首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single backscattering model was used to estimate total attenuation of coda waves (Qc) of local earthquakes recorded on eight seismological stations in the complex area of the western continental Croatia. We estimated Q0 and n, parameters of the frequency dependent coda-Q using the relation Qc = Q0fn. Lapse time dependence of these parameters was studied using a constant 30 s long time window that was slid along the coda of seismograms. Obtained Qc were distributed into classes according to their lapse time, tL. For tL = 20–50 s we estimated Q0 = 45–184 and n = 0.49–0.94, and for tL = 60–100 s we obtained Q0 = 119–316 and n = 0.37–0.82. There is a tendency of decrease of parameter n with increasing Q0, and vice versa. The rates of change of both Q0 and n seem to decrease for lapse times larger than 50–80 s, indicating an alteration in rock properties controlling coda attenuation at depths of about 100–160 km. A very good correlation was found between the frequency dependence parameter n and the Moho depths for lapse times of 50, 60 and 70 s.  相似文献   

2.
Equivalent dose (De) values were measured by using medium aliquots of different grain size quartz fractions of five lakeshore sediments from the arid region of north China. There are two different relationships between De values and grain sizes of these five samples. The first relationship is that the De values obtained from various grain sizes are in agreement within 1 delta errors. The second relationship is that De values are similar to each other for fractions between 125 and 300 μm, while the De value of the 63–90 μm fraction is 40~55% smaller than others. For example, the De values obtained for sample #3 are 20.15 ± 1.19 Gy, 19.80 ± 0.83 Gy and 20.93 ± 1.06 Gy for fractions of 90–125, 125–150 and 250–300 μm respectively, but are 10.79 ± 0.84 Gy for the 63–90 μm fraction. The second relationship can't be interpreted by previous studies of both dosimetry and heterogeneous bleaching. It is deduced for sample #2, #3 and #6 that fine particles (<90 μm) intruded after the dominant sedimentation. Comparison of OSL ages from different grain size fractions of sample #2 with a radiocarbon age from the same lithologic layer supports that fractions coarser than 125 μm yield more reliable burial ages, while the fraction finer than 90 μm yields underestimated ages for some lakeshore sediments from this arid region.  相似文献   

3.
To explore whether quinone moieties are important in chromophoric dissolved organic matter (CDOM) photochemistry in natural waters, hydrogen peroxide (H2O2) production and associated optical property changes were measured in aqueous solutions irradiated with a Xenon lamp for CDOM model compounds (dihydroquinone, benzoquinone, anthraquinone, napthoquinone, ubiquinone, humic acid HA, fulvic acid FA). All compounds produced H2O2 with concentrations ranging from 15 to 500 μM. Production rates were higher for HA vs. FA (1.32 vs. 0.176 mM h−1); values ranged from 6.99 to 0.137 mM h−1 for quinones. Apparent quantum yields (Θapp; measure of photochemical production efficiency) were higher for HA vs. FA (0.113 vs. 0.016) and ranged from 0.0018 to 0.083 for quinones. Dihydroquinone, the reduced form of benzoquinone, had a higher production rate and efficiency than its oxidized form. Post-irradiation, quinone compounds had absorption spectra similar to HA and FA and 3D-excitation–emission matrix fluorescence spectra (EEMs) with fluorescent peaks in regions associated with CDOM.  相似文献   

4.
《Journal of Geodynamics》2010,49(3-5):331-339
The Free Core Nutation (FCN) is investigated with the help of its resonance effect on the tidal amplitudes in Superconducting Gravimeter (SG) records of the GGP network. The FCN resonance parameters are combined in a resonance equation involving the Earth's interior parameters. The sensitivity of the FCN parameters to the diurnal tidal waves demonstrates that the quality factor of the FCN is strongly dependent on the accuracy of the imaginary part estimates of the gravimetric factors close to the resonance. The weak amplitude of Ψ1 tidal wave on the Earth, which is the closest in frequency to the FCN, in addition to errors in ocean loading correction, explains the poor determination of the quality factor Q from surface gravimetric data. The inversion of tidal gravimetric factors leads to estimates of the period, Q and resonance strength of the FCN. We show that, by inverting log(Q) instead of Q, the results using the least-squares method optimized using the Levenberg–Marquardt algorithm are in agreement with the Bayesian probabilistic results and agree with the results obtained from VLBI nutation data. Finally, a combined inversion of 7 GGP European SG data is performed giving T = 428 ± 3 days and 7762 < Q < 31,989 (90% C.I.). An experimental estimate of the internal pressure Love number is also proposed.  相似文献   

5.
《Marine pollution bulletin》2011,62(7-12):399-412
In order to quantify the spatial and seasonal variations of sediment oxygen consumption and nutrient fluxes, we performed a spatial survey in the south west lagoon of New Caledonia during the two major seasons (dry and wet) based on a network of 11 sampling stations. Stations were selected along two barrier reef to land transects representing most types of sediments encountered in the lagoon. Fluxes were measured using ex-situ sediment incubations and compared to sediment characteristics. Sediment oxygen consumption (SOC) varied between 500 and 2000 μmol m−2 h−1, depending on season and stations. Nutrient effluxes from sediment were highly variable with highest fluxes measured in muddy sediments near the coast. Inter-sample variability was as high as seasonal differences so that no seasonally driven temperature effect could be observed on benthic nutrient fluxes in our temperature range. Nutrient fluxes, generally directed from the sediment to the water column, varied between −5.0 and 70.0 μmol m−2 h−1 for ammonia and between −2.5 and +12.5 μmol m−2 h−1 for PO4 and NO2+3. SOC and nutrient fluxes were compared to pelagic primary production rates in order to highlight the tight coupling existing between the benthic and pelagic compartments in this shallow tropical lagoon. Under specific occasions of low pelagic productivity, oxygen sediment consumption and related carbon and nutrient fluxes could balance nearly all net primary production in the lagoon. These biogeochemical estimates point to the functional importance of sediment biogeochemistry in the lagoon of New Caledonia.  相似文献   

6.
《Advances in water resources》2005,28(10):1122-1132
During the last 25 years there has been a great interest in deriving aquifer characteristics from outflow data. This analysis has been mainly based of the drainage of a horizontal aquifer after sudden drawdown, using the Boussinesq approximation. Following the general approach of Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40], it was determined that for this geometry the aquifer behavior could be characterized by dQ/dt  Q3 for small t and by dQ/dt  Q3/2 for large t. It was remarked that dQ/dt  Q for large t is often observed. In practice, it is also difficult to determine if dQ/dt  Q3 for small t because this behavior can only be observed over a very short period.Here, we present a similar analysis of aquifer behavior based on the more fundamental Laplace solution for penetrated aquifers. It has been shown that also when the drain does not fully penetrate the aquifer, the solution still produces good results [Szilagyi, J. Sensitivity analysis of aquifer parameter estimations based on the Laplace equation with linearized boundary conditions. Water Resour Res 2003;39(6)]. The Laplace solution quickly shows that dQ/dt  Q for t  ∞ and dQ/dt  Q for t  0, after sudden drawdown. This analysis reconfirms previous findings concerning long-time behavior. More importantly, the analysis shows that the exponent B in dQ/dt  QB does not have a fixed limited value for short times for the given geometry. Further analysis, however, shows that under certain conditions the relation dQ/dt  Q3 is retained for 0  t < 1. Detailed examination of the Laplace solution also shows under which types of recharge dynamics a well-identifiable transition takes place between short- and long-term behavior. As long as such a clear transition exists, the aquifer characterization method proposed earlier by Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40] can be applied. It is shown that for a sharp pulse input, the Laplace solution gives similar results as presented by Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40]. For a smooth pulse, the transition becomes unclear. What is “smooth” and “sharp” depends on input and aquifer characteristics, whereby shallow aquifers give clearer transitions than deep aquifers for the same input. The analysis shows that when rain ceases suddenly after the aquifer has come into equilibrium with a steady rain input, a usable transition in the relation between dQ/dt and Q can be found as well. Researchers can use the present analysis to assess whether specific aquifers and recharge events can be used for the previously suggested characterization method.  相似文献   

7.
The distinctly different, εNd(0) values of the Atlantic, Indian, and Pacific Oceans requires that the residence time of Nd in the ocean (i.e., τNd) be on the order of, or less than, the ocean mixing time of ∼ 500–1500 yr. However, estimates of τNd, based on river influxes, range from 4000 to 15,000 yr, thus exceeding the ocean mixing time. In order to reconcile the oceanic Nd budget and lower the residence time by roughly a factor of 10, an additional, as yet unidentified, and hence “missing Nd flux” to the ocean is necessary. Dissolution of materials deposited on continental margins has previously been proposed as a source of the missing flux. In this contribution, submarine groundwater discharge (SGD) is examined as a possible source of the missing Nd flux. Neodymium concentrations (n = 730) and εNd(0) values (n = 58) for groundwaters were obtained from the literature in order to establish representative groundwater values. Mean groundwater Nd concentrations and εNd(0) values were used along with recent estimates of the terrestrial (freshwater) component of SGD (6% of river discharge on a global basis) to test whether groundwater discharge to the coastal oceans could account for the missing flux. Employing mean Nd concentrations of the compiled data base (i.e., 31.8 nmol/kg for all 730 analyses and 11.3 nmol/kg for 141 groundwater samples from a coastal aquifer), the global, terrestrial-derived SGD flux of Nd is estimated to range between 2.9 × 107 and 8.1 × 107 mol/yr. These estimates are of the same order of magnitude, and within a factor of 2, of the missing Nd flux (i.e., 5.4 × 107 mol/yr). Applying the SGD Nd flux estimates, the global average εNd(0) of SGD is predicted to be − 9.1, which is similar to our estimate for the missing Nd flux (− 9.2), and in agreement with the mean (± S.D.) εNd(0) measured in groundwaters (i.e., εNd(0) = −8.9 ± 4.2). The similarities in the estimated SGD Nd flux and corresponding εNd(0) values to the magnitude and isotope composition of the missing Nd flux are compelling, and suggest that discharge of groundwater to the oceans could account for the missing Nd flux. Future investigations should focus on quantifying the Nd concentrations and isotope compositions of groundwater from coastal aquifers from a variety of coastal settings, as well as the important geochemical reactions that effect Nd concentrations in subterranean estuaries in order to better constrain contributions of SGD to the oceanic Nd budget.  相似文献   

8.
《Marine pollution bulletin》2009,58(6-12):403-408
Laboratory experiments were carried out to investigate the adsorption behaviour of dibutyl phthalate (DBP) on marine sediments collected from five different sites in Victoria Harbour, Hong Kong. DBP adsorption can be well described by the Langmuir isotherm. The maximum DBP adsorption capacity (Qmax) of the marine sediments ranges from 53 to 79 mg g−1, which has a positive correlation with their organic content. Around 90% of the organic can be removed from the sediments with treatment by H2O2 oxidation, and the Qmax then decreases to a range between 13 and 22 mg g−1. The black carbon content of the sediments has a much greater DBP adsorption capacity than does the natural organic matter of the sediments. The amount of DBP adsorbed on the sediments increases as the salinity of the marine water increases.  相似文献   

9.
In Ottawa, Canada, unusually high amplification ratios have recently been measured in clayey silts (called ‘Leda Clays’) at low levels of earthquake-induced ground shaking. However, the contribution of seismic Q, or material damping (ξ=1/2Q), to the overall ground motion at soft soil sites across the city is not well understood. This research investigates attenuation measurements in soft soils (Vs<250 m/s) for ongoing seismic hazard evaluation in the Ottawa area. The work focuses on in situ measurements of damping in two deep boreholes drilled into Leda Clay. To investigate the possibility of frequency-dependent dynamic properties of these materials at low strains, a new approach to the spectral ratio technique has been developed for the measurement of Qs in the field using a mono-frequency vibratory source (generating signals between 10 and 100 Hz), and two identical downhole 3-component geophones. Monofrequency signals also allowed for the measurement of dispersion (variation of velocity with frequency). Analysis of the data show that dynamic properties are, for the most part, independent of frequency in the homogenous silty soils, yielding negligible variation in shear wave velocity (<2 m/s) across the frequency test band, and small strain Qs's ranging from 170 to 200 (damping of 0.25–0.30%) over soil thickness intervals ranging from 10 to 60 m. At intervals within 20 m of the ground surface, laminated silt and clay beds of elevated porosity are found to have slight influence on the frequency dependence of damping for frequencies greater than 70 Hz (damping increase to 0.6%).  相似文献   

10.
Hydroelectric power is an important energy source to meet the growing demand for energy, and large amounts of water are consumed to generate this energy. Previous studies often assumed that the water footprint of hydroelectric power equaled the reservoir’s water footprint, but failed to allocate the reservoir water footprint among the many beneficiaries; dealing with this allocation remains a challenge. In this study, we developed a new approach to quantify the water footprint of hydroelectric power (WFh) by separating it from the reservoir water footprint (WF) using an allocation coefficient (ηh) based on the ratio of the benefits from hydroelectric power to the total ecosystem service benefits. We used this approach in a case study of the Three Gorges Reservoir, the world’s largest reservoir, which provides multiple ecosystem services. We found large differences between the WFh and the water footprint of per unit of hydroelectric production (PWFh) calculated using ηh and those calculated without this factor. From 2003 to 2012, ηh decreased sharply (from 0.76 in 2005 to 0.41 in 2012), which was due to the fact that large increases in the value of non-energy ecosystem services, and particularly flood control. In 2009, flood control replaced hydroelectricity as the largest ecosystem service of water from the Three Gorges Reservoir. Using our approach, WFh and PWFh averaged 331.0 × 106 m3 and 1.5 m3 GJ−1, respectively. However, these values would almost double without allocating water footprints among different reservoir ecosystem services. Thus, previous studies have overestimated the WFh and PWFh of reservoirs, especially for reservoirs that serve multiple purposes. Thus, the allocation coefficient should not be ignored when calculating the WF of a product or service.  相似文献   

11.
《Continental Shelf Research》2005,25(9):1081-1095
The mesoscale distribution and seasonal variation of the size structure of phytoplankton biomass, as measured by chlorophyll a (chl a), was studied in the Ebro shelf area (NW Mediterranean) during three different seasons: autumn, winter and summer. In autumn and summer, when the water column was, respectively, slightly or strongly stratified and nutrient concentrations were low at surface, average total chl a values were 0.31 and 0.29 mg m−3, respectively. In winter, the intrusion of nutrients into the photic zone by intense vertical mixing and strong riverine inputs, produced an increase of the total autotrophic biomass (0.76 mg m−3). In the three seasons, the main contributor to total chl a was the picoplanktonic (<2 μm) size fraction (42% in winter and around 60% in autumn and summer). The nanophytoplankton (2–20 μm) contribution to total chl a showed the lowest variability amongst seasons (between 29% and 39%). The microplanktonic (>20 μm) chl a size fraction was higher in winter (27%) than in the other seasons (less than 13%). The maximum total chl a concentrations were found at surface in winter, at depths of 40 m in autumn and between 50 and 80 m in summer. The relative contribution of the <2 μm size fraction at these levels of the water column tended to be higher than at other depths in autumn and winter and lower in summer. In autumn and winter, nutrient inputs from Ebro river discharge and mixing processes resulted in an increase on the >2 μm contribution to total chl a in the coastal zone near the Ebro Delta area. In summer, the contribution of the <2 and >2 μm chl a size fractions was homogeneously distributed through the sampling area. In autumn and summer, when deep chl a maxima were observed, the total amount of the autotrophic biomass in the superficial waters (down to 10 m) of most offshore stations was less than 10% of the whole integrated chl a (down to 100 m or to the bottom). In winter, this percentage increased until 20% or 40%. The >2 μm chl a increased linearly with total chl a values. However, the <2 μm chl a showed a similar linear relationship only at total chl a values lower than 1 mg m−3 (in autumn and summer) or 2 mg m−3 (winter). At higher values of total chl a, the contribution of the <2 μm size fraction remained below an upper limit of roughly 0.5 mg m−3. Our results indicate that the picoplankton fraction of phytoplankton may show higher seasonal and mesoscale variability than is usually acknowledged.  相似文献   

12.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

13.
The elastic moduli of polycrystalline ringwoodite, (Mg0.91Fe0.09)2SiO4, were measured up to 470 K by means of the resonant sphere technique. The adiabatic bulk (KS) and shear (μ) moduli were found to be 185.1(2) and 118.22(6) GPa at room temperature, and the average slopes of dKS/dT and dμ/dT in the temperature range of the study were determined to be −0.0193(9) and −0.0148(3) GPa/K, respectively. Using these results, we estimate seismic wave velocity jumps for a pure olivine mantle model at 520 km depth. We find that the jump for the S-wave velocity is about 1.5 times larger than that for the P-wave velocity at this depth. This suggests that velocity jumps at the 520 km discontinuity are easier to detect using S-waves than P-waves.  相似文献   

14.
《Marine pollution bulletin》2012,65(12):2857-2859
Baseline Hg concentration in bycatch fish from the SE Gulf of California were determined in muscle and liver of 19 species. Levels of Hg in muscle were compared with legal limits of this element in national and international legislation. Considering all fish species, mean concentrations in liver (2.458 ± 1.997 μg g−1) were significantly higher (p < 0.05) than in muscle (0.993 ± 0.670 μg g−1). The sequence of averaged Hg concentrations in most ichthyofauna was liver > muscle. Highest level of Hg in muscle (2.556 μg g−1) and liver (7.515 μg g−1) corresponded to Diapterus peruvianus and Ophioscion strabo, respectively. Considering muscle samples, none of the species had levels of Hg above the limit (1.0 μg g−1 wet weight) in the Mexican legislation; with respect to the Japanese (0.4 μg g−1 wet weight) and British (0.3 μg g−1 wet weight) legislations, 26.3% and 31.6% of the species respectively, were above the corresponding limits.  相似文献   

15.
Parallel factor analysis of fluorescence excitation emission matrices of surface water samples of a globally large river (Yangtze River, China) watershed identified three classes of fluorescent dissolved organic matter (FDOM) that had ex/em = 280/330 nm, 305/385 nm and 350/450 nm respectively, resembling “peak T”, “peak M” and “peak C” commonly identified in natural water, respectively. Peak T (a tyrosine/tryptophan-like FDOM) did not show correlations to peak M or C which were humic-like substances, while a positive correlation (r = 0.935, p < 0.001) was present between the natural log-transformed maximum fluorescence intensity (Fmax) of peaks T and M indicating a tight link during their production and processing. Fmax values (in Raman unit nm?1) normalized to dissolved organic carbon (DOC) concentration were low, varying in ranges 15.93–85.95, 29.83–83.54 and 19.73–51.05 × 10?5 nm?1 (μmol/L)?1 for peaks T, M and C, respectively, in line with the history of strong photobleaching of the water samples as indicated by fairly high absorption spectral slope ratios (0.75–1.53 with a mean 1.03). Intermediate fluorescence index (FI) (1.46–1.83 with a mean 1.61) and small specific absorption at 254 nm (0.64–1.93 with a mean 1.15 m?1 mg?1 L) of the water samples, indicated the presence of both aquatic microbial DOM (e.g. peak T) and soil DOM (e.g. peak C). Peak C could be substantially removed by UV-A (320–400 nm) irradiation, while peak M was slightly increased when a microbe-containing water was exposed to the same UV-A irradiation. Taken together, peak C was attributed to diffuse soil source while peak M was likely attributed to joint effects of microbial activities and solar irradiation on the chromophores in the sample.  相似文献   

16.
《Marine pollution bulletin》2014,78(1-2):172-176
A fungus, Aureobasidium pullulans, was isolated from marine biofilm and identified. A bioassay-guided fractionation procedure was developed to isolate and purify antifouling compounds from A. pullulans HN. The procedure was: fermentation broth—aeration and addition of sodium thiosulfate–graduated pH and liquid–liquid extraction—SPE purification—GC–MS analysis. Firstly, the fermentation broth was tested for its toxicity. Then it was treated with aeration and addition of sodium thiosulfate, and its toxicity was almost not changed. Lastly, antifouling compounds were extracted at different pH, the extract had high toxicity at pH 2 but almost no toxicity at pH 10, which suggested the toxicants should be fatty acids. The EC50 of the extract against Skeletonema costatum was 90.9 μg ml−1, and its LC50 against Balanus amphitrete larvae was 22.2 μg ml−1. After purified by HLB SPE column, the EC50 of the extract against S. costatum was 49.4 μg ml−1. The myristic and palmitic acids were found as the main toxicants by GC–MS.  相似文献   

17.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

18.
《Marine pollution bulletin》2012,64(5-12):160-165
Polybrominated diphenyl ethers (PBDEs) are now found ubiquitously in the aquatic environment and biota, and there is a growing concern that PBDEs may disrupt endocrine systems, leading to reproductive impairments of aquatic animals. In our study, zebrafish (Danio rerio) were exposed to the 5 ng/L, 1 μg/L and 50 μg/L of DE-71 for the duration of the whole life cycle (120 days, from eggs to adults). The expression of selected genes along the brain–pituitary–gonadal (BPG) axis and liver, and the levels of plasma sex hormones were examined.In male fish, up-regulation of GnRH in brain, FSHβ and LHβ in pituitary, FSH-receptor, LH-receptor, and CYP19a in testis was clearly evident, while down-regulation of CYP11a and 3β-HSD was found in testis. In female fish, a 2.4-fold up-regulation of 3β-HSD was found in ovary upon exposure to 50 μg/L of DE-71. GnRH in brain, FSHβ and LHβ in pituitary were also up-regulated, while ERβ, TH and TPH in brain and GnRH-receptor in pituitary were significantly down-regulated. Hepatic ERα, AR and VTG in males were all down-regulated, while hepatic ERα and AR in female were up-regulated.Serum estradiol (E2) was reduced in both male and female upon exposure to DE-71, while significant increases in serum testosterone (T) and 11-keto-testosterone (11-KT) were only found in male but not female fish. The ratio of T/E2 as well as the ratio of 11-KT/E2 in male fish increased in a dose-dependent manner upon exposure to DE-71. Our overall results showed that whole life exposure of DE-71 altered the expression of regulatory genes and receptors at all three levels of the BPG axis in zebrafish, and the responses are sex dependent. The observed disruption of GnRH and GtHs can be further related to the subsequent disruption in both levels and balance sex steroid hormones.  相似文献   

19.
《Marine pollution bulletin》2012,64(5-12):195-200
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m−2 d−1, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.  相似文献   

20.
《Marine pollution bulletin》2014,85(1-2):373-378
The surficial coastal sediments in Kendari Bay are sampled in the field to determine the concentration and pollution level of three heavy metals (Pb, Cd and Cr). Twenty-five sampling points ranging from the inner (Wanggu River) to the outer area of the bay have been chosen. The physicochemical properties, such as temperature, pH, salinity and TDS of the overlying water, as well as the sediment type and TOC of the surficial sediments, are also measured. The total concentrations of the Pb, Cd and Cr in the sediment samples are quantified using inductively-coupled plasma mass spectrometry (ICP-MS). The concentrations of the heavy metals (Pb, Cd and Cr) ranged from 0.84 to 17.02 μg/g, 0.02 to 0.17 μg/g and 1.92 to 40.11 μg/g (dry weight), respectively, following the Cr > Pb > Cd sequence. To assess the degree of contamination, a geoaccumulation index (Igeo) is measured. Kendari Bay is not a contaminated area regarding Pb, Cd and Cr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号