首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Yun-Tung Lau 《Solar physics》1993,148(2):301-324
We study the magnetic field-line topology in a class of solar flare models with four magnetic dipoles. By introducing a series of symmetry-breaking perturbations to a fully symmetric potential field model, we show that isolated magnetic nulls generally exist above the photosphere. These nulls are physically important because they determine the magnetic topology above the photosphere. In some special cases, there may be a single null above the photosphere with quasi two-dimensional properties. For such a model, aquasi null line connects the null to the photosphere. In the limit of small non-ideal effects, boundary layers and current sheetsmay develop along the quasi null line and the associated separatrix surfaces. Field lines can then reconect across the quasi null line, as in two-dimensional reconnection. In a more general force-free case, the field contains a pair of nulls above the photosphere, with a field line (theseparator) connecting the two nulls. In the limit of small non-ideal effects, boundary layers and current sheets develop along the separator and the associated separatrix surfaces. The system exhibits three-dimensional reconnection across the separator, over which field lines exchange identity. The separatrices are related to preferable sites of energy release during solar flares.  相似文献   

2.
Huaning  WANG 《Solar physics》1997,174(1-2):265-279
We extrapolated the 3-D fields above the photosphere, taking the observed photospheric magnetic fields in the active regions NOAA 6659 and 7321 as the boundary conditions of a linear force-free field model, and detected the singular points of the 2-D fields in a plane at the chromospheric level. These singular points can be described with the Poincaré index. Singular points with the index of +1 correspond to concentrations of magnetic flux, and those with the index of -1 to the saddle points in the plane. All of these singular points are connected by the lanes demarcating the 2-D magnetic cells in the plane. It has been confirmed that these saddle points are the intersections between separators and planes intersecting the 3-D fields. From comparisons between kernels of flares occurring in both regions and the saddle points, we found that there is a close morphological relationship between distributions of the saddle points and flare kernels. The main results are as follows: (a) The flare kernels tend to appear in areas with concentrating 2-D saddle points. (b) The morphology of the kernels is exactly confined by the lanes in the plane at chromospheric level. These facts seem favourable for the viewpoint that solar flares are closely related to magnetic separatrices and separators.  相似文献   

3.
We present a detailed analysis of the magnetic topology of AR 2776 together with Hα UV, X-rays, and radio observations of the November 5, 1980 flares in order to understand the role of the active region large-scale topology on the flare process. As at present the coronal magnetic field is modeled by an ensemble of sub-photospheric sources whose positions and intensities are deduced from a least-square fit between the computed and observed longitudinal magnetic fields. Charges and dipole representations are shown to lead to similar modeling of the magnetic topology provided that the number of sources is great enough. However, for AR 2776, departure from a potential field has to be taken into account, therefore a linear force-free field extrapolation is used. The locations of the four bright off-band Hα kernels in quadrupolar active regions have been studied previously. In this new study the active region is bipolar and shows a two-ribbon structure. We show that these two ribbons are a consequence of the bipolar photospheric field (the four kernels of quadrupolar regions merge into two bipolar regions). The two ribbons are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibril direction, is taken into account. This study supports the hypothesis that magnetic energy is stored in field-aligned currents and released by magnetic reconnection at the location of the separator, before being transported along field lines to the chromospheric level. It is also possible that part of the magnetic energy could be stored and released on the separatrices. Our study shows that meeting just one of two conditions- the presence of intense coronal currents or of a separator in a magnetic field configuration - is not sufficient for flaring. In order to release the stored energy, the coronal currents need either to be formed along the separatrices or to be transported towards the separator or separatrices. The location of the observed photospheric current concentrations on the computed separatrices supports this view. Member of the Carrera del Investigador Científico, CONICET.  相似文献   

4.
The presently prevailing theories of solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes to solar flare energy. In this paper, we discuss solar flares from an entirely different point of view, namely in terms of power supply by a dynamo process in the photosphere. By this process, electric currents flowing along the magnetic field lines are generated and the familiar ‘force-free’ fields or the ‘sheared’ magnetic fields are produced. Upward field-aligned currents thus generated are carried by downward streaming electrons; these electrons can excite hydrogen atoms in the chromosphere, causing the optical Hα flares or ‘low temperature flares’. It is thus argued that as the ‘force-free’ fields are being built up for the magnetic energy storage, a flare must already be in progress.  相似文献   

5.
We analyze the UV and X-ray data obtained by the SMM satellite for the flare starting at 02:36 UT on November 12, 1980 in AR 2779. From a detailed revision of the Ov emission, we find that the observations are compatible with energy being released in a zone above the magnetic inversion line of the AR intermediate bipole. This energy is then transported mainly by conduction towards the two distant kernels located in the AR main bipole. One of these kernels is first identified in this paper. Accelerated particles contribute to the energy transport only during the impulsive phase.We model the observed longitudinal magnetic field by means of a discrete number of subphotospheric magnetic poles, and derive the magnetic field overall topology. As in previous studies of chromospheric flares, the Ov kernels are located along the intersection of the computed separatrices with the photosphere. Especially where the field-line linkage changes discontinuously, these kernels can be linked in pairs by lines that extend along separatrices. Our results agree with the hypothesis of magnetic energy released by magnetic reconnection occurring on separatrices.  相似文献   

6.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Aulanier  G.  Démoulin  P.  Schmieder  B.  Fang  C.  Tang  Y.H. 《Solar physics》1998,183(2):369-388
On 18 May, 1994, a subflare was observed in AR 7722 in X-rays by Yohkoh/SXT and in H at National Astronomical Observatory of Japan. The associated brightenings are due to small-scale magnetic energy release, triggered by parasitic fluxes emerging and moving at the edge of leading sunspots. Using the magnetohydrostatic equations derived by Low (1992), we model the magnetic field configuration by extrapolation of the Kitt Peak photospheric field, taking into account the effects of pressure and gravity. H flare kernels are shown to be located at computed separatrices associated with field lines which are tangent to the photosphere, namely 'bald patches (BPs). This is evidence that BPs can be involved in flares, and that current sheets can be dissipated in low levels of the solar atmosphere. The presence of dense plasma which is supported against gravity in the magnetic dips above BPs is correlated to dark elongated features observed in H. Mass flows in these flat fibrils are discussed in the context of energy release in the BP separatrices. The effect of the plasma on the computed magnetic configuration is shown to be of secondary importance with respect to the topology of the field.  相似文献   

8.
The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy.In this paper, we pay attention to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh (1981). A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these largescale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the largescale fields.This dynamo process generates also some of the familiar “force-free” fields or the “sheared” magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that “low temperature flares” are directly driven by the photospheric dynamo process.  相似文献   

9.
Through coordinated observations made during the Max'91 campaign in June 1989 in Potsdam (magnetograms), Debrecen (white light and H), and Meudon (MSDP), we follow the evolution of the sunspot group in active region NOAA 5555 for 6 days. The topology of the coronal magnetic field is investigated by using a method based on the concept of separatrices - applied previously (Mandriniet al., 1991) to a magnetic region slightly distorted by field-aligned currents. The present active region differs by having significant magnetic shear. We find that the H flare kernels and the main photospheric electric current cells are located close to the intersection of the separatrices with the chromosphere, in a linear force-free field configuration adapted to the observed shear. Sunspot motions, strong currents, isolated polarities, or intersecting separatrices are not in themselves sufficient to produce a flare. A combination of them all is required. This supports the idea that flares are due to magnetic reconnection, when flux tubes with field-aligned currents move towards the separatrix locations.  相似文献   

10.
The magnetic field structure of five flares observed by HINOTORI spacecraft is studied. The double source structure of impulsive flares seems to indicate hard X-ray emission from the two footpoints of a flaring loop, but the potential field computation does not reproduce a loop connecting the two sources. Therefore the magnetic field could be in a sheared configuration and the force-free field modeling would be the next step to examine. On the other hand gradual flares are characterized by hard X-ray sources located in the corona, 2–4 x 104 km above the photosphere. The potential field modeling is found to give a reasonable fitting in this type of flares, and the hard X-ray sources are located at the top of the magnetic loop or arcade. This configuration is consistent with the thick-target trap model of the hard X-ray bursts.  相似文献   

11.
Measurements of magnetic fields and electric currents in the pre-eruptive corona are crucial to the study of solar eruptive phenomena, like flares and coronal mass ejections (CMEs). However, spectro-polarimetric measurements of certain photospheric lines permit a determination of the vector magnetic field only at the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field above multiple active regions with the help of a potential field and a nonlinear force-free field (NLFFF) extrapolation code over the full solar disk using Helioseismic and Magnetic Imager (SDO/HMI) data as boundary conditions. We compare projections of the resulting magnetic field lines with full-disk coronal images from the Atmospheric Imaging Assembly (SDO/AIA) for both models. This study has found that the NLFFF model reconstructs the magnetic configuration closer to observation than the potential field model for full-disk magnetic field extrapolation. We conclude that many of the trans-equatorial loops connecting the two solar hemispheres are current-free.  相似文献   

12.
李碧强  宋慕陶 《天文学报》1996,37(4):437-442
本文利用赣榆站所取得的色球精细结构资料,并采用了前苏联强磁场资料,逐日计算了1990年10月13日至16日复合活动区NOAA6309在色球层的磁拓扑界线,并与色球精细结构资料作了比照,发现:亮谱斑或亮耀斑核均是位于界线上,或紧邻它.这个结果支持“重联是耀斑在释放能量时的主要过程,而重联发生在磁场的拓扑界面上”的观点.  相似文献   

13.
Knowledge regarding the coronal magnetic field is important for the understanding of many phenomena, like flares and coronal mass ejections. Because of the low plasma beta in the solar corona, the coronal magnetic field is often assumed to be force-free and we use photospheric vector magnetograph data to extrapolate the magnetic field into the corona with the help of a nonlinear force-free optimization code. Unfortunately, the measurements of the photospheric magnetic field contain inconsistencies and noise. In particular, the transversal components (say B x and B y) of current vector magnetographs have their uncertainties. Furthermore, the magnetic field in the photosphere is not necessarily force free and often not consistent with the assumption of a force-free field above the magnetogram. We develop a preprocessing procedure to drive the observed non–force-free data towards suitable boundary conditions for a force-free extrapolation. As a result, we get a data set which is as close as possible to the measured data and consistent with the force-free assumption.  相似文献   

14.
The problem of the accumulation and storage of the energy released in solar flares is discussed; it is proposed that convective energy of the photosphere is transformed into magnetic energy of the chromosphere and corona. The consequences of a large ratio of magnetic pressure to gas pressure are investigated. In this case the field must be approximately force-free. The only suitable force-free fields which allow an analytical treatment are those of cylindrical symmetry. The stability of these fields is studied with the energy principle. It is shown that they are always unstable due to kink type instabilities. The shape of the unstable perturbations is described in detail and an upper limit for their amplitude is estimated. The consequences for the proposed mechanism of energy storage are briefly discussed.  相似文献   

15.
We have investigated the role of finite resistivity effects in the photosphere and chromosphere. We demonstrate that turbulence in the photospheric conductivity gives rise to a resistive instability, as does the gradient in resistivity between the chromospheric layer of the Sun and the photospheric layer, which latter unstable mode is the well known tearing mode of Furth, Killeen and Rosenbluth. In both cases the calculations indicate time scales of the order of seconds or minutes, and we therefore believe that solar flares and spicules can be produced by finite conductivity instabilities. We also demonstrate that the finite resistive diffusion makes it difficult to maintain an initially force-free flux tube in the chromosphere unless the Alfvén speed is sufficiently high and/or the flux tube is sufficiently thick. We also demonstrate that the magnetic fields in the turbulent photosphere becomes trapped by high conductivity regions and this leads to enhancement of the resistive instabilities.Our analysis does not explain the origin of the high-energy particles in solar flares—for this the problem of dynamical acceleration must be investigated.  相似文献   

16.
    
Using the boundary element method (BEM) for constant-, force-free fields, the vector magnetic field distributions in the chromosphere of a flare-productive active region. AR 6659 in June 1991, are obtained by extrapolating from the observed vector magnetograms at the photosphere. The calculated transverse magnetic fields skew highly from the photosphere to the chromosphere in the following positive polarity sunspot whereas they skew only slightly in the main preceding sunspot. This suggests that more abundant energy was stored in the former area causing flares. Those results demostrate the validity of the BEM solution and the associations between the force-free magnetic field and the structure of the AR 6659 region. It shows that the features of the active region can be revealed by the constant- force-free magnetic field approximation.  相似文献   

17.
It has been widely conjectured that solar flares are energized by the magnetic energy stored in complex active regions. Paradoxically, however, in attempting to show that magnetic changes cause or characterize flares, solar magnetic observations have produced equivocal results.In previous attempts at resolving the paradox, it has been contended that magnetic measurements are simply imprecise or that magnetic theories of flares are incorrect. We present an alternative explanation: the present use of magnetograms to examine active region structure through numerical integration of miscellaneous field lines (under various force-free assumptions) provides qualitative information only and does not utilize the quantitative information available. Therefore, we propose a new approach to the analysis of magnetograms which is illustrated with a highly symmetrized example that permits integration in closed form. The proposed approach exploits the cellular structure of the flux of field lines present in a complex active region. The various topological connectivities distinguish parent and daughter flux cells. A function F is developed expressing the flux partitioned into the daughter cell of interconnected field lines in a potential field. This F is a function of the location, strength, and relative motions of the photospheric sources. Then dF/dt is used as an EMF in the direct calculation of the stored magnetic energy available for flare production. In carrying out this program the flux partitioning surface (separatrix) is calculated along with its line of self-intersection (separator). The separator is the location of the principal energy release site.  相似文献   

18.
A solar flare with both H and Fe i 5324 emissions was observed in AR 7529 (S13, E65) on 24 June, 1993 at the Bejing Astronomical Observatory. Our calculations show that the Fe i 5324 emission region of the flare was located in the low photosphere at a height of about 180 km above 5000 = 1, which is lower than many previous studies of white-light flares. To study a Fe i 5324 flare, which represents a kind of extreme case in solar flares, would be useful for clarifying some arguments in the researches of white-light flares as well as for understanding the mechanism of solar flares.The synthetic analyses from vairous features of the flare lead to the following possible exciting mechanism of the Fe i 5324 flare: owing to the flow of energetic electrons from the corona and probably also the thermal conduction downward into the lower atmosphere, a condensation with a temperature higher than that below it was formed near the transition region. Then the low photosphere was heated through backwarming. The Fe i 5324 flare occurred as an indicator of the excitation in the low photosphere.  相似文献   

19.
DÉmoulin  P.  HÉnoux  J. C.  Mandrini  C. H.  Priest  E. R. 《Solar physics》1997,174(1-2):73-89
In order to understand various solar phenomena controlled by the magnetic field, such as X-ray bright points, flares and prominence eruptions, the structure of the coronal magnetic field must be known. This requires a precise extrapolation of the photospheric magnetic field. Presently, only potential or linear force-free field approximations can be used easily. A more realistic modelling of the field is still an active research area because of well-known difficulties related to the nonlinear mixed elliptic-hyperbolic nature of the equations. An additional difficulty arises due to the complexity of the magnetic field structure which is caused by a discrete partition of the photospheric magnetic field. This complexity is not limited to magnetic regions having magnetic nulls (and so separatrices) but also occurs in those containing thin elongated volumes (called Quasi-Separatrix Layers) where the photospheric field-line linkage changes rapidly. There is a wide range for the thickness of such layers, which is determined by the character (bipolar or quadrupolar) of the magnetic region, by the sizes of the photospheric field concentrations and by the intensity of the electric currents. The aim of this paper is to analyse the recent nonlinear force-free field extrapolation techniques for complex coronal magnetic fields.  相似文献   

20.
Brown  D.S.  Priest  E.R. 《Solar physics》2000,194(2):197-204
Potential fields and linear force-free fields are often used as models for the magnetic field of the Sun's corona. They can be written as analytical expressions in terms of boundary values at the photosphere. Because of their relative simplicity compared with nonlinear force-free fields, these two models are of particular importance in topological analysis of solar phenomena. However, it has been suggested by Hudson and Wheatland (1999) that the topologies of potential and force-free models are in general not even qualitatively equivalent. In this paper, their example is re-examined and it is found that the opposite conclusions hold. In general, potential and force-free fields are topologically similar sufficiently close to localized sources. The exception to this are structurally unstable states, such as bifurcation states, where a small change of current can produce a significant change of topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号