首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A group of folds in alternating pelites and cross-laminated siltstones is described. An interpretation of the finite strain state, in the competent silt layers, is proposed on the basis of an analysis of the angle between cross-lamination and the principal surface of accumulation. Strain magnitudes are greatest in the fold hinge where domains of layer parallel shortening and layer parallel extension are separated by a neutral surface. Strain magnitudes in the fold limbs are small and are largely related to the development of the asymmetry of the folds. In the incompetent pelitic layers, strain in the fold limbs has a large, layer parallel shear component. Deformation in the pelites is accompanied by, and presumably partially achieved by, migration of quartz from areas where there is a tendency for volume to decrease, to areas where it is tending to increase. This process involves local increases in volume of more than 50%.A kinematic model is proposed for development of the folds. It involves early development of small symmetrical folds followed by their modification to asymmetrical, parasitic structures on the limbs of later folds. In the late stages of folding, continued shortening perpendicular to the axial surface orientation is achieved by development of a conjugate crenulation cleavage.  相似文献   

2.
拉卡兰褶皱带中,发育于Ballarat-Bandigo冲断带中的低级变质砂、泥岩的宏观构造以间离劈理和人字形褶皱为特征,而且劈理在褶皱中呈扇形发育。劈理和褶皱的几何关系分析显示:劈理和褶皱的形成为压溶作用、压扁作用、弯曲作用和被动旋转共同作用的结果,而褶皱砂、泥岩中变形构造则以与压溶作用和再沉淀过程有关的显微构造为其典型特征。Fry法进行的全岩应变测量显示,褶皱砂岩的内部应变相当低(X/Z=1.40—1.83),褶皱应变格局给出变形机制的信息包括:缩短过程中的压扁作用和压溶作用、褶皱过程中由弯滑导致的层平行剪应变、以及褶皱后期发育阶段内弧区强烈的压溶作用。宏观构造、显散构造以及应变特征多方面信息证明:低级变质的沉积岩在褶皱变形过程中,压溶作用为一重要的变形机制。应变分解显示在30%—50%的总地壳水平缩短量下,弯曲导致的缩短最为14%—36%,压扁导致的缩短量为3%—14%,压溶导致的缩短量为8%—26%,而且压溶作用主要发生在褶皱内弧区。  相似文献   

3.
Detailed micro-meso to macroscopic structural analyses reveal two deformation phases in the western limb of the Hazara-Kashmir Syntaxis(HKS). Bulk top to NW shearing transformed initially symmetrical NNE-SSW trending meso to macroscopic folds from asymmetric to overturned ones without changing their trend. Sigmoidal en-echelon tension gashes developed during this deformation,that were oblique to bedding parallel worm burrows and bedding planes themselves. Strain analyses of deformed elliptical ooids using the R_f/φ method constrain the internal strain patterns of the NNE-SSW structures. The principal stretching axis(S_3) defined by deformed elliptical ooids is oriented N27°E at right angles to WNW-ESE shortening. The deformed elliptical ooids in sub-vertical bedding vertical planes contain ooids that plunge ~70° SE due to NW-directed tectonic transport. Finite strain ratios are1.45(R_(xy)) parallel to bedding plane and 1.46(R_(yz)) for the vertical plane. From these 2D strain values, we derive an oblate strain ellipsoidal in 3D using the Flinn and Hsu/Nadai techniques. Strains calculated from deformed elliptical ooids average-18.10% parallel to bedding and-18.47% in the vertical plane.However, a balanced cross-section through the study area indicates a minimum of~-28% shortening.Consequently, regional shortening was only partially accommodated by internal deformation.  相似文献   

4.
Strain was estimated in a fold of Cambrian interlayered siltstones and pelites by determining the preferred orientation of chlorite grains with an X-ray goniometer. Strains so obtained and the postulate that continuity be preserved allowed unfolding of the fold and the determination of rigid body rotations that accompanied the strain. Petrologic investigation showed no sign of major differential volume changes in the siltstones, and this in conjunction with measured strains led to the conclusion that one of the silty layers making up the fold was not, originally, a bed of uniform thickness but a lenticular body, probably representing a single ripple on a ripple-marked tidal flat.Unfolding by piecemeal fitting of unstrained domains shows that none of the principal axes of strain lie consistently parallel to or at right angles to the fold axis. Rock material was displaced with components orthogonal to the profile plane as well as parallel to it. Strain due to compaction during an early history of increasing sediment overburden cannot be separated from strain during tectonic deformation. Its influence is most clearly seen in differential volume change between siltstones and pelites. Additional differential volume changes within pelite beds could have occurred at any time of the deformational history.A comparison of the orientation of strain and rotation axes in the two limbs of the fold, and also comparison of the same orientations in Eulerian coordinates (Cartesian coordinates in the observed fold) and in Lagrangean coordinates (Cartesian in the unfolded fold) make it probable that episodes of relatively uniform strain both preceded and followed the buckling episode that produced the sharp hinge in the competent silt-stone. The siltstone may have been less indurated and thus no more competent than the pelite during early deformation.  相似文献   

5.
Total strain patterns estimated across the Pulaski thrust sheet of the southwest Virginia Appalachians show an approximately homogeneous, plane strain deformation associated with folding and distortion above a subsurface décollement. Estimated strains are low (1.2 < < 2.0) with a subvertical extension. Chlorite fibers in pressure fringes on framboidal pyrite indicate that non-rotational deformation produced weak cleavage and pencil structure in mudrock. Variations in shape of pencils and fiber lengths in pressure fringes define highest strains in fold hinges and adjacent to contraction faults. Fabric transitions, delineated by distribution and intensity of cleavage, pencil structure and bedding fissility across the thrust sheet are strain dependent. Balanced cross-sections suggest 35% horizontal shortening due to regional folding and faulting within the Pulaski sheet. Strain integration techniques give 17–35% horizontal shortening associated with cleavage formation. Removal of this strain indicates that cleavage was superposed on open to tight, class-3 folds. Pre-existing thickness variations and anomalous low strains in tight folds require early folding accomodated by intergranular deformation (perhaps controlled grainboundary sliding). Suppression of cleavage formation and penetrative strain was possibly due to higher pore fluid pressure in the early stages of thrust sheet deformation. Observed variations in bedding-cleavage angle and low cleavage fans are compatible with this deformation sequence.  相似文献   

6.
Experiments have been carried out to study the orientation and values of the three principal extensions during folding, and to investigate the nature of the deformation paths of the strain ellipsoids at the fold hinges. Single layers embedded in a matrix were deformed by plane strain pure shear with the layers obliquely inclined to the axes of the bulk strain. The strains on the outer and inner arcs of the fold hinges were measured by means of grids on the layer surfaces. The orientation and values of three principal strains during folding depend on the layer orientation and the degree of deformation, and may be different on the outer and the inner arcs. The deformation paths in the outer arc are generally in the constriction field and those in the inner arc lie in the flattening field. The deformation paths have been computed by analyzing the manner by which components of layer shortening, tangential longitudinal strain and elongation parallel to the fold-hinge line combine to give the finite strain.  相似文献   

7.
L tectonites     
Rocks with a pure linear fabric, or L tectonites, often indicate nearly perfect constrictional deformation. This paper assimilates published data, models, and interpretations to understand the forcing mechanisms that can form L tectonites. Most noncoaxial kinematic geometries that can result in constrictional deformation involve vorticity-parallel shortening. Local variations in external boundary conditions that localize components of constriction include releasing and restraining bends in shear zones, linear channels in shear zone boundaries, intersections between shear zones, and foliation triple points between ballooning diapirs. Internally, L tectonites are often localized in fold hinge zones, and rheologic variations partition constriction into discrete domains.The most common external kinematic framework that can form L tectonites involves simultaneous transport-perpendicular shortening in two directions. Hence, large domains of L>S and L tectonites are a common feature of orogen-parallel elongation. In every case, external variations in boundary conditions and/or internal variations in structural setting and rheology localize constriction to form L tectonites. External boundary conditions are important in density-driven vertical tectonics. Elsewhere, internal variations in structural setting and rheology are more important. The most common are the formation of L tectonites in fold hinge zones and in compositionally homogeneous rocks while heterogeneous rocks accommodate constriction by folding.  相似文献   

8.
Despite the common occurrence of simple shear deformation, laboratory and numerical simulations of folding have so far been almost exclusively in pure shear. Here we present a series of finite-element simulations of single layer folding in simple shear up to high shear strains (γ ≤ 4, and up to 75% shortening of the folding layer). In the simulations we vary the viscosity contrast between layer and its surroundings (25–100), the stress exponent (1 or 3) and the kinematics of deformation (pure- versus simple shear). In simple shear fold trains do not show a clear asymmetry, axial planes form perpendicular to the developing fold train and rotate along with the fold train. Differences in geometries between folds formed in simple and pure shear folds are thus difficult to distinguish visually, with simple shear folds slightly more irregular and with more variable axial plane orientation than in pure shear. Asymmetric refraction of an axial planar cleavage is a clearer indication of folding in simple shear. The main effect of an increase in stress exponent is an increase in effective viscosity contrast, with only a secondary effect on fold geometry. Naturally folded aplite dykes in a granodiorite are found in a shear zone in Roses, NE Spain. Comparison of the folded dykes with our numerical simulations indicates a viscosity contrast of around 25 and a stress exponent of 3. The natural folds confirm that at this moderate viscosity contrast, a significant amount of shortening (20–30%) is achieved by layer thickening instead of folding.  相似文献   

9.
Experiments have been carried out to study the effects of progressive deformation on the shape of folds and the variation in two-dimensional strains on cross-sections of singlelayer folds in a less competent matrix, in a pure-shear plane-strain deformation box with no volume change. The layer shortening continues after buckling has set in, leading to thickening of the fold hinge and with progressive buckling the layer elongates. During the layer elongation stage of folding the hinges continue to thicken, whereas the limbs thin out. Concentric folds are a combination of Class 1a type in the outer arc which gradually change to Class Ib type and then to Class 3 folds of Ramsay (1967) in the inner arc. Tangential longitudinal strains and shearing strains predominate in the fold-hinge zone and in the fold limbs of the buckling layer, respectively. Initially, uniform layer-flattening strains perpendicular to the layering develop which become extensive strains in the outer fold arc and compressive strains in the inner fold arc with progressive buckling. In the outer fold arc the extensive strains are distributed laterally over a wider zone and are of a lower magnitude than the compressive strains which are restricted to a narrow zone in the inner fold arc. The neutral surface first appears when the initial layer-flattening strains are removed due to extensive strains on the outer arc and with progressive buckling migrates towards the inner fold arc and extends laterally on the outer fold arc.  相似文献   

10.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

11.
Folds are developed in thin limestone layers within slates of the McKay Formation exposed to the east of the Rocky Mountain Trench, British Columbia, Canada. They possess geometrical characteristics expected of development by buckling. Strain in the profile plane of a selected fold is similar to that predicted by tangential longitudinal strain, except that magnitudes are too low for the observed curvature. This is attributed to inhomogeneity of strain on the scale of measurement, largely because of pressure solution. Material removed by pressure solution from the inner arc of the fold appears to form veins perpendicular to the hinge, a direction of tectonic stretching. Bedding-parallel stylolites developed diagenetically prior to tectonism.Layer-parallel shortening during the initiation of buckling was less than 20%, and probably less than 10%. The mean arclength/thickness ratio is 6.5 and 7.1, with a dispersion of 0.48 and 0.37 for local and regional populations of 29 and 212 folds, respectively. Application of buckling theory to this data suggests that folding followed a non-linear flow law. The viscosity contrast between limestone and slate would be higher and the power law exponent lower, if initial irregularities in the layers were in the form of a constant amplitude spectrum rather than one of white roughness. The data do not allow a choice of initial amplitude spectrum to be made, nor do they closely constrain estimates of n the power law exponent and viscosity contrast.Deformation in the limestone layers was accommodated by intracrystalline flow (twin gliding), pressure solution, and extensional veining (the last two linked by diffusive mass transfer). The first two dominated deformation in the profile plane of the fold and the last, in association with fracturing, allowed for extension parallel to the hinge. Experimental and theoretical considerations suggest that deformation by a combination of these processes should be non-linear. The non-linear flow law deduced from buckling analysis is consistent with expectations based on observations of active deformation mechanisms.  相似文献   

12.
The moderately metamorphosed and deformed rocks exposed in the Hampden Synform, Eastern Fold Belt, in the Mt Isa terrane, underwent complex multiple deformations during the early Mesoproterozoic Isan Orogeny (ca 1590–1500 Ma). The earliest deformation elements preserved in the Hampden Synform are first‐generation tight to isoclinal folds and an associated axial‐planar slaty cleavage. Preservation of recumbent first‐generation folds in the hinge zones of second‐generation folds, and the approximately northeast‐southwest orientation of restored L1 0 intersection lineation suggest recumbent folding occurred during east‐west to northwest‐southeast shortening. First‐generation folds are refolded by north‐south‐oriented upright non‐cylindrical tight to isoclinal second‐generation folds. A differentiated axial‐planar cleavage to the second‐generation fold is the dominant fabric in the study area. This fabric crenulates an earlier fabric in the hinge zones of second‐generation folds, but forms a composite cleavage on the fold limbs. Two weakly developed steeply dipping crenulation cleavages overprint the dominant composite cleavage at a relatively high angle (>45°). These deformations appear to have had little regional effect. The composite cleavage is also overprinted by a subhorizontal crenulation cleavage inferred to have developed during vertical shortening associated with late‐orogenic pluton emplacement. We interpret the sequence of deformation events in the Hampden Synform to reflect the progression from thin‐skinned crustal shortening during the development of first‐generation structures to thick‐skinned crustal shortening during subsequent events. The Hampden Synform is interpreted to occur within a progressively deformed thrust slice located in the hangingwall of the Overhang Shear.  相似文献   

13.
A non-coaxial deformation involving pre-folding initiation of cleavage perpendicular to bedding is proposed to explain non-axial planar cleavage associated with mesoscopic folds in part of the Appalachian foreland thrust-belt of southwest Virginia. Folds are gently plunging, asymmetric, upright to slightly inclined, sinusoidal forms with non-axial fanning cleavage. They show extreme local variations in type and degree of transection and the consistency of transection direction. These relations are further complicated by hinge migration.Cleavage-fan angles, bedding-cleavage angles and δ transection values appear influenced by fold tightness, and in part by fold flattening strain. Fold flattening increments are considered simultaneous with folding. Axial surface traces, and not cleavage traces, coincide with the principal extension direction in fold profiles. Geometric modelling of cleavage fanning and bedding-cleavage angle variations for various theoretical folding modes suggest that folding in limestone and sandstone layers was by tangential longitudinal strain. Significant shape modification and change in bedding-cleavage relations occurred after limb dips of 40 and 50° were attained in limestone and sandstone respectively. Mud-rock class 1C folds with convergent cleavage fans show features transitional between buckling and flexural flow. Initiation of ‘cleavage’ fabrics during layer-parallel shortening prior to significant folding may be important for cleavage evolution in some deformed rocks.  相似文献   

14.
Six experiments of single-layer folding with simple-shear boundary conditions were completed. Using materials of ethyl cellulose, the viscosity ratio of the stiff layer to matrix ranged from 20 to 100. The experiments were monitored by 10–14 photographs taken at equally spaced time intervals. Strain distributions in both the stiff layer and matrix were calculated from the displacements of over 300 ink dots distributed over the surface of each experiment. Both incremental strain (calculated from the relative displacements of the dots between successive photographs) and accumulating strain were determined on the two-dimensional profile of the materials as they folded.Symmetrical fold wavelengths occur and seem to be controlled by the wavelengths of initial perturbations in the stiff layer. If the Biot wavelength was not present initially, it will not occur in the final waveform. Consequently, in a group of natural folds, the mean value of wavelength/thickness ratios apparently reflects the initial perturbations. The mean value should not be confused with the Biot wavelength and should not be used to calculate viscosity ratios in naturally deformed rocks.Substantial layer thickening occurred only with viscosity ratios of 20. The amount of layer thickening also depends on initial perturbations of the stiff layer. If these perturbations are near the Biot wavelength, they are greatly amplified, the folds grow rapidly and layer thickening is small. If the perturbations are not near the Biot wavelength, amplification is small, the folds grow slowly and layer thickening is much greater.Principal elongations of the accumulated strain in the cores of some of the folds are not symmetrically distributed about axial planes and may cut across the axial plane at angles up to 20°. Strain shadows in the matrix, near the convex side of fold hinges, are also prominent. These triangular-shaped regions of low strain are not symmetrically disposed about fold axial planes, in contrast to strain shadows occurring in folds produced under pure-shear boundary conditions.The rotation of accumulating principal elongations in the stiff layer was calculated at fold inflections. Even though the folds themselves are generally symmetrical, these rotations at opposite fold inflections are not. One fold limb exhibits little rotation of principal elongations during folding while the other has rotations up to 70°. In contrast, folds formed in pure-shear boundary conditions have rotations of principal directions on opposite fold limbs equal in magnitude.  相似文献   

15.
Folding experiments have been carried out on single-layers of Carrara marble and Solnhofen limestone at a confining pressure of 275 bars, temperature of 400°C, and strain rates of 5.5×10−7 to 8.2×10−7. The marble and limestone layers were embedded in a rock-salt matrix and in a matrix of a mixture of 60% fine-grained halite and 40% fine-grained calcite, respectively, and deformed to different percentages of bulk shortening. Aspect ratios of the layers varied between 11.25 and 15. The stress-strain relationship reveals that strain increased with a very small increment in compressive stresses, once folding was initiated.With progressive deformation the bulk strain is compensated by folding along one fold hinge. The resulting folds are concentric and a combination of class 1a, 1b and 3 type. The changes in the arc length, layer thickness, limb dip and wavelength with progressive folding in marble layers, are discussed.The microstructure and texture of the folded marble and limestone layers have been investigated optically and by means of an X-ray texture goniometer. The inner fold arc exhibits a strong preferred orientation, whereas in the outer fold are the preferred orientation is poorly developed. Differences in the fabric in medium-grained marble and fine-grained limestone layers have been attributed to the difference in mechanism of deformation.  相似文献   

16.
A revised interpretation of a number of faults across the hinge and western limb of a large-scale anticlinal flexure in the Mount Isa district has been made in terms of the faults following earlier-formed be joints. Such joints often develop in weakly or moderately folded competent sediments, as a result of either tensile stresses that were active at a late stage during folding or the influence of residual stresses generated during tectonic uplift. The joints are oriented such that on a stereographic projection their poles plot parallel to the a axis of a fabric cross and at 90° to the fold axis (b). bc joints are thus approximately normal to bedding and contain the fold axis, and hence they fan around the axial plane of the fold containing them. Across the hinge and western limb of a steeply N-plunging large-scale F2 flexure in the Mount Isa district, a number of faults at high angles to bedding fan about the axial plane. Making use of the fold geometry and local bedding orientation it is possible to predict the orientation of ideal bc fractures at locations within the fold. These predictions fit well with the observed fault pattern. The movement on the faults, although apparently complex, appears consistent with continued shortening perpendicular to an axial-plane cleavage during the D2 deformation or as part of a later D2 deformation.  相似文献   

17.
Analysis of strain in Jurassic argillites forming part of the folded and thrusted sedimentary succession of the Lagonegro basin (southern Italian Apennines) has been carried out using ellipsoid-shaped reduction spots as strain markers. Most of the determined finite strain ellipsoids are of oblate type and show a peculiar distribution of the maximum extension direction (X), with maxima either subparallel or subperpendicular to the local fold axes. Using the strain matrix method, two different deformation histories have been considered to assist the interpretation of the observed finite strain pattern. A first deformation history involved vertical compaction followed by horizontal shortening (occurring by a combination of true tectonic strain and volume loss), whereby all strain is coaxial and there is no change in the intermediate axis of the strain ellipsoid. By this type of deformation sequence, which produces a deformation path where total strain moves from the oblate to the prolate strain field and back to the oblate field, prolate strain ellipsoids can be generated and may be recorded where tectonic deformation has not been large enough to reverse pretectonic compaction. This type of deformation history may be of local importance within the study area (i.e. it may characterize some fold hinge regions) and, more generally, is probably of limited occurrence in deformed pelitic rocks. A second deformation sequence considered the superposition of pre-tectonic compaction and tectonic strain consisting of initial layer-parallel shortening followed by layer-parallel shear (related to flexural folding). Also in this instance, volume change during tectonic deformation and tectonic plane strain have been assumed. For geologically reasonable amounts of volume loss due to compaction and of initial layer-parallel shortening, this type of deformation history is capable of producing a deformation path entirely lying within the oblate strain field, but still characterized by a changeover, during deformation, of the maximum extension axis (X) from a position parallel to the fold axis to one perpendicular to it. This type of deformation sequence may explain the main strain features observed in the study area, where most of the measured finite strain ellipsoids, determined from the limb regions of flexural folds, display an oblate shape, irrespective of the orientation of their maximum extension direction (X) with respect to the local structural trends. More generally, this type of deformation history provides a mechanism to account for the predominance of oblate strains in deformed pelitic rocks.  相似文献   

18.
The banded iron-formation in the southeastern Bababudan Hills display a macroscopic synformal bend gently plunging towards WNW. The bedding planes in smaller individual sectors show a cylindrical or conical pattern of folding. The dominant set of minor folds has WNW-ESE trending axial planes and the axes plunge towards WNW at gentle to moderate angles, though there is considerable variation in orientation of both axes and axial planes. A later set of sporadically observed folds has N-S trending axial planes. The macroscopic synformal bend within the study area forms the southeastern corner of a horseshoe shaped regional synformal fold closure which encompasses the entire Bababudan range. The minor folds are buckle folds modified to a varying extent by flattening. In some examples the quartzose layers appear to be more competent than the ferruginous layers; in others the reverse is true. The folds are frequently noncylindrical and the axes show curvature with branching and en echelon patterns. Such patterns are interpreted to be the result of complex linking of progressively growing folds whose initiation is controlled by the presence of original perturbations in the layers. Domes and basins have at places developed as a result of shortening along two perpendicular directions in a constrictional type of strain. Development of folds at different stages of progressive deformation has given rise to nonparallelism of fold axes and axial planes. The axes and axial planes of smaller folds developed on the limbs of a larger fold are often oriented oblique to those of the latter. Progressive deformation has caused rotation and bending of axial planes of earlier formed folds by those developed at later stages of the same deformational episode. Coaxial recumbent to nearly reclined fold locally encountered on the N-S limb of the macroscopic fold may belong to an earlier episode of deformation or to the early stage of the main deformation episode. The E-W to ESE-WNW strike of axial plane of the regional fold system in the Bababudan belt contrasts with the N-S to NNW-SSE strike of axial planes of the main fold system in the Chitradurga and other schist belts of Karnataka.  相似文献   

19.
The main aims of this study are to show (i) that non-cylindrical three-dimensional (3D) fold shapes and patterns can form during a single, unidirectional shortening event and (ii) that numerical reverse modeling of 3D folding is a feasible method to reconstruct the formation of 3D buckle-folds. 3D viscous (Newtonian) single-layer folding is numerically simulated with the finite element method to investigate the formation of fold shapes during one shortening event. An initially flat layer rests on a matrix with smaller viscosity and is shortened in one direction parallel to the layering. Forward modeling with different initial geometrical perturbations on the flat layer and different lateral boundary conditions generates non-cylindrical 3D fold shapes and patterns. The simulations show that, in reality, the initial layer geometry and the boundary conditions strongly control the final fold geometry. Fold geometries produced from the forward folding models are used as initial setting in numerical reverse folding models with parameters identical to those of forward models. These reverse models accurately reconstruct the initial geometry of forward models with also only one extension event parallel to the previous shortening direction. The starting geometry of the forward models is inaccurately reconstructed by the reverse models if a significantly different viscosity ratio than in the forward models is used. This work demonstrates that reverse modeling has a high potential for reconstructing the deformation history of folded regions and rheological constraints such as viscosity ratio. Reverse models may be applied to natural 3D fold shapes and patterns in order to determine if they formed (i) during a single or multiple deformation events and (ii) as active buckle-folds with a viscosity ratio 1 or as passive, kinematic folds without buckling. This approach may find much application to fold interference patterns, in particular.  相似文献   

20.
A new method to estimate strain and competence contrast from natural fold shapes is developed and verified by analogue and numerical experiments. Strain is estimated relative to the nucleation amplitude, AN, which is the fold amplitude when the amplification velocities caused by kinematic layer thickening and dynamic folding are identical. AN is defined as the initial amplitude corresponding to zero strain because folding at amplitudes smaller than AN is dominantly by kinematic layer thickening. For amplitudes larger than AN, estimates of strain and competence contrast are contoured in thickness-to-wavelength (H/λ) and amplitude-to-wavelength (A/λ) space. These quantities can be measured for any observed fold shape. Contour maps are constructed using existing linear theories of folding, a new nonlinear theory of folding and numerical simulations, all for single-layer folding. The method represents a significant improvement to the arc length method. The strain estimation method is applied to folds in viscous (Newtonian), power-law (non-Newtonian) and viscoelastic layers. Also, strain partitioning in fold trains is investigated. Strain partitioning refers to the difference in strain accommodated by individual folds in the fold train and by the whole fold train. Fold trains within layers exhibiting viscous and viscoelastic rheology show different characteristic strain partitioning patterns. Strain partitioning patterns of natural fold trains can be used to assess the rheological behaviour during fold initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号