首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

2.
We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy . The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi-analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log-transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type-curve analysis and determine their sensitivity. This procedure, implemented in welltestpy , is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open-source software package welltestpy .  相似文献   

3.
We developed a method to estimate aquifer transmissivity from the hydraulic-head data associated with the normal cyclic operation of a water supply well thus avoiding the need for interrupting the water supply associated with a traditional aquifer test. The method is based on an analytical solution that relates the aquifer's transmissivity to the standard deviation of the hydraulic-head fluctuations in one or more observation wells that are due to the periodic pumping of the production well. We analyzed the resulting analytical solution and demonstrated that when the observation wells are located near the pumping well, the solution has a simple, Dupuit like form. Numerical analysis demonstrates that the analytical solution can also be used for a quasi-periodic pumping of the supply well. Simulation of cyclic pumping in a statistically heterogeneous medium confirms that the method is suitable for analyzing the transmissivity of weakly or moderately heterogeneous aquifers. If only one observation well is available, and the shift in the phase of hydraulic-head oscillations between the pumping well and the observation well is not identifiable. Prior knowledge of aquifer's hydraulic diffusivity is required to obtain the value of the aquifer transmissivity.  相似文献   

4.
In confined aquifers, the influence of neighboring active wells is often neglected when interpreting a pumping test. This can, however, lead to an erroneous interpretation of the pumping test data. This paper presents simple methods to evaluate the transmissivity (T) and storativity (S) of a confined aquifer under Theis conditions, when an interfering well starts pumping in the neighborhood of the tested well before the beginning of the test. These new methods yield better estimates of the T and especially S values than when the interfering well influence is neglected. They also permit to distinguish between interfering wells and other deviations from the Cooper‐Jacob straight line, such as impermeable boundaries. The new methods were then applied on data obtained from a numerical model. The new methods require knowing the pumping rate of the interfering well and the time elapsed since the pumping started in each well, but contrary to previous methods, they do not require the aquifer natural level at the beginning of the test, which is often unknown if the interfering well has started pumping before the tested well.  相似文献   

5.
The self-calibrated method has been extended for the generation of equally likely realizations of transmissivity and storativity conditional to transmissivity and storativity data and to steady-state and transient hydraulic head data. Conditioning to transmissivity and storativity data is achieved by means of standard geostatistical co-simulation algorithms, whereas conditioning to hydraulic head data, given its non-linear relation to transmissivity and storativity, is achieved through non-linear optimization, similar to standard inverse algorithms. The algorithm is demonstrated in a synthetic study based on data from the WIPP site in New Mexico. Seven alternative scenarios are investigated, generating 100 realizations for each of them. The differences among the scenarios range from the number of conditioning data, to their spatial configuration, to the pumping strategies at the pumping wells. In all scenarios, the self-calibrated algorithm is able to generate transmissivity–storativity realization couples conditional to all the sample data. For the specific case studied here the results are not surprising. Of the piezometric head data, the steady-state values are the most consequential for transmissivity characterization. Conditioning to transient head data only introduces local adjustments on the transmissivity fields and serves to improve the characterization of the storativity fields.  相似文献   

6.
In confined aquifers the influence of neighboring active wells is often neglected when interpreting a pumping test. This can, however, lead to an erroneous interpretation of the pumping test data. This article presents simple methods to evaluate the transmissivity tensor and storativity of an anisotropic confined aquifer when there is an interfering well in the neighborhood of the tested well. Two methods have been developed depending on whether the tested well or the interfering well is the first in operation. These new methods yield better estimates of the hydraulic parameters than when the influence of the interfering well is neglected. These methods have then been used on data obtained from numerical models with an interfering well and the results have been compared to an analytical method that neglects the influence of the interfering well. The methods require knowledge of the pumping rate of the interfering well and the time elapsed since the pumping started in each well. If the interfering well started pumping before the tested well, the method does not require knowledge of the aquifer piezometric level at the beginning of the test, which is often unknown in this case. As for the method without interference, at least three monitoring wells (MWs) are needed, the position of which influences the accuracy of the estimated parameters. Some recommendations concerning MWs position have been given to get more accurate results according to the sought parameter.  相似文献   

7.
This paper investigates the impact of heterogeneity of the transmissivity field on the interpretation of steady-state pumping test data from aquifer systems delimited by constant head boundaries such as aquifers adjacent to lakes or rivers. Spatially variable transmissivity fields are randomly generated and used to simulate the drawdown due to a pumping well located at different distances from a constant head boundary. The steady-state drawdown simulated at different observation wells are then interpreted using the Hantush method (Hantush 1959). The numerical simulations show that, in contrast to the case of infinite aquifer domains, the interpreted transmissivity varies depending on well locations and the separation distance between pumping well and boundary relative to the correlation length. The ensemble-averaged estimated transmissivity varies between the geometric mean and the arithmetic mean, and can even exceed the arithmetic mean in a narrow domain adjacent to the boundary. It approaches the geometric mean of the underlying transmissivity field only if the distance between the pumping well is more than 20 times the characteristic length of the transmissivity field.  相似文献   

8.
Traditional methods of analyzing pumping tests in single wells fail when the well loss is very high due to a low transmissivity skin. Because of the restricted rate at which water can enter a high loss well from the aquifer, well casing storage becomes a significant factor. Additionally, if a slug of water enters the well from the pump column immediately after the pump is switched off, it has a long‐lasting significant effect on the recovering water level in the well because it cannot be absorbed rapidly by the aquifer. A theoretical model is derived here that simulates the water level in a well in these circumstances. In the model, the continuously changing rate of water inflow from the aquifer to the well is approximated by a step function with a finite difference time step. It is demonstrated by a real example that the model can be applied easily to analyze pumping tests, including tests with a varying pumping rate. The analysis confirms suspected high well loss, calculates the unknown rate of backflow, and determines the aquifer's transmissivity.  相似文献   

9.
Chenaf D  Chapuis RP 《Ground water》2002,40(4):385-389
Starting from the equations of Theis and Cooper-Jacob, two new mathematical methods are proposed for interpreting the residual drawdown data for an infinite confined aquifer. Under Theis' assumptions and using the Cooper-Jacob approximation, the principal aquifer characteristics of transmissivity, pumping storativity, and recovery storativity are expressed without any correction or additional assumption. An actual case is used for illustration and confirms the validity of proposed equations and methods.  相似文献   

10.
Water level time series from groundwater production wells offer a transient dataset that can be used to estimate aquifer properties in areas with active groundwater development. This article describes a new parameter estimation method to infer aquifer properties from such datasets. Specifically, the method analyzes long‐term water level measurements from multiple, interacting groundwater production wells and relies on temporal water level derivatives to estimate the aquifer transmissivity and storativity. Analytically modeled derivatives are compared to derivatives calculated directly from the observed water level data; an optimization technique is used to identify best‐fitting transmissivity and storativity values that minimize the difference between modeled and observed derivatives. We demonstrate how the consideration of derivative (slope) behavior eliminates uncertainty associated with static water levels and well‐loss coefficients, enabling effective use of water level data from groundwater production wells. The method is applied to time‐series data collected over a period of 6 years from a municipal well field operating in the Denver Basin, Colorado (USA). The estimated aquifer properties are shown to be consistent with previously published values. The parameter estimation method is further tested using synthetic water level time series generated with a numerical model that incorporates the style of heterogeneity that occurs in the Denver Basin sandstone aquifers.  相似文献   

11.
This paper derives an equivalent of Darcian Theis solution for non-Darcian flow induced by constant rate pumping of a well in a confined aquifer. The derivation, which is valid at later times only, is original. It utilizes Izbash's equation. This introduces an additional parameter to Darcian condition, namely, empirical exponent. The solution is a non-Drcian equivalent of Jacob straight line method for analyzing pumping tests at late times. It can be used to determine aquifer parameters: storativity, analogous hydraulic conductivity, and empirical exponent. However, while the Jacob method requires a minimum of only one pumping test with one observation well, the additional parameter in the present solution means that a minimum of two observation wells in one test or two pumping tests at different rates with one observation well are required. The derived solution is applied to a case study at Plomeur in Brittany, France, and is shown to provide a practical and efficient method for analyzing pumping tests where non-Darcian groundwater flow occurs.  相似文献   

12.
Bayer P  Finkel M 《Ground water》2006,44(2):234-243
We investigate the performance of vertical hydraulic barriers in combination with extraction wells for the partial hydraulic isolation of contaminated aquifer areas. The potential advantage of such combinations compared to a conventional pump-and-treat system has already been demonstrated in a previous study. Here we extend the scope of the performance analysis to the impact of uncertainty in the regional flow direction as well as to highly heterogeneous aquifer transmissivity distributions. In addition, two new well-barrier scenarios are proposed and analyzed. The hydraulic efficiency of the scenarios is rated based on the expected (mean) reduction of the pumping rate that is required to achieve downgradient contaminant capture. The uncertain spatial distribution of aquifer transmissivity is considered by means of unconditioned Monte Carlo simulations. The significance of uncertain background flow conditions is incorporated by computing minimized pumping rates for deviations of the regional flow direction up to 30 degrees from a normative base case. The results give an answer on how pumping rates have to be changed for each barrier-well combination in order to achieve robust systems. It is exposed that in comparison to installing exclusively wells, the barrier-supported approach generally yields savings in the (average) pumping rate. The particular efficiency is shown to be highly dependent on the interaction of variance and integral scale of transmissivity distribution, well and barrier position, as well as direction of background flow.  相似文献   

13.
2.5-D modeling and inversion techniques are much closer to reality than the simple and traditional 2-D seismic wave modeling and inversion. The sensitivity kernels required in full waveform seismic tomographic inversion are the Fréchet derivatives of the displacement vector with respect to the independent anisotropic model parameters of the subsurface. They give the sensitivity of the seismograms to changes in the model parameters. This paper applies two methods, called ‘the perturbation method’ and ‘the matrix method’, to derive the sensitivity kernels for 2.5-D seismic waveform inversion. We show that the two methods yield the same explicit expressions for the Fréchet derivatives using a constant-block model parameterization, and are available for both the line-source (2-D) and the point-source (2.5-D) cases. The method involves two Green’s function vectors and their gradients, as well as the derivatives of the elastic modulus tensor with respect to the independent model parameters. The two Green’s function vectors are the responses of the displacement vector to the two directed unit vectors located at the source and geophone positions, respectively; they can be generally obtained by numerical methods. The gradients of the Green’s function vectors may be approximated in the same manner as the differential computations in the forward modeling. The derivatives of the elastic modulus tensor with respect to the independent model parameters can be obtained analytically, dependent on the class of medium anisotropy. Explicit expressions are given for two special cases—isotropic and tilted transversely isotropic (TTI) media. Numerical examples are given for the latter case, which involves five independent elastic moduli (or Thomsen parameters) plus one angle defining the symmetry axis.  相似文献   

14.
Alexander SC  Saar MO 《Ground water》2012,50(2):256-265
Numerous refinements have been proposed to traditional pumping test analyses, yet many hydrogeologists continue to use the Jacob method due to its simplicity. Recent research favors hydraulic tomography and inverse numerical modeling of pumping test data. However, at sites with few wells, or relatively short screens, the data requirements of these methods may be impractical within physical and fiscal constraints. Alternatively, an improved understanding of the assumptions and limitations of Theis and, due to their widespread usage, Jacob analyses, leads to improved interpretations in data-poor environments. A fundamental requirement of Jacob is a "small" value of u = f(r(2)/t), with radial distance, r, and pumping time, t. However, selection of a too stringent (i.e., too low) maximum permissible u-value, u(max), results in rejection of usable data from wells beyond a maximum radius, r(max). Conversely, data from small radii, less than r(min), where turbulent- and vertical-flow components arise, can result in acceptance of inappropriate data. Usage of drawdown data from wells too close to the pumping well, and exclusion of data from wells deemed too far, can cause unrealistic aquifer transmissivity, permeability, and storativity determinations. Here, data from an extensive well field in a glacial-outwash aquifer in north-central Minnesota, USA, are used to develop a new estimate for u(max). Traditionally quoted values for u(max) range from 0.01 to 0.05. Our proposed value for Jacob distance-drawdown analyses is significantly higher with u(max) up to 0.2, resulting in larger allowable r(max)-values and a higher likelihood of inclusion of additional wells in such pumping test analyses.  相似文献   

15.
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.  相似文献   

16.
董兴朋  杨顶辉 《地球物理学报》2017,60(12):4671-4680
谱元法已成为区域性乃至大陆性尺度地震波场模拟的重要工具.对于区域或大陆尺度层析成像而言,地球曲率不可忽略,此时模拟地震波传播采用球坐标系更为合适.本文从球坐标系下弹性波动方程弱形式出发,基于球坐标系变分原理给出了球坐标系下求解三维地震波方程的谱元法.另一方面,计算Fréchet敏感核是进行全波形反演的关键,本文借助伴随原理,推导了全波走时层析成像三维Fréchet敏感核表达式.为了验证球坐标系下谱元法的精度,我们将数值模拟结果与normal mode方法得到的解析解在1-D PREM模型下进行了对比.同时,我们将此方法应用到华北克拉通区域,以期获得地球内部结构精确成像.基于3-D全球径向各向异性地幔模型S362ANI和3-D地壳模型Crust1.0,我们建立了华北克拉通初始3-D背景模型,并将数值模拟结果与实际观测台站记录波形资料进行对比分析,利用互相关方法提取走时残差,最后给出了Fréchet敏感核在3-D空间中的分布,这些工作为下一步开展球坐标系下三维大尺度全波形反演奠定了基础.  相似文献   

17.
The value of subsidence data in ground water model calibration   总被引:2,自引:0,他引:2  
Yan T  Burbey TJ 《Ground water》2008,46(4):538-550
The accurate estimation of aquifer parameters such as transmissivity and specific storage is often an important objective during a ground water modeling investigation or aquifer resource evaluation. Parameter estimation is often accomplished with changes in hydraulic head data as the key and most abundant type of observation. The availability and accessibility of global positioning system and interferometric synthetic aperture radar data in heavily pumped alluvial basins can provide important subsidence observations that can greatly aid parameter estimation. The aim of this investigation is to evaluate the value of spatial and temporal subsidence data for automatically estimating parameters with and without observation error using UCODE-2005 and MODFLOW-2000. A synthetic conceptual model (24 separate cases) containing seven transmissivity zones and three zones each for elastic and inelastic skeletal specific storage was used to simulate subsidence and drawdown in an aquifer with variably thick interbeds with delayed drainage. Five pumping wells of variable rates were used to stress the system for up to 15 years. Calibration results indicate that (1) the inverse of the square of the observation values is a reasonable way to weight the observations, (2) spatially abundant subsidence data typically produce superior parameter estimates under constant pumping even with observation error, (3) only a small number of subsidence observations are required to achieve accurate parameter estimates, and (4) for seasonal pumping, accurate parameter estimates for elastic skeletal specific storage values are largely dependent on the quantity of temporal observational data and less on the quantity of available spatial data.  相似文献   

18.
A new method for the interpretation of pumping tests in leaky aquifers   总被引:4,自引:0,他引:4  
A novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The method is based on the analysis of the first and second derivatives of the drawdown with respect to log time for the estimation of the flow parameters. Like commonly used analysis procedures, such as the type-curve approach developed by Walton (1962) and the inflection point method developed by Hantush (1956), the mathematical development of the DIP method is based on the assumption of homogeneity of the leaky aquifer layers. However, contrary to the two methods developed by Hantush and Walton, the new method does not need any fitting process. In homogeneous media, the two classic methods and the one proposed here provide exact results for transmissivity, storativity, and leakage factor when aquifer storage is neglected and the recharging aquifer is unperturbed. The real advantage of the DIP method comes when applying all methods independently to a test in a heterogeneous aquifer, where each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. Therefore, the methods are complementary and not competitive. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.  相似文献   

19.
Cem B. Avci  A. Ufuk Sahin 《水文研究》2014,28(23):5739-5754
Pumping tests are one of the most commonly used in situ testing techniques for assessing aquifer hydraulic properties. Numerous researches have been conducted to predict the effects of aquifer heterogeneity on the groundwater levels during pumping tests. The objectives of the present work were as follows: (1) to predict drawdown conditions and to estimate aquifer properties during pumping tests undertaken in radially symmetric heterogeneous aquifers, and (2) to identify a method for assessing the transmissivity field along the radial coordinate in radially symmetric and fully heterogeneous transmissivity fields. The first objective was achieved by expanding an existing analytical drawdown formulation that was valid for a radially symmetric confined aquifer with two concentric zones around the pumping well to an N concentric zone confined aquifer having a constant transmissivity value within each zone. The formulation was evaluated for aquifers with three and four concentric zones to assess the effects of the transmissivity field on the drawdown conditions. The specific conditions under which aquifer properties could be identified using traditional methods of analysis were also evaluated. The second objective was achieved by implementing the inverse solution algorithm (ISA), which was developed for petroleum reservoirs to groundwater aquifer settings. The results showed that the drawdown values are influenced by a volumetric integral of a weighting function and the transmissivity field within the cone of depression. The weighting function migrates in tandem with the expanding cone of depression. The ability of the ISA to predict radially symmetric and log‐normally distributed transmissivity fields was assessed against analytical and numerical benchmarks. The results of this investigation indicated that the ISA method is a viable technique for evaluating the radial transmissivity variations of heterogeneous aquifer settings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The buried-valley aquifers that are common in the glacial deposits of the northern hemisphere are a typical case of the strip aquifers that occur in many parts of the world. Pumping from a narrow strip aquifer leads to much greater drawdown and much more distant drawdown effects then would occur in a sheet aquifer with a similar transmissivity and storage coefficient. Widely used theories for radial flow to wells, such as the Theis equation, are not appropriate for narrow strip aquifers. Previously published theory for flow to wells in semiconfined strip aquifers is reviewed and a practical format of the type curves for pumping-test analysis is described. The drawdown response of strip aquifers to pumping tests is distinctive, especially for observation wells near the pumped well. A case study is presented, based on extensive pumping test experience for the Estevan Valley Aquifer in southern Saskatchewan, Canada. Evaluation of groundwater resources in such buried-valley aquifers needs to take into account the unusually large drawdowns in response to pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号