首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic matter (DOM) and dissolved copper-organic complexes were isolated from the estuarine waters of Narragansett Bay, RI, using reverse-phase liquid chromatography employing C18 Sep-Pak cartridges (Waters Associates). The cartridges were found to have a constant retention efficiency for processing ? 1-l volumes of seawater. Fractionation of the isolated material, by sequential elution of the Sep-Pak with water: methanol mixtures of increasing organic solvent concentration, yielded a fraction of the organic matter with a specific copper activity six times greater than the overall activity for the isolated DOM. Analysis of this fraction by high performance liquid chromatography suggested that the organic components are of intermediate polarity and have appreciable aromatic character.An investigation of the protonation characteristics of the isolated complexes indicated that most of the copper is associated with a broad range of acidic sites on the DOM. Analysis by electron paramagnetic resonance spectroscopy confirmed the organic association of the isolated copper and also suggested the presence of several types of binding sites which probably involve oxygen donor ligands.Studies of the exchange of 64Cu with these binding sites on the isolated DOM indicated that 70% of the sites undergo rapid exchange with copper in seawater while 20% of these sites did not exchange in a 24-h time period.  相似文献   

2.
The distribution of molecular masses of organic ligands for copper(II) in oceanic water was investigated. The bulk dissolved organic matter (DOM) was fractionated by ultrafiltration and organic ligands were extracted from the resultant fractions by using immobilized metal ion affinity chromatography (IMAC). Contributions of total organic ligands were 2.0–4.4% of the bulk DOM in surface waters, as determined by the UV absorbance. In the distribution of molecular masses of organic ligands, relative contribution of the fraction with low molecular masses (<1000 Da) was dominant (49–62%), while 26–33% of the total organic ligands was in the 1000–10,000 Da fraction, leaving 10–19% in the >10,000 Da fraction. The distribution of molecular masses of organic ligands shifted to higher molecular masses, as compared with that of the bulk DOM. The fluorescence intensities of organic ligands were shown to be associated with carboxyl contents, based on peak excitation/emission wavelengths and the pH-dependence of fluorescence. Two ligand classes with different conditional stability constants (log KCuL′≈7 and 9) were determined from fluorescence quenching of ligand fractions during copper(II) titration. Organic ligands in low molecular mass fractions were relatively weak and strong ligands occurred in higher molecular mass fractions. It is suggested that the weaker ligand sites would consist of two or more carboxyl groups (log KHL′=4), whereas carboxyl groups (log =2), which are protonated at lower pH, and primary amine may additionally contribute to the formation of more stable copper(II) complexes of the stronger ligand.  相似文献   

3.
This one-year survey conducted in the macrotidal estuary of Penzé (Brittany, Western part of the Channel, France) was aimed at examining the variations of the various dissolved and particulate copper species. Ten field stations along the whole freshwater–seawater mixing zone were sampled each month. Different biogeochemical parameters (SPM, chl-a, pH and DOC) were also measured. The levels in total dissolved and total particulate copper ranged from 1.8 to 9.5 nM and from 5 to 98 μg g−1, respectively; such amounts are indicative of a pollution-free system. Extractable C18 copper (non-polar hydrophobic organic copper species), in winter and spring, accounted for 30–40% of the total dissolved copper. In summer, this contribution rapidly rose to 60% in the salinity range 20–30; over the same period of time, total particulate copper decreased. The change in dissolved copper speciation and the lowering of particulate copper concentrations were attributed to the release of strong organic ligands by phytoplankton. Our field data evidenced a highly variable behaviour for the various copper species over the seasonal cycle, and then led us to identify the following mechanisms: (i) metal desorption from organic river-flown particles (winter and spring), (ii) metal desorption from resuspended sediment in the upstream section (summer), (iii) competition between particles, non-extractable C18 organic ligands and phytoplankton-released extractable C18 organic ligands to complex copper in the downstream section (summer), and (iv) removal of non-extractable C18 organic copper by adsorption (autumn). Dissolved copper species fluxes were assessed: most of metal inputs to the estuary (60–74%) corresponded to non-extractable C18 organic copper. Winter and spring metal output fluxes were mainly constituted of non-extractable C18 organic complexes; on the other hand, extractable C18 organic complexes were predominant in summer and autumn output fluxes.  相似文献   

4.
Speciation of copper and nickel in the water phase of incubated marine slurries under aerobic conditions was performed with MnO2 and Sep—Pak C18 cartridges. Changes in time during the incubations of concentrations of dissolved organic carbon (DOC), dissolved copper and nickel and inorganic nitrogen were followed. The influence of organic complexation on the dissolved concentrations of copper and nickel was investigated as well as competition between copper and nickel for dissolved organic ligands.Two pools of dissolved organic ligands could be distinguished. With the MnO2 method a relatively strong ligand group was determined that was subjected to degradation. The conditional stability constant for copper with the relatively strong ligand was 1011.1. The conditional stability constant for the relatively strong nickel ligand was difficult to determine due to saturation of the ligand sites; it was found to be around 1010. However, it could not be ascertained whether nickel was reversibly com-plexed with the organic ligands.With Sep—Pak a relatively weak Hgand group was detected that was probably more resistant to degradation. The conditional stability constant of the weaker ligand could not be estimated, an approximation revealed that it was weaker than the ligand group determined with the MnO2 method. For copper the difference between binding strength of the ligand groups was at least 100, for nickel the difference was less.Competition between copper and nickel for the ligands could not be detected. Only during the first day of the experiment, when the system was not in equilibrium was competition suspected. However, the replacement of nickel by copper from the ligand sites was not straightforward and could not be accounted for by our model.The concentration of total dissolved copper during the first week of the experiment was found to be controlled on the one hand by release from the sediment of copper already associated with dissolved organic matter (DOM) and on the other hand by concentration of the strongest ligand. The calculated free copper concentration increased from 10−12 to 10−9mol l−1 due to the oxidation of the strongest ligand. After saturation of the strongest ligand the relatively weak ligand controlled the free copper concentration. A continuing release of copper from the sediment by degradation of particulate organic matter (POM) will not increase the free copper concentration until the ligand sites of the weaker ligands get saturated.The total dissolved nickel concentration seemed only to be determined by the sum of the concentrations of the organic ligands. A degradation of ligands resulted in a decrease of the total dissolved nickel concentration. The calculated free nickel concentration did not change with time.  相似文献   

5.
《Marine Chemistry》1986,19(2):161-174
Dissolved organic copper and chromium complexes were measured in both overlying and interstitial waters of Narragansett Bay and mesocosm sediments using C18 reverse-phase liquid chromatography and atomic absorption spectroscopy. In the interstitial and overlying waters, the isolation procedure recovered 22–67% of the total dissolved copper, 23–55% of the total dissolved chromium and 14–40% of the dissolved organic carbon. The distribution of both total and organic copper decreased with depth in the cores and exhibited a subsurface maximum near the zero Eh level (z = 2–4 cm). Below that depth, both forms of copper continued to decrease until an apparent equilibrium with sulfide minerals was established (7–8 cm). Dissolved chromium exhibited a different geochemistry, with both total and organic chromium increasing in concentration with depth in the cores, possibly due to remobilization from some mineral phase such as chromic hydroxide or chromite.  相似文献   

6.
How dissolved organic matter (DOM) undergoes chemical changes during its transit from river to ocean remains a challenge due to its complex structure. In this study, DOM along a river transect from black waters to marine waters is characterized using an offline combination of reversed-phase high performance liquid chromatography (RP-HPLC) coupled to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS), as well as tandem ESI-FTICR-MS. In addition, a water extract from degraded wood that mainly consists of lignins is used for comparison to the DOM from this transect. The HPLC chromatograms of all DOM samples and the wood extract show two major well-separated components; one is hydrophilic and the other is hydrophobic, based on their elution order from the C18 column. From the FTICR-MS analysis of the HPLC fractions, the hydrophilic components mainly contain low molecular weight compounds (less than 400 Da), while the hydrophobic fractions contain the vast majority of compounds of the bulk C18 extracted DOM. The wood extract and the DOM samples from the transect of black waters to coastal marine waters show strikingly similar HPLC chromatograms, and the FTICR-MS analysis further indicates that a large fraction of molecular formulas from these samples are the same, existing as lignin-like compounds. Tandem mass spectrometry experiments show that several representative molecules from the lignin-like compounds have similar functional group losses and fragmentation patterns, consistent with modified lignin structural entities in the wood extract and these DOM samples. Taken together, these data suggest that lignin-derived compounds may survive the transit from the river to the coastal ocean and can accumulate there because of their refractory nature.  相似文献   

7.
The release of ammonium from the photochemical degradation of dissolved organic matter (DOM) has been proposed by earlier studies as a potentially important remineralisation pathway for refractory organic nitrogen. In this study the photochemical production of ammonium from Baltic Sea DOM was assessed in the laboratory. Filtered samples from the Bothnian Bay, the Gulf of Finland and the Arkona Sea were exposed to UVA light at environmentally relevant levels, and the developments in ammonium concentrations, light absorption, fluorescence and molecular size distribution were followed. The exposures resulted in a decrease in DOM absorption and loss of the larger sized fraction of DOM. Analysis of the fluorescence properties of DOM using parallel factor analysis (PARAFAC) identified 6 independent components. Five components decreased in intensity as a result of the UVA exposures. One component was produced as a result of the exposures and represents labile photoproducts derived from terrestrial DOM. The characteristics of DOM in samples from the Bothnian Bay and Gulf of Finland were similar and dominated by terrestrially derived material. The DOM from the Arkona Sea was more autochthonous in character. Photoammonification differed depending on the composition of DOM. Calculated photoammonification rates in surface waters varied between 121 and 382 μmol NH4+ L− 1 d− 1. Estimated areal daily production rates ranged between 37 and 237 μmol NH4+ m− 2 d− 1, which are comparable to atmospheric deposition rates and suggest that photochemical remineralisation of organic nitrogen may be a significant source of bioavailable nitrogen to surface waters during summer months with high irradiance and low inorganic nitrogen concentrations.  相似文献   

8.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

9.
Tangential-flow ultrafiltration was used to isolate particulate and high-molecular-weight dissolved material from seawater collected at various depths and geographic regions of the Pacific and Atlantic Oceans. Ultrafiltration proved to be a relatively fast and efficient method for the isolation of hundreds of milligrams of material. Optical and electron microscopy of the isolated materials revealed that relatively fragile materials were recovered intact. Depth-weighted results of the size distribution of organic matter in seawater indicated that ˜ 75% of marine organic carbon was low-molecular-weight (LMW) dissolved organic carbon (< 1 nm), ˜ 24% was high-molecular-weight (HMW) dissolved organic carbon (1–100 nm), and ˜ 1% was particulate organic carbon (> 100 nm). The distribution of carbon in surface water was shifted to greater relative abundances of larger size fractions, suggesting a diagenetic sequence from macromolecular material to small refractory molecules. The average C:N ratios of particulate organic matter (POM) and HMW dissolved organic matter (DOM) were 7.7 and 16.7, respectively. Differences in C:N ratios between POM and HMW DOM were large and invariant with depth and geographic region, indicating that the aggregation of HMW DOM to form POM must be of minor significance to overall carbon dynamics. The stable carbon isotope composition (δ13C) of POM averaged −22.7%. in surface water and −25.2%. in subsurface water. Several possible explanations for the observed isotopic shift with depth were explored, but we were unable to discern the cause. The δ13C of HMW DOM samples was relatively constant and averaged −21.7%., indicating a predominantly marine origin for this material. The δ15N values of POM were highly variable (5.8–15.4%.), and the availability of nitrate in surface waters appeared to be the major factor influencing δ15N values in the equatorial Pacific. In the upwelling region nitrate concentrations were relatively high and δ15N values of POM were low, whereas to the north and south of the upwelling nitrate concentrations were low and δ15N values were high. The δ15N values of HMW DOM reflected the same trends observed in the POM fraction and provided the first such evidence for biological cycling of dissolved organic nitrogen (DON). Using the observed δ15N values and an estimate of meridional advection velocity, we estimated a turnover time of 0.3 to 0.5% day−1 for HMW DON. These results suggest a major role for DON in the upper ocean nitrogen cycle.  相似文献   

10.
Dissolved and particulate organic matter was measured during six cruises to the southern Ross Sea. The cruises were conducted during late austral winter to autumn from 1994 to 1997 and included coverage of various stages of the seasonal phytoplankton bloom. The data from the various years are compiled into a representative seasonal cycle in order to assess general patterns of dissolved organic matter (DOM) and particulate organic matter (POM) dynamics in the southern Ross Sea. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were at background concentrations of approximately 42 and 3 μM C, respectively, during the late winter conditions in October. As the spring phytoplankton bloom progressed, organic matter increased, and by January DOC and POC reached as high as 30 and 107 μM C, respectively, in excess of initial wintertime conditions. Stocks and concentrations of DOC and POC returned to near background values by autumn (April). Approximately 90% of the accumulated organic matter was partitioned into POM, with modest net accumulation of DOM stocks despite large net organic matter production and the dominance of Phaeocystis antarctica. Changes in NO3 concentration from wintertime values were used to calculate the equivalent biological drawdown of dissolved inorganic carbon (DICequiv). The fraction of DICequiv drawdown resulting in net DOC production was relatively constant (ca. 11%), despite large temporal and spatial variability in DICequiv drawdown. The C : N (molar ratio) of the seasonally produced DOM had a geometric mean of 6.2 and was nitrogen-rich compared to background DOM. The DOM stocks that accumulate in excess of deep refractory background stocks are often referred to as “semi-labile” DOM. The “semi-labile” pool in the Ross Sea turns over on timescales of about 6 months. As a result of the modest net DOM production and its lability, the role DOM plays in export to the deep sea is small in this region.  相似文献   

11.
A liquid-liquid partition, ligand exchange procedure involving the formation of copper(II) complexes with acetylacetone is presented for the determination of stability constants and concentrations of copper chelators in seawater. Acetylacetone competes with natural ligands for copper, and the equilibrium concentration of the copper acetylacetonate complex is used in speciation calculations. The concentration of the complex is calculated by partitioning a fraction of it into an organic phase and determining the total Cu concentration in that phase by back extracting with acid, and analyzing by flameless atomic absorption spectroscopy. The concentration of Cu acetylacetonate in seawater in equilibrium with the organic phase is calculated from the partition coefficient. The simple, thermodynamically well characterized procedure offers several advantages over previous techniques. Studies using organic free seawater and model ligands show good agreement between experimental and calculated conditional stability constants. Studies from seawater in Biscayne Bay, Florida, indicate two ligand types are present; type 1, K1 = 1.2 × 1012, CL1 = 5.1 × 10−9 M; type 2, K2 = 2.8 × 1010, CL2 = 1.1 × 10−7 M. Speciation is dominated by ligand type 1. Depth profiles of [Cu(II)]free/[Cu(II)]total measured with the procedure at ambient copper concentrations show an increase from < 5 × 10−5 at 50–60 m to > 1 × 10−3 at the surface at two stations off the Florida coast.  相似文献   

12.
An interaction of dissolved natural organic matter (DNOM) with copper ions in the water column of the stratified Krka River estuary (Croatia) was studied. The experimental methodology was based on the differential pulse anodic stripping voltammetric (DPASV) determination of labile copper species by titrating the sample using increments of copper additions uniformly distributed on the logarithmic scale. A classical at-equilibrium approach (determination of copper complexing capacity, CuCC) and a kinetic approach (tracing of equilibrium reconstitution) of copper complexation were considered and compared. A model of discrete distribution of organic ligands forming inert copper complexes was applied. For both approaches, a home-written fitting program was used for the determination of apparent stability constants (Kiequ), total ligands concentration (LiT) and association/dissociation rate constants (ki1,ki- 1).A non-conservative behaviour of dissolved organic matter (DOC) and total copper concentration in a water column was registered. An enhanced biological activity at the freshwater–seawater interface (FSI) triggered an increase of total copper concentration and total ligand concentration in this water layer. The copper complexation in fresh water of Krka River was characterised by one type of binding ligands, while in most of the estuarine and marine samples two classes of ligands were identified. The distribution of apparent stability constants (log K1equ: 11.2–13.0, log K2equ:8.8–10.0) showed increasing trend towards higher salinities, indicating stronger copper complexation by autochthonous seawater organic matter.Copper complexation parameters (ligand concentrations and apparent stability constants) obtained by at-equilibrium model are in very good accordance with those of kinetic model. Calculated association rate constants (k11:6.1–20 × 103 (M s)− 1, k21: 1.3–6.3 × 103 (M s)− 1) indicate that copper complexation by DNOM takes place relatively slowly. The time needed to achieve a new pseudo-equilibrium induced by an increase of copper concentration (which is common for Krka River estuary during summer period due to the nautical traffic), is estimated to be from 2 to 4 h.It is found that in such oligotrophic environment (dissolved organic carbon content under 83 µMC, i.e. 1 mgCL− 1) an increase of the total copper concentration above 12 nM could enhance a free copper concentration exceeding the level considered as potentially toxic for microorganisms (10 pM).  相似文献   

13.
Dissolved material and recent sediment from the Amazon continental shelf have been analyzed for hydrocarbons to study the sources and potential fate of the transported organic matter. Dissolvedn-alkanes are present at low concentrations (ppb level) and are dominated by lipids from marine phytoplankton with carbon number maxima (Cmax) at C18/C22 and an even-to-odd carbon predominance < C30 (CPI17–27 from 0.18 to 0.54). In the sediments, bimodal distributions ofn-alkane chain length suggest a mixed input of terrestrial (Cmax at C27/C29/C31 and CPI25–33 from 0.75 to 1.82) and phytoplanktonic/microbial (Cmax at C20 and CPI15–25 from 0.38 to 0.62) organic matter. Sesquiterpenes were the most significant cyclic compounds in all the dissolved samples analyzed reflecting a contribution from resinous trees to the terrestrial organic pool. On the other hand, enhanced concentrations of these compounds in the dissolved phase on the northwest portion of the Amazon shelf, contrasting with decreased concentrations in the sediment samples, suggest that dissolved lipids are released from solid phase in the intensely stirred seabed. Structured organic matter in the sediment has been characterized as being composed of, on average: 19% plant cuticles, 25% woody tissue, 13% pollens and spores, 24% amorphous material, 7% bituminite and 12% altered organic material.  相似文献   

14.
Daily changes in the concentrations of carbon and nitrogen species were monitored during the course of a Lagrangian drifter experiment in a recurrent upwelling filament south of Cape Finisterre (NW Iberian Upwelling System). A drifting buoy released at the southern edge of the upwelling centre generated by the Cape moved 60km southwestwards from 3 to 7 August 1998. Organic matter in the 50m deep study water mass (average 77±2 μM C) consisted of: 57μM C of dissolved organic matter (DOM) with a C/N molar ratio of 19±2; 6μM C of DOM with a C/N ratio of 9±2, and 14μM C of 50% DOM and 50% suspended organic matter (POMsusp) with a C/N ratio of 6.0±0.4.Net conversion of consumed inorganic salts into accumulated TOM=POMsusp+DOM was 40% for nitrogen and 30% for carbon. Since the parcel of water crossed the shelf-edge, these conversion efficiencies are equivalent to net horizontal export-ratio of 0.4 and 0.3 respectively. A second drifter was deployed in the offshore-end of the filament, and was displaced 20km west between 14 and 17 August 1998. Nitrate was exhausted in the surface water and no significant changes were observed in the variables measured during the course of the second experiment. Low C/N ratios (6.5±0.4) and rapid POMsusp/DOM inter-conversion in the 20 μM C excess observed in the study volume points to the persistence of the labile materials formed on the shelf during transport to the ocean. Our data demonstrate
a) the key role of upwelling filaments in off-shelf export of organic materials and
b) the major contribution of DOM to this horizontal export, a previously unaccounted amount.
The high nitrogen content of the materials exported make them attractive organic substrates for use by microbial populations in the adjacent oligotrophic ocean.  相似文献   

15.
Concurrent distributions of dissolved and suspended particulate organic carbon (DOC and POCsusp), nitrogen (DON and PONsusp) and phosphorus (DOP and POPsusp), and of suspended particulate inorganic phosphorus (PIPsusp), are presented for the open ocean water column. Samples were collected along a three-station transect from the upper continental slope to the abyssal plain in the eastern North Pacific and from a single station in the Southern Ocean. The elemental composition of surface sedimentary organic matter (SOM) was also measured at each location, and sinking particulate organic matter (POMsink) was measured with moored sediment traps over a 110-d period at the abyssal site in the eastern North Pacific only. In addition to elemental compositions, C : N, C : P and N : P ratios were also calculated. Surface and deep ocean concentrations of dissolved organic matter (DOM) and inorganic nutrients between the two sites displayed distinct differences, although suspended POM (POMsusp) concentrations were similar. Concentrations of DOM and POMsusp displayed unique C, N and P distributions, with POMsusp concentrations generally about 1–2 orders of magnitude less than the corresponding DOM concentrations. These differences were likely influenced by different biogeochemical factors: whereas the dissolved constituents may have been influenced more by the physical regime of the study site, suspended particulate matter may have been controlled to a greater extent by biological and chemical alteration. Up to 80% of total particulate P in POMsusp, POMsink and SOM consisted of PIP. For all organic matter pools measured, elemental ratios reveal that organic P is preferentially remineralized over organic C and organic N at both sites. Increases in C : P and N : P ratios with depth were also observed for DOM at both sites, suggesting that DOP is also preferentially degraded over C and N as a function of depth. A simple one-dimensional vertical eddy diffusion model was applied to estimate the contributions of dissolved and suspended particulate organic C, N and P fluxes from the upper mixed layer into the permanent thermocline. Estimated vertical DOM fluxes were 28–63% of the total organic matter fluxes; POMsusp and POMsink fluxes were 8–20 and 28–52% of the total.  相似文献   

16.
In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) is utilized to molecularly characterize DOM as it is transported along a river to estuary to ocean transect of the lower Chesapeake Bay system. The ultrahigh resolving power (greater than 500,000) and mass accuracy of FTICR-MS allow for the resolution of the thousands of components in a single DOM sample, and can therefore elucidate the molecular-level changes that occur during DOM transformation from a terrestrial location to the marine environment. An important feature of FTICR-MS is that its sensitivity allows for direct analysis of low salinity samples without employing the traditional concentration approaches involving C18 extraction or ultrafiltration. To evaluate the advantages of using direct analysis, a C18 extract of riverine water is compared to its whole, unfractionated water, and it was determined that the C18 extraction is selective in that it eliminates two major series of compounds. One group is aliphatic amines/amides that are not adsorbed to the C18 disk because they exist as positive ions prior to extraction. The second group is tannin-like compounds with higher oxygen contents and a more polar quality that also allow them not to be adsorbed to the C18 disk. This direct approach could not be used for brackish/saline waters, so the C18 method is resorted to for those samples. Along the subject transect, a significant difference is observed in the molecular composition of DOM, as determined from assigned molecular formulas. The DOM tends to become more aliphatic and contain lower abundances of oxygen-rich molecules as one progresses from inshore to the offshore. A considerable amount of molecular formula overlap does exist between samples from sites along the transect. This can be explained as either the presence of refractory material that persists throughout the transect, due to its resistance to degradation, or that the assigned molecular formulas are the same but the chemical structures are different. ESI-FTICR-MS is a powerful technique for the investigation of DOM and has the ability to detect compositional variations along the river to ocean transect. Visualization tools such as two dimensional and three dimensional van Krevelen diagrams greatly assist in highlighting the shift from the more aromatic, terrestrial DOM to the more aliphatic, marine DOM.  相似文献   

17.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

18.
Chromophoric dissolved organic matter (CDOM), as the light absorbing fraction of bulk dissolved organic matter (DOM), plays a number of important roles in the global and local biogeochemical cycling of dissolved organic carbon (DOC) and in controlling the optical properties of estuarine and coastal waters. Intertidal areas such as salt marshes can contribute significant amounts of the CDOM that is exported to the ocean, but the processes controlling this CDOM source are not well understood. In this study, we investigate the production of DOM and CDOM from the decomposition of two salt marsh cordgrasses, Spartina patens, a C4 grass, and Typha latifolia, a C3 grass, in well-controlled laboratory experiments. During the seven-week incubation period of the salt marsh grasses in oxic and anoxic seawater, changes in dissolved organic carbon (DOC) concentrations, dissolved nitrogen (DN) concentrations, stable carbon isotopic composition of DOC (DOC-δ13C), and CDOM fluorescence demonstrate a significant contribution of DOC and CDOM to estuarine waters from salt marsh plants, such as Spartina and Typha species. In the natural environment, however, the release processes of CDOM from different cordgrass species could be controlled largely by the in situ oxic and anoxic conditions present during degradation which affects both the production and decomposition of DOC and CDOM, as well as the optical properties of CDOM in estuarine and coastal waters.  相似文献   

19.
Copper toxicity is influenced by a variety of environmental factors including dissolved organic matter (DOM). We examined the complexation of copper by fulvic acid (FA), one of the major components of DOM, by measuring the decline in labile copper by anodic stripping voltammetrically (ASV). The data were described using a one-site ligand binding model, with a ligand concentration of 0.19 μmol site mg−1 C, and a log K′ of 6.2. The model was used to predict labile copper concentration in a bioassay designed to quantify the extent to which Cu–FA complexation affected copper toxicity to the larvae of marine polychaete Hydroides elegans. The toxicity data, when expressed as labile copper concentration causing abnormal development, were independent of FA concentration and could be modeled as a logistic function, with a 48-h EC50 of 58.9 μg l−1. However, when the data were expressed as a function of total copper concentration, the toxicity was dependent on FA concentration, with a 48-h EC50 ranging from 55.6 μg l−1 in the no-FA control to 137.4 μg l−1 in the 20 mg l−1 FA treatment. Thus, FA was protective against copper toxicity to the larvae, and such an effect was caused by the reduction in labile copper due to Cu–FA complexation. Our results demonstrate the potential of ASV as a useful tool for predicting metal toxicity to the larvae in coastal environment where DOM plays an important role in complexing metal ions.  相似文献   

20.
Organic complexes of magnesium, iron, zinc and copper have been isolated from seawater by adsorption onto octadecylsilyl-modified silica (SEP-PAK cartridges). The compounds were fractionated by HPLC and metals were detected in the eluate by atomic fluorescence. The most polar fraction contained a significant proportion of the metal—organics but only a low percentage of the UV-absorbing (254 nm) material. Magnesium—organics of low polarity were found in deep (5000 m), water but the compounds do not seem to be derived from tetrapyrroles. There were large systematic variations in the chromatograms as the column aged and it is thought that free silanol groups were removing metals from the metal—organic complexes. The effect was most pronounced for magnesium. Inorganic metal ions can be adsorbed by columns containing capped or uncapped C18-bonded silica and the adsorption of metals is enhanced by treatment with methanol. The cation exchange capacities of chromatographic packings must be taken into account when metal—organic compounds are analysed by HPLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号