These reflect a distant effect of the collision of the Lhasa terrane with Eurasia in the Late Jurassic–Early Cretaceous; and (4) sediments of Cenozoic are documented in the Aksu area. The Aksu blueschist was heated to partial annealing zone with the overlying Cenozoic sediments. During Miocene time, the Aksu blueschist was re-exhumed which was probably a distant response to the ongoing India–Eurasia convergence.  相似文献   

12.
刘凤山 《地学前缘》1999,6(1):129-137
“北亚克拉通和造山带金属成矿作用、石油资源及地球动力学”国际研讨会上各国地质学家发表了各自的北亚地区金属成矿作用、石油资源及地球动力学观点,对早前寒武纪、西伯利亚克拉通、造山带、板内裂谷等成矿作用及其相关的地球动力学等方面进行了广泛、深入的研讨,基本反映了近些年来北亚地区在金属成矿作用及其有关的地球动力学方面研究现状和取得的进展。西伯利亚克拉通和褶皱造山带有明显的区别。前者演化历史可以分为前寒武纪—早中生代增生和中—新生代裂谷作用两个阶段,早前寒武纪成矿作用主要受区域深大断裂多期拉张和挤压、克拉通内古断裂的形成、古断裂中火山岩喷出或花岗岩类侵入等地球动力学控制,中生代金属成矿作用主要受深部地壳动力学过程控制。造山带包括了新元古代、古生代及中生代不同时期的大洋,主要有大洋、岛弧、大陆边缘、汇聚碰撞、碰撞后五大成矿地球动力学环境,各环境的金属成矿作用特色明显有差异  相似文献   

13.
Several selected seismic lines are used to show and compare the modes of Late-Cretaceous–Early Tertiary inversion within the North German and Polish basins. These seismic data illustrate an important difference in the allocation of major zones of basement (thick-skinned) deformation and maximum uplift within both basins. The most important inversion-related uplift of the Polish Basin was localised in its axial part, the Mid-Polish Trough, whereas the basement in the axial part of the North German Basin remained virtually flat. The latter was uplifted along the SW and to a smaller degree the NE margins of the North German Basin, presently defined by the Elbe Fault System and the Grimmen High, respectively. The different location of the basement inversion and uplift within the North German and Polish basins is interpreted to reflect the position of major zones of crustal weakness represented by the WNW-ESE trending Elbe Fault System and by the NW-SE striking Teisseyre-Tornquist Zone, the latter underlying the Mid-Polish Trough. Therefore, the inversion of the Polish and North German basins demonstrates the significance of an inherited basement structure regardless of its relationship to the position of the basin axis. The inversion of the Mid-Polish Trough was connected with the reactivation of normal basement fault zones responsible for its Permo-Mesozoic subsidence. These faults zones, inverted as reverse faults, facilitated the uplift of the Mid-Polish Trough in the order of 1–3 km. In contrast, inversion of the North German Basin rarely re-used structures active during its subsidence. Basement inversion and uplift, in the range of 3–4 km, was focused at the Elbe Fault System which has remained quiescent in the Triassic and Jurassic but reproduced the direction of an earlier Variscan structural grain. In contrast, N-S oriented Mesozoic grabens and troughs in the central part of the North German Basin avoided significant inversion as they were oriented parallel to the direction of the inferred Late Cretaceous–Early Tertiary compression. The comparison of the North German and Polish basins shows that inversion structures can follow an earlier subsidence pattern only under a favourable orientation of the stress field. A thick Zechstein salt layer in the central parts of the North German Basin and the Mid-Polish Trough caused mechanical decoupling between the sub-salt basement and the supra-salt sedimentary cover. Resultant thin-skinned inversion was manifested by the formation of various structures developed entirely in the supra-salt Mesozoic–Cenozoic succession. The Zechstein salt provided a mechanical buffer accommodating compressional stress and responding to the inversion through salt mobilisation and redistribution. Only in parts of the NGB and MPT characterised by either thin or missing Zechstein evaporites, thick-skinned inversion directly controlled inversion-related deformations of the sedimentary cover. Inversion of the Permo-Mesozoic fill within the Mid-Polish Trough was achieved by a regional elevation above uplifted basement blocks. Conversely, in the North German Basin, horizontal stress must have been transferred into the salt cover across the basin from its SW margin towards the basins centre. This must be the case since compressional deformations are concentrated mostly above the salt and no significant inversion-related basement faults are seismically detected apart from the basin margins. This strain decoupling in the interior of the North German Basin was enhanced by the presence of the Elbe Fault System which allowed strain localization in the basin floor due to its orientation perpendicular to the inferred Late Cretaceous–Early Tertiary far-field compression.  相似文献   

14.
The Iberian Chain is a wide intraplate deformation zone formed by the tectonic inversion during the Pyrenean orogeny of a Permian–Mesozoic basin developed in the eastern part of the Iberian Massif. The N–S convergence between Iberia and Eurasia from the Late Cretaceous to the Lower Miocene times produced significant intraplate deformation. The NW–SE oriented Castilian Branch of the Iberian Chain can be considered as a “key zone” where the proposed models for the Cenozoic tectonic evolution of the Iberian Chain can be tested. Structural style of basin inversion suggests mainly strike–slip displacements along previous NW–SE normal faults, developed mostly during the Mesozoic. To confirm this hypothesis, structural and basin evolution analysis, macrostructural Bouguer gravity anomaly analysis, detailed mapping and paleostress inversions have been used to prove the important role of strike slip deformation. In addition, we demonstrate that two main folding trends almost perpendicular (NE–SW to E–W and NW–SE) were simultaneously active in a wide transpressive zone. The two fold trends were generated by different mechanical behaviour, including buckling and bending under constrictive strain conditions. We propose that strain partitioning occurred with oblique compression and transpression during the Cenozoic.  相似文献   

15.
Combined subsidence and thermal 1D modelling was performed on six well-sections located in the north-western Mid-Polish Trough/Swell in the eastern part of the Central European Basin system. The modelling allowed constraining quantitatively both the Mesozoic subsidence and the magnitude of the Late Cretaceous–Paleocene inversion and erosion. The latter most probably reached 2,400 m in the Mid-Polish Swell area. The modelled Upper Cretaceous thickness did not exceed 500 m, and probably corresponded to 200–300 m in the swell area as compared with more than 2,000 m in the adjacent non-inverted part of the basin. Such Upper Cretaceous thickness pattern implies early onset of inversion processes, probably in the Late Turonian or Coniacian. Our modelling, coupled with previous results of stratigraphic and seismic studies, demonstrates that the relatively low sedimentation rates in the inverted part of the basin during the Late Cretaceous were the net result of several discrete pulses of non-deposition and/or erosion that were progressively more pronounced towards the trough axis. The last phase of inversion started in the Late Maastrichtian and was responsible for the total amount of erosion, which removed also the reduced Upper Cretaceous deposits. According to our modelling results, a Late Cretaceous heat-flow regime which is similar to the present-day conditions (about 50 mW/m2) was responsible for the observed organic maturity of the Permian-Mesozoic rocks. This conclusion does not affect the possibility of Late Carboniferous–Permian and Late Permian–Early Triassic thermal events.  相似文献   

16.
The NW–SE-striking Northeast German Basin (NEGB) forms part of the Southern Permian Basin and contains up to 8 km of Permian to Cenozoic deposits. During its polyphase evolution, mobilization of the Zechstein salt layer resulted in a complex structural configuration with thin-skinned deformation in the basin and thick-skinned deformation at the basin margins. We investigated the role of salt as a decoupling horizon between its substratum and its cover during the Mesozoic deformation by integration of 3D structural modelling, backstripping and seismic interpretation. Our results suggest that periods of Mesozoic salt movement correlate temporally with changes of the regional stress field structures. Post-depositional salt mobilisation was weakest in the area of highest initial salt thickness and thickest overburden. This also indicates that regional tectonics is responsible for the initiation of salt movements rather than stratigraphic density inversion.Salt movement mainly took place in post-Muschelkalk times. The onset of salt diapirism with the formation of N–S-oriented rim synclines in Late Triassic was synchronous with the development of the NNE–SSW-striking Rheinsberg Trough due to regional E–W extension. In the Middle and Late Jurassic, uplift affected the northern part of the basin and may have induced south-directed gravity gliding in the salt layer. In the southern part, deposition continued in the Early Cretaceous. However, rotation of salt rim synclines axes to NW–SE as well as accelerated rim syncline subsidence near the NW–SE-striking Gardelegen Fault at the southern basin margin indicates a change from E–W extension to a tectonic regime favoring the activation of NW–SE-oriented structural elements. During the Late Cretaceous–Earliest Cenozoic, diapirism was associated with regional N–S compression and progressed further north and west. The Mesozoic interval was folded with the formation of WNW-trending salt-cored anticlines parallel to inversion structures and to differentially uplifted blocks. Late Cretaceous–Early Cenozoic compression caused partial inversion of older rim synclines and reverse reactivation of some Late Triassic to Jurassic normal faults in the salt cover. Subsequent uplift and erosion affected the pre-Cenozoic layers in the entire basin. In the Cenozoic, a last phase of salt tectonic deformation was associated with regional subsidence of the basin. Diapirism of the maturest pre-Cenozoic salt structures continued with some Cenozoic rim synclines overstepping older structures. The difference between the structural wavelength of the tighter folded Mesozoic interval and the wider Cenozoic structures indicates different tectonic regimes in Late Cretaceous and Cenozoic.We suggest that horizontal strain propagation in the brittle salt cover was accommodated by viscous flow in the decoupling salt layer and thus salt motion passively balanced Late Triassic extension as well as parts of Late Cretaceous–Early Tertiary compression.  相似文献   

17.
The present study was undertaken with the objective of deriving constraints from available geological and geophysical data for understanding the tectonic setting and processes controlling the evolution of the southern margin of the East European Craton (EEC). The study area includes the inverted southernmost part of the intracratonic Dnieper-Donets Basin (DDB)–Donbas Foldbelt (DF), its southeastern prolongation along the margin of the EEC–the sedimentary succession of the Karpinsky Swell (KS), the southwestern part of the Peri-Caspian Basin (PCB), and the Scythian Plate (SP). These structures are adjacent to a zone, along which the crust was reworked and/or accreted to the EEC since the late Palaeozoic. In the Bouguer gravity field, the southern margin of the EEC is marked by an arc of gravity highs, correlating with uplifted Palaeozoic rocks covered by thin Mesozoic and younger sediments. A three-dimensional (3D) gravity analysis has been carried out to investigate further the crustal structure of this area. The sedimentary succession has been modelled as two heterogeneous layers—Mesozoic–Cenozoic and Palaeozoic—in the analysis. The base of the sedimentary succession (top of the crystalline Precambrian basement) lies at a depth up to 22 km in the PCB and DF–KS areas. The residual gravity field, obtained by subtracting the gravitational effect of the sedimentary succession from the observed gravity field, reveals a distinct elongate zone of positive anomalies along the axis of the DF–KS with amplitudes of 100–140 mGal and an anomaly of 180 mGal in the PCB. These anomalies are interpreted to reflect a heterogeneous lithosphere structure below the supracrustal, sedimentary layers: i.e., Moho topography and/or the existence of high-density material in the crystalline crust and uppermost mantle. Previously published data support the existence of a high-density body in the crystalline crust along the DDB axis, including the DF, caused by an intrusion of mafic and ultramafic rocks during Late Palaeozoic rifting. A reinterpretation of existing Deep Seismic Sounding (DSS) data on a profile crossing the central KS suggests that the nature of a high-velocity/density layer in the lower crust (crust–mantle transition zone) is not the same as that of below the DF. Rather than being a prolongation of the DDB–DF intracratonic rift zone, the present analysis suggests that the KS comprises, at least in part, an accretionary zone between the EEC and the SP formed after the Palaeozoic.  相似文献   

18.
The SW part of the Baltic Sea between Scania, Rügen, Bornholm and Mön constitutes a complex crustal transition between the Baltic Shield and the accreted Phanerozoic provinces of the West European Platform. An integrated interpretation of marine reflection seismic data sets from the BABEL AC line and two commercial surveys offshore NE Germany and S Sweden have resulted in a complete view of the structural framework in the area. The general seismic picture can best be detected by two characteristic sets of reflection phases. The lower set is dominated by slightly dipping and vertically displaced prominent reflectors corresponding to downfaulted Lower Palaeozoic strata on top of the Precambrian basement. The upper set represents Mesozoic and Cenozoic coherent reflection phases including a thick Upper Cretaceous unit. The Caledonian deformation front is identified in the southern part of the investigated area as the border against which basement rocks have been affected by Caledonian metamorphism and deformation. Major structural elements also include the N–S trending Agricola–Svedala Fault and North Rügen-Skurup Fault. Several NW–SE trending faults are also identified including the Nordadler–Kamien Fault, Jutland–Mön Fault, Carlsberg Fault, Romeleåsen Fault Zone and the Fyledalen Fault Zone. The sedimentary record from NE German offshore wells and Scanian boreholes is compared with the seismic data. The Cambro-Silurian strata are composed mainly of quartzitic sandstones, shales and biomicritic limestones. The Silurian is dominated by grey, micaceous shale and micaceous siltstone deposited in a marginal basin. Upper Palaeozoic strata are merely encountered in the southernmost part of the investigated area. These include Zechstein strata. The Mesozoic deposits are dominated by a thick Cretaceous sequence of mainly limestones with interbedded sandstones.  相似文献   

19.
The large-scale CELEBRATION 2000 seismic experiment investigated the velocity structure of the crust and upper mantle between western portion of the East European Craton (EEC) and the eastern Alps. This area comprises: the Trans-European Suture Zone, the Carpathian Mountains, the Pannonian Basin and the Bohemian Massif. This experiment included 147 chemical shots recorded by 1230 seismic stations during two deployments. Good quality data along 16 main and a few additional profiles were recorded. One of them, profile CEL03, was located in southeastern Poland and was laid out as a prolongation of the TTZ profile performed in 1993. This paper focuses on the joint interpretation of seismic data along the NW–SE trending TTZ–CEL03 transect, located in the central portion of the Trans-European Suture Zone. First arrivals and later phases of waves reflected/refracted in the crust and upper mantle were interpreted using two-dimensional tomographic inversion and ray-tracing techniques. This modelling established a 2-D (quasi 3-D) P-wave velocity lithospheric model. Four crustal units were identified along the transect. From northwest to southeast, thickness of the crust varies from 35 km in the Pomeranian Unit (NW) to 40 km in the Kuiavian Unit, to 50 km in the Radom–Łysogóry Unit and again to 43 km in the Narol Unit (SE). The first two units are thought to be proximal terranes detached from the EEC farther to the southeast and re-accreted to the edge of the EEC during the Early Palaeozoic. The origin of the remaining two units is a matter of dispute: they are either portions of the EEC or other proximal terranes. In the area of the Polish Basin (first two units), the P-wave velocity is very low (Vp < 6.1 km/s) down to depths of 15–20 km indicating that a very thick sedimentary and possibly volcanic rock sequence, whose lower portion may be metamorphosed, is present. The velocity beneath the Moho was found to be rather high, being 8.25 km/s in the northwestern portion of the transect, 8.4 km/s in the central sector, and 8.1 km/s in the southeastern sector.  相似文献   

20.
A geophysical perspective based on well-acquired gravity, magnetic, and radiometric data provides good insights into the basin architectural elements and tectonic evolution of the Rio do Peixe Basin (RPB), an Early Cretaceous intracontinental basin in the northeast Brazilian rift system, which developed during the opening of the South Atlantic. NW–SE-trending extensional forces acting over an intensively deformed Precambrian basement yielded a composite basin architecture strongly controlled by preexisting, mechanically weak fault zones in the upper crust. Reactivated NE–SW and E–W ductile shear zones of Brasiliano age (0.6 Ga) divided the RPB into three asymmetrical half-grabens (Brejo das Freiras, Sousa, and Pombal subbasins), separated by basement highs of granite bodies that seem to anchor and distinguish the mechanical subsidence of the subbasins. Radiometric and geopotential field data highlight the relationship between the tectonic stress field and the role of a preexisting structural framework inserted in the final rift geometry. The up-to-2000 m thick half-grabens are sequentially located at the inflexion of sigmoidal-shaped shear zones and acquire a typical NE–SW-oriented elliptic shape. The Sousa Subbasin is the single exception. Because of its uncommon E–W elongated form, three-dimensional gravity modeling reveals an E–W axis of depocenters within the Sousa Subbasin framework, in which the eastern shoulders are controlled by NE–SW-trending faults. These faults belong to the Precambrian structural fabric, as is well illustrated by the gamma ray and magnetic signatures of the basement grain. Release faults were identified nearly perpendicular or oblique to master faults, forming marginal strike ramps and horst structures in all subbasins. The emplacement mechanism of Brasiliano granites around the RPB was partially oriented by the same structural framework, as is indicated by the gravity signature of the granitic bodies after removal of the gravity effect of the basin-filling deposits. The RPB major-fault occurrence along the releasing bend of a strong discontinuity – the so-called Portalegre Shear Zone – in addition to the configuration of a gentle crustal thinning, according to gravity field studies, suggests that a crustal discontinuity governs the nucleation of the RPB, followed probably by small displacement in deep crustal levels accommodating low-rate stretching during basin subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号