首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effect of grazing was studied on vegetation structure, herbaceous biomass, basal and bare ground covers, together with soil nutrient concentrations in two locations in an Ethiopian semi-arid savanna. The lightly grazed sites had significantly higher herbaceous diversity, total abundance, basal cover and aboveground biomass, and a lower percentage of bare ground compared with the heavy grazed sites. Grazing pressure had no effect on the density and number of woody species as well as on the proportion of encroaching woody species. The light grazing sites had higher organic carbon, phosphorus and exchangeable bases, and therefore a higher pH and higher electrical conductance, indicating an improved soil nutrient status compared with heavy grazing sites, mainly attributed to the higher basal cover and standing biomass at light grazed sites, and the export of nutrients through grazing and dung collection from the heavily grazed sites. There were significantly higher soil nutrients, species diversity, aboveground biomass and basal cover in the light grazing sites compared with heavy grazing sites. We concluded that changes in herbaceous vegetation, standing biomass and soil compositions are caused by interactions between grazing, soil and vegetation, and these interactions determine the transitions of semi-arid savannas.  相似文献   

2.
Communal rangelands provide diverse ecosystem services to millions of pastoralists and agro-pastoralists. Resettling destitute communities into hitherto uninhabited communal rangelands and forests, a common practice throughout Sub-Saharan Africa, is a threat to the sustainable use of range and forest land resources. In order to understand the effect of resettlement on a semi-arid woodland in northwestern Ethiopia, satellite imagery of 23 resettlement villages taken over a period of fourteen years, and woody vegetation floristic data for three old resettlements, three new resettlements, two refugee camps and one protected area were analyzed using ANOVA and canonical correspondence analysis (CCA). The normalized differential vegetation index (NDVI) and canopy cover around all village types decreased with disturbance gradients, while the magnitude of change varied according to the type of settlement. Limited canopy cover was observed in refugee camps and new resettlements, compared to old resettlements and protected areas. Woody vegetation height class showed a J shaped distribution in all sites except refugee camps (RC), indicating a decline in vegetation. CCA showed that variables like site type, altitude and disturbance gradient significantly affected the diversity of woody species at the different sites. Comparison of individual species responses to disturbances indicated that low fodder value invaders like Dichrostachys cinerea, and many Acacia species were increasing in proportion and coverage at the expense of some multipurpose species including Tamarindus indica, Diospyros mespiliformis, and Pterocarpus lucens. In the absence of regulated vegetation use, resettlements result in a decline in overall vegetation cover and a shift in floristic diversity in favor of invasive species.  相似文献   

3.
The arid rangelands of Syria cover over half of the nation's landmass. Punctuating this landscape are broad, dry basins, or wadis, and gentle landscape depressions that exhibit localized elevated vegetation productivity and unique edaphic and hydrologic properties. Historically, continuous heavy grazing and aggressive agricultural activities resulted in excessive ecological degradation within these sensitive environments. Information is needed to determine the influence of livestock grazing on plant communities in landscape depressions and the impact that this has on ecosystem resilience. The purpose of this research is to evaluate the effect of short-term sheep grazing on vegetation characteristics and plant community structure within depressions, and to provide recommendations for improved grazing management. Study plots were randomly located within paired topographic depressions located in northwestern Syria. Vegetation samples were collected along transects including plant biomass, plant density, herbaceous cover, and species diversity. In grazed plots, plant biomass was 49 g DM/m2 compared to 234.4 g DM/m2 in protected plots. Average plant density was 65 plants/m2 in grazed plots compared to 1013 plants/m2 in protected plots (P = 0.001). Herbaceous cover was 175% higher on protected sites compared to grazed plots. Average diversity (Shannon–Wiener index value) was 0.8 in grazed plots compared to 2.3 in protected plots. These results suggest that plant community structure will be impacted from short-term grazing and that a site's ability to positively respond to disturbance over time may be limited. We conclude that carefully planned grazing management should result in greater plant productivity and diversity.  相似文献   

4.
In India, increasing livestock populations exert pressure on protected areas (PAs) and surrounding rangelands. Differences in resource use by cattle and goats kept in local communities close to the Bandhavgarh National Park were assessed to conclude on expected environmental damage and to provide management implications. Within 5 months of dry period (subdivided into cool and hot dry season), 2 × 25 dairy goats and cattle were continuously observed during daylight. The time spent for various feeding-related activities and plant species and biomass ingested were recorded. This was accompanied by surveying and recording herders’ activities. Cattle and goats largely relied on woody plants. Goats spent time equally on browsing and grazing, increased leaf litter intake with time but rarely consumed crop residues. Goat herders often offered cut leaf-bearing branches. Cattle preferentially grazed, but also increasingly ingested leaf litter. Crop residues were offered instead of cut woody plants. Cattle herds were much less efficiently using the scarce forage resources for milk production than goat herds. However, as woody plants are important for PAs, particularly goat pasturing practices were detrimental to conservation. Desertification in PA surroundings may be prevented by combining improvements in general livestock management and specific feeding procedures, tree protection, and afforestation measures.  相似文献   

5.
How species diversity–productivity relationships respond to temporal dynamics and land use is still not clear in semi-arid grassland ecosystems. We analyzed seasonal changes of the relationships between vegetation cover, plant density, species richness, and aboveground biomass in grasslands under grazing and exclosure in the Horqin Sandy Land of northern China. Our results showed that in grazed and fenced grassland, vegetation cover, richness, and biomass were lower in April than in August, whereas plant density showed a reverse trend. Vegetation cover during the growing season and biomass in June and August were higher in fenced grassland than in grazed grassland, whereas plant density in April and June was lower in fenced grassland than in grazed grassland. A negative relationship between species richness and biomass was found in August in fenced grassland, and in grazed grassland the relationship between plant density and biomass changed from positive in April to negative in August. The relationship between the density of the dominant plant species and the total biomass also varied with seasonal changes and land use (grazing and exclosure). These results suggest that long-term grazing, seasonal changes, and their interaction significantly influence vegetation cover, plant density, and biomass in grasslands. Plant species competition in fenced grassland results in seasonal changes of the relationship between species richness and biomass. Long-term grazing also affects seasonal changes of the density and biomass of dominant plant species, which further affects the seasonal relationship between plant density and biomass in grasslands. Our study demonstrates the importance of temporal dynamics and land use in understanding the relationship between species richness and ecosystem function.  相似文献   

6.
The colonization and development of biological soil crusts (BSCs) are rarely discussed when investigating vegetation restoration with difference arrangement and structure of anthropogenically damaged areas in semi-arid regions. The present study analyzes the relationships among coverage, height and density of woody vegetation and coverage and thickness of BSCs on the surface mine dumpsite in Heidaigou, China. Results showed that PR (Prunus sibirica L.), PT (Pinus tabulaeformis Carr.) and PPr (P. tabulaeformis Carr., P. sibirica L.) types had the highest coverage of total BSCs, which were 76.8%, 75.9% and 78.9%, respectively and PR showed the thickest BSCs of 4.41 mm. There was a significant correlation between coverage and thickness of BSCs and coverage and height of woody vegetation as a unimodal curve. Our findings suggest that a single woody plant species and low level coverage and height (no more than 30% and 300 cm, respectively) of woody plants may be able to create suitable conditions for facilitating BSCs restoration on the surface of mine dumpsites. The effects of vegetation arrangement and structure on BSCs colonization and development should be considered in reconstructing and managing woody vegetation in disturbed environments, such as surface mine dumpsites in semi-arid areas.  相似文献   

7.
Regression equations were developed to estimate above ground biomass and carbon and nitrogen mass of foliage and stem size fractions from plant size dimensions (basal diameter, canopy area, height, canopy volume) for a tall shrub species (Prosopis velutina) that has increased in abundance in arid and semi-arid grasslands in the southwestern United States and northwestern Mexico. Regression equations were also developed to describe relationships among the dimensions of plant size. All equations were significant (p < 0.001); and all but two had r2 values >0.72. In addition to species-specific information, we found support for the global patterns of foliar biomass increasing to the ¾ power of stem biomass and height increasing to the ½ power of stem diameter. We provide a comprehensive report of all equations, which can support a variety of in situ (ground-based), modeling, and remote-sensing objectives related to quantifying changes in ecosystem function and carbon sequestration accompanying changes in woody plant abundance. We advocate that comprehensive reporting should become more common for arid and semi-arid woody species in order to support a broad spectrum of users while laying the foundation for the development of global generalizations similar to those available for forest trees.  相似文献   

8.
Diversity theory predicts that species numbers should be highest at intermediate levels of both disturbance and environmental stress. We examined woody and herbaceous plant species richness and cover in the San Pedro River flood plain, along lateral gradients of water availability (ground-water depth), flood disturbance (inundation frequency), and distance from and elevation above the channel, and along longitudinal gradients of water availability (ground-water depth, surface flow permanence, and rainfall) and flood disturbance (total stream power). Herbaceous species were recorded during four sampling periods, and spatial patterns for this group were time-dependent, reflecting temporal variation in limiting factors. During the summer dry season of a dry year, when overall richness was low, richness and cover of herbaceous species declined laterally from the stream channel with increasing ground-water depth, consistent with the idea that low resource levels can limit species richness. Following the summer monsoon rains and floods, when water was less limiting and annuals were seasonally abundant, lateral patterns shifted such that herbaceous species richness and cover increased with increasing plot location above or from the channel. The relationship of herbaceous species richness with tree canopy cover also varied seasonally, shifting from positive (greater richness under canopy) in dry seasons to negative (lesser richness under canopy) in wet seasons. Longitudinally, herbaceous species richness and cover were limited primarily by stream flow and/or ground-water availability during the summer dry season of a dry year. Following the summer monsoon rains and floods, patterns were weighted by the seasonally abundant annuals, and richness increased among sites primarily with distance upstream (and related rainfall gradients). Richness and cover patterns also varied between years with different flood conditions. During the two sampling seasons in the year following a large flood, herbaceous species richness increased with flood disturbance intensity but declined at the few most intensely disturbed sites, consistent with intermediate disturbance theory.For woody species, richness within plant functional groups varied in opposing ways along the lateral gradients: hydromesic pioneer species decreased and hydromesic and xeric competitors increased with distance from or above the channel, with no overall change in species richness. Among sites, woody species richness patterns were related to water availability, but not to flood disturbance. However, richness of woody hydromesic pioneer species increased with both increasing site moisture and flood disturbance. Woody and herbaceous species richness both increased among sites as a function of increasing flood-plain width, likely due to species–area effects. Overall, results indicate that flood disturbance and water availability both influence species richness of riparian plants in the flood plain of this semi-arid region river, with the relative influence of each factor varying among plant groups and over time.  相似文献   

9.
Roads extend throughout savannas, yet few studies have quantified their effects on adjoining woody vegetation structure. Airborne LiDAR imagery collected over 168 experimental fire plots in the Kruger National Park, all bounded by graded firebreak roads, provided an opportunity to study if, and to what extent, roads influence woody vegetation structure under different rainfall, geologic and fire conditions. In 91.7% of the plots, woody canopy cover was higher on the edges of roads compared to areas farther away. The increase was most pronounced within 5 m of the road edge, but was detectable 10–15 m from the edge. On average, the area within 15 m from the road had approximately 6% and 2% higher woody vegetation cover than areas further than 15 m from the edge on wetter granitic and drier basaltic savanna landscapes, respectively. Increased edge effects on woody cover were observed even in fire exclusion plots, suggesting that non-fire processes, likely altered hydrological regimes, may be the underlying reason for woody encroachment. This study illustrates that roads cause selective woody plant thickening in savannas, even in areas without road edge management, and therefore careful consideration should be paid on how road edges are managed and when roads are planned.  相似文献   

10.
Vegetation restoration is one of the most common and effective ways to combat desertification and prevent adjacent areas from sand encroachment in many of the desertified regions of the world. However, vegetation restoration in desertified regions is very difficult because of low rainfall, the mobile ground surface, and cost. An effective, low-cost method of afforestation is urgently required. To determine such a method, a 10-year study was carried out in the Jilantai Salt Lake area. Five different afforestation areas were established: a ‘comparison area,’ a ‘land enclosure area,’ a ‘land enclosure + irrigation area,’ a ‘leveled-afforestation area’ (the dune areas were leveled and then planted with seedlings with added irrigation), and a ‘protected afforestation area’ (the dune areas were planted with seedlings, and the surviving natural vegetation was protected as much as possible). Vegetation-related parameters (survival rate, height, trunk diameter, coverage, canopy size, and density) and environment-related factors (relative humidity, wind velocity, and amount of sand encroachment) were measured by standard methods. Results show that the protected afforestation method had the following advantages: (1) the survival rate was higher for seedlings planted in the protected afforestation area than in the leveled afforestation area; (2) vigor (height, trunk diameter, coverage, and canopy size) was better in seedlings planted in the protected afforestation area than in the leveled afforestation area, especially in the beginning period of revegetation; (3) coverage (of individual species, of all planted vegetation, and of all vegetation) was larger in the protected afforestation area than in the leveled afforestation area; (4) density of naturally germinated plant species was higher in the protected afforestation area than in the other areas, showing that the protected afforestation method provided a suitable growing environment not only for planted species but also for naturally growing species; (5) in the protected vegetation area, relative humidity of air increased and wind velocity was greatly reduced; (6) after the establishment of vegetation by the protected afforestation method, sand encroachment into the salt lake area was significantly reduced. These results suggest that protected afforestation is an effective method of vegetation rehabilitation that has the potential not only to be applied to arid lands in China but also to desertified areas throughout the world; (7) cost-effective calculation shows that the leveled afforestation area costs much more than other areas.  相似文献   

11.
Atriplex canescens is a relatively common dioecious shrub in western North America. It is considered a valuable forage resource for both wild and domestic herbivores. Sex ratios and shrub dimensions were recorded in stands of tetraploid A. canescens that had been either protected from cattle grazing or summer- or winter-grazed by cattle for at least 20 years. Stem diameter and crown shape were used as surrogates for shrub age which could not be estimated by counting growth rings. Shrub sex ratios in exclosures were significantly more female biased than the empirically derived ratio for tetraploid A. canescens (55 female:35 male: 10 monecious). Conversely, shrub sex ratios in grazed pastures were not significantly different from the empirical ratio. Proportion of female shrubs in exclosures was significantly higher than in grazed pastures. Proportion of male shrubs, on the other hand, was similar in exclosures and grazed pastures. Winter-grazed shrub stands were apparently younger than both summer-grazed and protected shrubs. Protected shrubs appeared to be the oldest. Grazed female shrubs were apparently younger than grazed males, however, shrub ages of protected male and female shrubs were apparently not different. Cattle-grazing may have affected female shrubs more negatively at this site, causing gender-based differential mortality, and/or sex-shifting. Such processes could account for the differences in sex ratios, and for the apparent gender-related differences in shrub age that were observed.  相似文献   

12.
We investigated the impact of African elephants (Loxodonta africana) on the structure and composition of Acacia tortilis woodland in northern Gonarezhou National Park, southeast Zimbabwe. A. tortilis woodland was stratified into high, medium and low elephant utilisation categories based on evidence of elephant habitat use as determined through dung-count surveys in relation to distance of woodland patches from perennial and natural surface water sources. The following variables were recorded in each study plot: tree height, species name, number of species, plant damage, basal circumference and number of stems per plant. A total of 824 woody plants and 26 woody species were recorded from the sampled A. tortilis woodland patches. Mean tree densities, basal areas, tree heights and species diversity were lower in areas with medium and high elephant utilisation as compared to low elephant utilisation areas. Plants damaged by elephants increased with increasing elephant utilisation. The study findings suggest that A. tortilis woodland is gradually being transformed into an open woodland. We recommended that protected area management in arid and semi-arid areas should consider (i) formulating clear thresholds of potential concern to allow for the conservation of sensitive woodlands such as A. tortilis woodlands and (ii) establishing long-term vegetation monitoring programmes.  相似文献   

13.
The effect of both a non-prescribed summer fire and grazing at high stocking rate following fire on plant community composition, the frequency of occurrence of bare soil, grasses and shrubs, species diversity and biomass of herbaceous forage were evaluated for three growing seasons after fire. Changes in community composition occurred as a consequence of both fire and grazing. Communities were dominated by unpalatable shrubs and grasses in unburned sites as a result of a long history of overgrazing. Fire contributed to a conversion of those shrublands to communities with a more favourable balance between woody and herbaceous species. The frequency of palatable grasses and herbaceous forage biomass increased by a factor ofc. 3 at the expense of woody vegetation. Grazing after fire had significant positive (i.e. decrease in undesirable grasses) and negative (i.e. increase in bare soil) effects.  相似文献   

14.
The critical need to consider all options in the search for groundwater in semi-arid areas has promoted work on the possible association of near-surface groundwater and vegetation characteristics using a combination of remote-sensing data and geographic information systems (GIS) techniques. Two vegetative criteria (dense woody cover and abundance of deep-rooting species) are identified as being indicative of near-surface groundwater, and their spatial distribution is tested against the location of aquifers in southeast Botswana. Vegetative criteria classes were combined in a GIS environment with the distribution of geomorphic units and bedrock geology to determine the degree of coincidence with assumed or known aquifers. Results indicate that the distribution of dense woody vegetation as mapped from Thematic Mapper imagery has some potential in identifying especially surficial but also bedrock near-surface groundwater sources in mostly naturally vegetated semi-arid areas. Dense woody cover classes tend to select aquifers in topographically higher areas while classes comprising some deep-rooting species tend to select low-lying aquifers such as those occurring in fossil valleys. Deep-rooting species, however, are less successful as a vegetative criterion. Although various technical refinements are suggested, this work shows that vegetative criteria mapping can however be used in conjunction with conventional geological/geophysical techniques to enhance the prospects for groundwater location in relatively undisturbed semi-arid areas.  相似文献   

15.
Arthropods living in the canopies of two woody shrub species (a sub-shrub (Gutierrezia sarothrae) and a large shrub (Prosopis glandulosa)) and perennial grasses plus associated herbaceous species, were sampled on 18, 0.5 hectare plots in a Chihuahuan Desert grassland for five consecutive years. Mesquite shrubs were removed from nine plots, six plots were grazed by yearling cattle in August and six plots were grazed in February for the last 3 years of the 5 year study. Arthropod species richness ranged between 154 and 353 on grasses, from 120 to 266 on G. sarothrae, and from 69 to 116 on P. glandulosa. There was a significant relationship between the number of families of insects on grass and G. sarothrae and growing season rainfall but species richness was not a function of growing season rainfall on any of the plants. Several of the arthropod families that were the most species rich in this grassland were found on all of the plants sampled, i.e. Salticid spiders, Bruchid and Curculionid beetles, Cicadellid and Psyllid homopterans, and ants (Formicidae). There were more species rich families that were shared by grasses and the sub-shrub G. sarothrae than with mesquite. The absence of a relationship between growing season rainfall and species richness was attributed to variation in life history characteristics of arthropods and to the non-linear responses of annual and perennial desert grassland plants to rainfall.There were no significant differences in insect family or species richness on any of the plant types as a result of removal of mesquite (P. glandulosa) from selected plots. Intense, short duration (24 h) grazing by livestock during in late summer resulted in reduced species richness in the grass-herb vegetation layer but had no effect on insect species richness on snakeweed or mesquite shrubs. Livestock grazing in winter had no effect on insect species richness on any of the vegetation sampled.  相似文献   

16.
In view of the repeatedly reported overstocking of the high-altitude pastures on Al Jabal al Akhdar, northern Oman, plant species abundance, cover and frequency, and herbaceous mass yield were studied in ungrazed versus heavily grazed areas of this mountain range. In addition, plant species selection by goats along a gradient of 1000–2000 m and spatial extent of pasture areas were investigated after abundant rainfall and a subsequent 6-months dry spell by means of manual observation and GPS/GIS tools.The substantially higher species diversity and herbaceous mass yield in the ungrazed area illustrate the production potential of these mountain pastures or, respectively, the biodiversity and productivity loss resulting from continuous grazing. The concentration of goats' selection on only a dozen herbaceous and ligneous species favours pasture encroachment with poisonous shrubs such as Nerium mascatense in the lower and Dodonaea viscosa in the higher altitudes. Given the spatially limited extent of pasture areas, these are exposed to high stocking rates. Therefore, grazing and feeding schemes need to be developed which reduce livestock pressure on the pastures, taking into account local property rights, herding skills and the recovery potential of the vegetation, which heavily depends on unpredictable rainfall events.  相似文献   

17.
Plant communities on semi-arid floodplains are ecologically important and support a diverse local and regional fauna and often pastoral economies. Water resource development may affect these communities and economies by decreasing water supply; determining the nature of these relationships is not straightforward because of the complex nature of plant responses to wetting and possible interactions with other drivers. We investigate the effects of reduced wetting on vegetation by examining spatial patterns in plant communities and above-ground herbaceous plant biomass across a flood frequency gradient, geomorphic settings and grazing exclosures. Community and biomass changes were also examined over time in relation to wetting events. The results demonstrate the importance of wetting on plant communities across timescales. At longer timescales, flood frequency influences community composition; at shorter timescales, wetting increase plant biomass and has a secondary influence on community composition. Plant biomass is also influenced in the short-term by grazing, but there is little influence of grazing on community composition. Soil nutrients do not vary systematically across the floodplain and have little influence on species distributions. We conclude that reduced water availability due to water resource development will result in reduced productivity in the short-term and community composition changes in the long-term.  相似文献   

18.
河西走廊荒漠绿洲过渡带封育对土壤和植被的影响   总被引:1,自引:1,他引:1  
在河西走廊荒漠绿洲过渡带,封育天然植被是植被群落恢复、防止绿洲沙漠化的有效措施。以流动沙丘作为对照(0年),对封育5年和15年的半固沙和固定沙丘植被群落以及土壤进行调查取样和分析。结果表明:随着封育年限增加,天然固沙植被群落生物多样性增加,灌木层和草本层植物密度、盖度和生物量都显著增加,灌木层盖度从10%增加到40%,草本层以一年生草本植物为主,物种从5种增加到8种,生物量从1 g·m-2增加到13 g·m-2。随着天然植被盖度增加,土壤表层沙土细粒化明显,沙土中黏粉粒含量显著增加,土壤质地由粗质沙粒向细质沙粒转变;随着沙土中黏粉粒成分的增加,沙土有机质、全氮、全磷含量也增加,灌丛下土壤养分含量高于灌丛间,“沃岛效应”明显。同时,在灌丛下表层土壤出现明显的盐分集聚现象,其中SO42-、K+、Na+含量分别增加了6、3、17倍。在降水100 mm左右的荒漠绿洲过渡带,封育可以显著恢复固沙植被群落和提高沙土质地和养分。  相似文献   

19.
Our study was focused on the effect of abandonment on above-ground biomass and net primary productivity (ANPP) in a Montado in Southern Portugal. The Montado has a long history of human management and control of invasion by shrubs is achieved by clearing, ploughing and grazing. When these cease, it is invaded by Mediterranean matorral species. We hypothesized that the change in life form dominance would affect both biomass and productivity, but while the total biomass was expected to increase, the effects on ANPP were less clear. We tested our hypothesis by determining above-ground biomass and ANPP along a gradient of decreasing land use intensity, ranging from extensive grazing to 20 years of abandonment.Above-ground biomass increased with abandonment, which was related with the increase in shrub cover. In addition, we found a decrease in herbaceous ANPP that was more than compensated by an increase in shrub ANPP in plots abandoned for longer time, resulting in a significant increase in total ANPP. This increase was strongly related with the increase in the cover of Cistus ladanifer, a pioneer species that colonises degraded areas and forms one of the first stages of succession of woody communities.  相似文献   

20.
In the Ethiopian highlands, remarkable recovery of vegetation has been achieved using exclosures, protecting vegetation against livestock browsing and firewood harvesting. But these emerging forest resources require tools for sustainable use, implying knowledge on biomass stocks and growth. In this study we developed biomass functions estimating total, stem and branch biomass from diameter at stump height (DSH) and tree height (H) for an 11-year old exclosure in Tigray, Ethiopia. In a systematic grid of 55 plots, DSH and H of all trees and shrubs were recorded. 40 Acacia abyssinica trees were selected for destructive sampling. Allometric relationships using a natural log–log model were established between aboveground biomass, DSH and H. Models with only DSH were found best with R2 between 0.95 and 0.98. The functions were 10 fold cross-validated and R2_cv ranged from 0.94 to 0.97, indicating good model performance. The models were found well in range with those of other seasonal forests in East Africa. Total aboveground biomass was estimated 25.4 ton ha−1 with an annual production of 2.3 ton ha−1, allowing sustainable wood fuel use for 4 persons ha−1. The presented predictive functions help to harmonize between ecological and societal objectives and are as such a first step towards an integrated planning tool for exclosures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号