首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of the sunspots for the period 1967–1987 (solar cycles 20 and 21) is presented here. We find that the ±11–20° latitude belt is most prolific for the occurrence of various spot types irrespective of magnetic-field ranges. Furthermore, longitudinally sunspots occur most prolifically at six or more places on the Sun. Spatially 7–9 zones are present in each hemisphere (north or south) of the Sun where about 50% sunspots occur and occupy only about 4% area of the Sun. During the above cycles at least 5 flare zones were regularly present in each hemisphere. The existing models cannot explain these active zones on the Sun. Thus, the present analysis emphasizes the need for a new magnetic models of the Sun.  相似文献   

2.
We have studied the latitude and longitude (northern and southern hemispheric) distributions based on 2277 LDE flares observed during the period from 1966 to 1986. We have found that there exist active zones, in which the LDE flare occurrence rate is much higher. Latitudinal belts between 11–20° and longitudinal belts around 80–100° are the most prolific places to produce LDE flares. During cycles 20 and 21 these active zones produced 36% of the total number of LDE flares by occupying only 6% area of the Sun.  相似文献   

3.
E. N. Parker 《Solar physics》1996,163(2):327-333
For solar cycles 20 and 21, the longitudinal distribution of the D, G, and H-type solar flares which are related to the final phases of active region evolution, have been analysed for the northern and the southern hemispheres separately. One active zone has been found for D, G, and H-type flares, and one more active zone has been found for the H-type flares of the northern hemisphere for cycle 20. Two active zones have been found for the D and H-type flares of the northern hemisphere for cycle 21. Southern-hemisphere flares are concentrated in two active zones for cycle 20. The active zone in the northern hemisphere, which rotates with a synodic period of about 26.73 days, produced 30% of the examined D-type flares during cycle 20 and persisted in the same position during the two solar cycles, 20 and 21. The active zone in the southern hemisphere rotated with a synodic period of about 27.99 days. Only the active zone producing D-type flares persisted in the same position during the two solar cycles.  相似文献   

4.
Intermediate-term periodicities in solar activity   总被引:2,自引:0,他引:2  
The presence of intermediate-term periodicities in solar activity, at approximately 323 and 540 days, has been claimed by different authors. In this paper, we have performed a search for them in the historical records of two main indices of solar activity, namely, the daily sunspot areas (cycles 12–21) and the daily Zürich sunspot number (cycles 6–21). Two different methods to compute power spectra have been used, one of them being especially appropriate to deal with gapped time series. The results obtained for the periodicity near 323 days indicate that it has only been present in cycle 21, while in previous cycles no significant evidence for it has been found. On the other hand, a significant periodicity at 350 days is found in sunspot areas and Zürich sunspot number during cycles 12–21 considered all together, also having been detected in some individual cycles. However, this last periodicity must be looked into with care due to the lack of confirmation for it coming from other features of solar activity. The periodicity around 540 days is found in cycles 12, 14, and 17 in sunspot areas, while during cycles 18 and 19 it is present, with a very high significance, in sunspot areas and Zürich sunspot number. It also appears at 528 days in sunspot areas during cycles 12–21. On the other hand, it is important to note the coincidence between the asymmetry, favouring the northern hemisphere, of sunspot areas and solar flares during cycle 19, and the fact that the periodicity at 540 days was only present, with high significance, in that hemisphere during that solar cycle.  相似文献   

5.
V. K. Verma 《Solar physics》1988,114(1):185-188
The present paper investigates the north-south asymmetry for major flares (solar cycles 19 and 20), type II radio bursts (solar cycles 19,20 and 21), white light flares (solar cycle 19,20 and 21), and gamma ray bursts, hard X-ray bursts and coronal mass ejections (solar cycle 21). The results are compared with the found asymmetry in favour of the northern hemisphere during solar cycles 19 and 20 in favour of the southern hemisphere during solar cycle 21.  相似文献   

6.
Solar flares in three broad EUV spectral bands have been observed from OSO-5 with a grating spectrophotometer. Results are given for three large flares of March 12, March 21 and April 21, 1969. In general the time dependence of flare intensity in each band is characterized by a slowly varying component with impulsive bursts superimposed. Bands 2 (465–630 Å) and 3 (760–1030 Å) are quite similar in their time variations, but band 1 (280–370 Å) shows less impulsive structure, and declines more slowly. Absolute EUV intensities for the flares are estimated, and a comparison made with the 2800 mc s–1 radio emission. A flare model is proposed to account for the EUV time variations during a large flare.  相似文献   

7.
The upper limit on the solar neutron flux from 1–20 MeV has been measured, by a neutron detector on the OGO-6 satellite, to be less than 5 × 10–2 n cm–2 s–1 at the 95% confidence level for several flares including two flares of importance 3B and a solar proton event of importance 3B. The measurements are consistent with the models proposed by Lingenfelter (1969) and by Lingenfelter and Ramaty (1967) for solar neutron production during solar flares. The implied upper limit on the flux of 2.2 MeV solar gamma rays is about the same as the 2.2 MeV flux observed by Chupp et al. (1973).  相似文献   

8.
Sunspot data from the Catania Astrophysical Observatory, covering cycles 18, 19, and 20 (1943–1977) have been analyzed, taking into account, besides the usual parameters, the number n of zones, namely latitude belts 5° wide, showing sunspot activity and the area covered by spots for each of these zones. A comparison between our conclusions and those drawn from other authors on the same subject is made.  相似文献   

9.
In this paper, the monthly counts of flare index in the northern and southern hemispheres are used to investigate the hemispheric variation of the flare index in each of solar cycles 20–23. It is found that, (1) the flare index is asymmetrically distributed in each solar cycle and its asymmetry is a real phenomenon; (2) the flare index in the northern hemisphere begins earlier than that in the southern hemisphere in each of solar cycles 20–23, and the phase shifts between the two hemispheres show an odd‐even pattern; (3) although the flare index dominating in a hemisphere does not mean that it leads in phase in this hemisphere in individual solar cycle, these two features have an intrinsic relationship. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Miroshnichenko  L.I.  Pérez EnrÍquez  R.  Mendoza  B. 《Solar physics》1999,186(1-2):381-400
It is widely accepted now that a significant fraction of the solar energetic particles (SEPs) observed at 1 AU after major solar flares are actually accelerated at a CME-driven shock. In addition, in the emerging new paradigm for SEP acceleration in different sources at or near the Sun, the existence of two types of flares – impulsive and gradual – is recognized. Within this concept, it is tempting also to separate SEPs into two groups – interacting and escaping – and to derive their 'source spectra' from observational data on various flare emissions (protons, gamma rays, neutrons, etc.). By different techniques, those spectra have been reconstructed for 80 solar proton events (SPE) in 1949–1991. In this paper, all available data on the source spectra of solar protons are summarized and revised. We discuss in detail existing uncertainties in the derived spectral indexes, consider other methodological problems involved in this study, and suggest several possible lines for the future investigations of solar flares and SCRs using the source spectrum data. It is noted that some peculiarities of the spectra, for instance, spectral steepening for high energies, may be characteristic of large events of the 23 February 1956 type.  相似文献   

11.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

12.
The purpose of the present study is to investigate the association of solar energetic particle (SEP) events with halo coronal mass ejections (CME) and with their associated solar flares during the period 1997–2014 (solar cycle 23 and 24). We have found that halo CMEs are more effective in producing SEP events. The occurrence probability and peak fluxes of SEPs strongly depend on the halo CMEs speed (V) as follows. The highest associations, 56% for occurrence probability and 90% for average peak fluxes, are found for the halo CMEs with V> 1400 km s−1 but the lowest associations, 20% for occurrence probability and 5% for average peak fluxes, are found for halo CMEs with speed range 600 ≤ V ≤ 1000 km s−1. We have also examined the relationship between SEP events and halo CME associated solar flares and found that 73% of events are associated with western solar flares while only 27% are with eastern solar flares. For longitudinal study, 0–20° belt is found to be more dominant for the SEP events. The association of SEP events with latitudinal solar flares is also examined in the study. 51% of events are associated with those halo CMEs associated solar flares which occur in the southern hemisphere of the Sun while 49% are with those solar flares that occur in the northern hemisphere of the Sun. Also, 10–20° latitudinal belt is found to be likely associated with the SEP events. Further, 45% of SEP events are associated with M-class solar flares while 44% and 11% are with X and C-class respectively. Maximum number of SEP events are found for the fast halo CME associated X- class solar flares (68%) than M and C- class solar flares.  相似文献   

13.
A correlation analysis shows that the sunspot numbers at the peaks of the last eight solar cycles are well-correlated with the sunspot numbers in heliolatitudes 20°–40° (specially in the southern hemisphere) occurring in the solar minimum years immediately preceding the solar maximum years.On leave from Physical Research Laboratory, Ahmedabad, India.  相似文献   

14.
Measurements of the electron density in 16 flares are summarized and discussed. For 13 of them the electron density has been determined by the halfwidth method discussed in Part I of this paper. In the flash phase of all disk flares of importance 1 + and higher the electron density exceeds 1013 cm–3 and increases with the flare importance. In the maximum of large flares the electron density exceeds 3 × 1013 cm–3 and declines to 1013 cm–3 and to lower values in about 20 minutes after the flash phase. In limb flares, i.e. higher than 5000 km above the solar limb, the electron density is lower than 5 × 1012 cm–3. This shows a decrease of the electron density in the flare elements situated in higher parts of the chromosphere. On the other hand, however, at least in some flares the electron density remains fairly constant within a wide range of height in the upper chromosphere and the low corona.  相似文献   

15.
Measurements of electron concentrations in the ionosphere, between 100 and 250 km altitude, were used to compute the increase in solar ionizing radiation during two flares on 21 and 23 May 1967. Since the altitude of maximum absorption of the solar energy (approximately unit optical depth) depends on the wavelength of the radiation, it is possible to estimate separately the energy enhancement in different portions of the spectrum. An ionizing energy flux increase of nearly 5 erg cm–2 sec–1 was observed on 21 May, while on the 23rd, the increase was over 7 erg cm–2 sec–1. In both flares, most of the absolute increase occurred in the 20–205 Å region of the spectrum, although the relative increase was much larger at the shorter wavelengths.  相似文献   

16.
The rotation characteristics of large-scale (global) magnetic fields (GMF) and their relation to the activity of local fields (LMF) are studied over a long time interval (1915–1996). The main results are as follows. The GMF rotation rates and LMF activity vary in anticorrelation. Both variations have similar periods (11 years and a quasi-secular period of about 55–60 years), but are shifted relative to each other by half an 11-year cycle. Therefore, (1) the GMF rotation rate increases at the minimum of the 11-year cycle of LMF activity. (2) The GMF rotation rate is faster in the less active hemisphere. (3) The GMF rotation period slows down at the maximum of the secular LMF activity (cycles 18 and 19).  相似文献   

17.
The primary scientific objectives of the Hard X-Ray Burst Spectrometer (HXRBS) to be flown on the Solar Maximum Mission are as follows: (1) To determine the nature of the mechanisms which accelerate electrons to 20–100 keV in the first stage of a solar flare and to > 1 MeV in the second stage of many flares; and (2) to characterize the spatial and temporal relation between electron acceleration, storage and energy loss throughout a solar flare.Measurements of the spectrum of solar X-rays will be made in the energy range from 20 to 260 keV using an actively-shielded CsI(Na) scintillator with a thickness of 0.635 cm and a sensitive area of 71 cm2. Continuous measurements with a time resolution of 0.128 s will be made of the 15-channel energy-loss spectrum of events in this scintillator in anticoincidence with events in the CsI(Na) shield. Counting-rate data with a time resolution as short as 1 ms will also be available from a limited period each orbit using a 32K-word circulating memory triggered by a high event rate.In the first year after launch, it is expected that approximately 1000 flares will be observed above the instrument sensitivity threshold, which corresponds to a 20–200 keV X-ray flux of 2 × 10–1 photons (cm2 s)–1 lasting for at least one second.  相似文献   

18.
A list of nearly 350 flares accompanied by type IV radio bursts by Krüger et al. (1971), which covers a period of 14 yr (1956–1969), was expanded to include all PCA and solar cosmic ray events during this entire period. This list, which includes practically all of the most energetic events during the maxima of two consecutive solar cycles, was used to investigate the latitudinal distribution of the above-mentioned flares, as well as of all PCA events, solar cosmic ray events and plage regions associated with them.Histograms of these occurences show clearly the appearance of two peaks in both solar maxima, which confirm the observations of Gnevyshev (1967). Latitudinal analysis of these histograms shows that in cycle 20 the two peaks are independent and their relative strength varies strongly with latitude. In cycle 19, however, this effect is not clearly evident, possibly because of the extremely high level of activity during this cycle. In both cycles, the second maximum shows the highest concentration of the most energetic events.During 1971–1972 visiting Professor of Astrophysics at the National University of Athens, Athens, Greece.  相似文献   

19.
The paper reports the results of the analysis of the data on polar faculae for three solar cycles (1960–1986) at the Kislovodsk Station of the Pulkovo Observatory and on polar bright points in Ca ii K line for two solar cycles (1940–1957) at the Kodaikanal Station of the Indian Institute of Astrophysics. We have noticed that the monthly numbers of polar faculae and polar bright points in Ca ii K line and monthly sunspot areas in each hemisphere of the following solar cycle have a correlation with each other. A new cycle of polar faculae and polar bright points in the Ca ii K line begins after the polar magnetic field reversal. We find that the smaller the period between the ending of the polar field reversal and the beginning of a new sunspot cycle is, the more intense is the cycle itself. The intensity of the forthcoming solar cycle (cycle 22) and the periods of strong fluctuations in activity expected in this cycle are also discussed.  相似文献   

20.
The correlation between the long-term intensity variations of cosmic rays at neutron monitor energies and the LDE index measure of solar flares with long-lasting soft X-ray emissions is reported. Three subsequent solar cycles, 20–22, are taken into account and half-monthly data are analyzed. Possible explanation of this correlation is discussed in terms of the recent concepts of cosmic-ray modulation, in particular with merged interaction regions affecting the cosmic-ray intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号