首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Summary Shore hardness has been used to estimate some mechanical and physical properties of rocks for many years. This study differs from previous studies in a way that it is directly oriented to rock cuttability. Two Shore hardness values (SH 1 andSH 2) and a coefficient of deformation value (K) have been measured for 30 different rock samples. In the first stage of the study, optimum specific energy values for 16 different rock samples obtained from full-scale cutting tests were correlated with the Shore hardness values of the same rock samples changingSH 1 values from 9 to 66 andSH 2 values from 25 to 83, with deformation coefficient values changing from 26 to 195. In the second stage, the performance of a roadheader used in the Kü?üksu (Istanbul) tunnel was recorded in detail and the instantaneous cutting rate of the machine was determined. Then, the relationship between Shore hardness values, deformation coefficient and the instantaneous cutting rate of the machine was determined for different formations encountered. It is concluded that there is a relationship between Shore hardness values, optimum specific energy and compressive strength, which may be used to estimate the rock cuttability and the instantaneous cutting rates of roadheaders within certain limits of reliability.  相似文献   

2.
Cutting performance of diamond wire saw is a key factor influencing mine planning, production scheduling, and equipment selection for dimension stone quarries. It is normally measured in terms of cutting rate. Rock samples collected from various granite and marble quarries in India were tested in laboratory to determine their physico-mechanical properties. Cutting rate of diamond wire saw was measured in the field studies during the actual cutting process in quarries. Using these laboratory determined properties and the cutting rate, a multiple linear regression model has been developed to predict the cutting rate of diamond wire saw. Physico-mechanical properties of rocks determined in laboratory are used as independent variables and cutting rate as predictor variable in the regression model. The study indicates that the cutting rate increases with a decrease in most of the hardness and strength parameters of rock. The final model is tested for its goodness of fit indicating a significant linear relation between cutting rate and physico-mechanical properties, namely tensile strength, slake durability index, and Cerchar hardness index with regression coefficient of 94%. The resulting model can be used suitably for different types of hard to medium hard and soft dimension stones. The generalized model for estimating the cutting rate becomes a handy tool for mining engineers to work out operating efficiency, expenses, planning etc. of the dimension stone block cutting.  相似文献   

3.
Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.  相似文献   

4.
In a processing plant, natural stone can be cut by methods such as circular sawing (CS), frame sawing (FS), water jet cutting (WJC) and abrasive water jet cutting (AWJC). The efficiency of cutting systems can be compared using various parameters. In this study, the specific energy values were determined and compared to evaluate the efficiency of rock-cutting methods. Rock-cutting experiments were performed on 12 different types of rock samples using a circular sawing machine and an AWJC machine. The experimental results showed that the specific energy values in AWJC were generally higher than in CS. In addition, the relationships between specific energy values and rock properties were explained in this study. The Shore hardness and abrasion resistance were found to be strongly related to the specific energy values, and according to these parameters prediction charts of specific energy values were created.  相似文献   

5.
Summary. Specific cutting energy (SE) has been widely used to assess the rock cuttability for mechanical excavation purposes. Some prediction models were developed for SE through correlating rock properties with SE values. However, some of the textural and compositional rock parameters i.e. texture coefficient and feldspar, mafic, and felsic mineral contents were not considered. The present study is to investigate the effects of previously ignored rock parameters along with engineering rock properties on SE. Mineralogical and petrographic analyses, rock mechanics, and linear rock cutting tests were performed on sandstone samples taken from sites around Ankara, Turkey. Relationships between SE and rock properties were evaluated using bivariate correlation and linear regression analyses. The tests and subsequent analyses revealed that the texture coefficient and feldspar content of sandstones affected rock cuttability, evidenced by significant correlations between these parameters and SE at a 90% confidence level. Felsic and mafic mineral contents of sandstones did not exhibit any statistically significant correlation against SE. Cementation coefficient, effective porosity, and pore volume had good correlations against SE. Poisson’s ratio, Brazilian tensile strength, Shore scleroscope hardness, Schmidt hammer hardness, dry density, and point load strength index showed very strong linear correlations against SE at confidence levels of 95% and above, all of which were also found suitable to be used in predicting SE individually, depending on the results of regression analysis, ANOVA, Student’s t-tests, and R2 values. Poisson’s ratio exhibited the highest correlation with SE and seemed to be the most reliable SE prediction tool in sandstones.  相似文献   

6.
Specific energy (SE) measurements of circular saws were conducted on 12 different carbonate rocks. Rock samples were collected from the factories for laboratory tests. Bulk density, apparent porosity, uniaxial compressive strength, Brazilian tensile strength, flexural strength, Schmidt rebound hardness, Shore hardness, point load strength index, Los Angeles abrasion values, and P-wave velocity values were determined in the laboratory. SE and rock properties were evaluated using simple regression analysis and empirical equations were developed. The equations were verified by statistical tests. Regression analysis showed that high correlations exist between SE and uniaxial compressive strength, Shore and Schmidt hardness, bulk density, apparent porosity, and flexural strength. It was found that the SE value of rocks in cutting process was highest for those rocks having the high density, compressive strength, flexural strength, Schmidt and Shore hardness, point load strength index, and P-wave velocity values.  相似文献   

7.
Prediction of sawing performance based on index properties of rocks   总被引:1,自引:1,他引:0  
Performance analysis of all systems used in industrial production is very important subject in terms of capturing the low production cost. This subject is also important for choosing production methods in natural stone processing. Circular sawing is a commonly used method in natural stone processing. The preliminary prediction of circular sawing performance is very useful for stone producers. In this study, the prediction of sawing performance from some index properties of stones was conducted. The unit wear on diamond segments was evaluated as performance criteria. The statistical analysis was carried out, and this performance parameter was predicted from some index properties including cone indenter hardness, Shore hardness, Böhme surface abrasion, and brittleness. The most suitable prediction equation derived from regression analysis was selected. It was determined that this equation was statistically reliable for prediction of unit wear for natural stone processing.  相似文献   

8.
This paper examines the relationships between Cerchar hardness index (CHI) and some mechanical properties of coal measure rocks in Zonguldak Hard Coal Basin. Some index properties (Cerchar hardness index, Shore scleroscope hardness, in situ Schmidt rebound hardness and point load strength) and strength (uniaxial compressive strength and Brazilian tensile strength) properties of 29 sedimentary rock samples are determined. Then, relationships between (CHI) and strength as well as and some other index values are evaluated using statistical methods. Linear relationships are found between CHI and uniaxial compressive strength, Schmidt rebound hardness. Power relationships are determined between CHI and Shore scleroscope hardness, diametral point load strength, point load strength anisotropy index. Besides, CHI tests are performed by means of bits having tip angles of 99° and 125° and excellent linear relationships are identified between them.  相似文献   

9.
One of the key parameters that affect the selection of equipment and the cost estimation of dimension stone quarries is the rock cutting rate or production rate. In this study, the M5P tree algorithm is used to determine the relationship between the hard rock sawability and its factors especially the physical and mechanical characteristics of rock. To achieve the research goal, a variety of eleven types of hard dimension stone were selected and nine major physical and mechanical characteristics of rock including uniaxial compressive strength, Young’s modulus, Brazilian tensile strength, equivalent quarts content, grain size, Mohs hardness, point load test, density and P-wave velocity of these samples were evaluated. The cutting rate of diamond wire for all of the Workpiece was measured at different pullback amperage with a fully instrumented cutting platform in laboratory. All operational parameters of cutting process were entirely controlled. Thus, a database containing 99 datasets was provided and it has been used for analyses. The obtained results from the pruned and unpruned tree models showed a significant relationship between cutting rate and its factors. In the end, the results of M5P tree method were compared with statistical analyses (i.e., linear and nonlinear regression). The coefficient of determination be equal with 0.92, 0.86, 0.77 and 0.63 for unpruned tree, pruned tree, linear and nonlinear regression method respectively. This comparison showed that the both method of M5P tree technique have a better performance in predicting the cutting rate rather than the statistical regression methods.  相似文献   

10.
Surface hardness tests such as Shore hardness (SH) and Schmidt hammer rebound hardness (SR) may provide a quick and inexpensive measure of rock hardness, which may be widely used for estimating the mechanical properties of rock material such as strength, sawability, drillability and cuttability. In the marble industry, circular sawing with diamond sawblades constitutes a major cost in the processing. Therefore, several models based on the relations between hourly slab production (P hs), rock surface hardness (SH and SR) and mineral grain size (S cr) were developed using the data obtained from field and laboratory measurements on five different marbles quarried in the Mugla Province of Turkey. The models which include surface hardness and crystal size may as well be used for the prediction of sawability (hourly slab production) of carbonate rocks using large-diameter circular saws.  相似文献   

11.
切削机理模型是研究岩石钻进切削过程中的切削力以及切削热的基础。在分析岩石切削机理模型的基础上,基于摩尔理论和裂纹扩展理论,分析中硬岩石切削状态,认为在中硬岩石切削过程中岩石存在着脆性切削和延展性切削2种方式,在此基础上得到新的中硬岩石切削机理模型。以砂岩、大理岩和花岗岩为钻进对象,开展微钻实验研究。结果表明:切削过程为岩石在刀具的扭矩和推进力作用下发生破坏,导致小岩屑、大切屑不断循环产生的过程,小大切屑形成主要源于岩石挤压变形和裂纹生成扩展。实验结果与岩石切削机理表现出较好的一致性。  相似文献   

12.
Performance prediction of diamond wire saws is important in the cost estimation and the planning of the stone quarries. An accurate estimation of sawability helps to make the planning of the rock cutting projects more efficient. In this paper, the performance prediction of diamond wire saws in cutting carbonate rocks was studied on 14 different carbonate rocks in stone quarries located in Iran. Rock samples were collected from the quarries for laboratory tests. Uniaxial compressive strength, Brazilian tensile strength, Schmidt hammer value, and Los Angeles abrasion were determined in the laboratory. Performance prediction was evaluated using simple and multiple regression analyses. Finally, a new model was proposed for predicting the production rate of diamond wire saw. It was concluded that the production rate of carbonate rock using diamond wire saw can reliably be estimated using the developed model.  相似文献   

13.
Monowire block cutting machines can be used for natural stone block squaring and slab cutting operations. The plants where the cutting operations are performed demand high product quality with minimum operational costs. The major parameters affecting the economy of the operation are the energy consumed and the wear induced on the diamond beads during the cutting operation. An efficient cutting operation can only be maintained by selecting proper cutting parameters. Therefore, cutting parameters should be clearly understood. Experimental studies and numerical modeling methods are significant in terms of identifying the energy consumption occurring during natural stone cutting with monowire. Experimental studies and numerical modeling using discrete element method were performed on Afyon White Marble. Experimental studies have been performed by using a specially designed, fully automatic monowire cutting machine, and numerical analyses were carried out by commercially available software called three-dimensional particle flow code (PFC3D). A discrete element model for the cutting operation was developed, and various numerical models were performed for different peripheral speeds and cutting speeds, while, at the same time, the actual cutting operations were being carried out in the laboratory. Finally, the data obtained from the experimental works were compared with the data from numerical modeling. A comparison indicates that the frictional energy values obtained by means of numerical modeling are in good agreement with the results of the laboratory measurements. This study clearly put forward the influences of effective parameters on monowire cutting operations in natural stone industry. Furthermore, it filled an important space in the literature about the use of monowire block squaring machines.  相似文献   

14.
北京有大量采用房山大理岩制造的石质文物,这使得北京大理岩力学性质的研究对于科学指导文物保护和修复具有重要意义。但由于文物本体取样困难,难以获得其力学参数。因此本文对北京大理岩的物理、力学参数进行测试,通过建立物理参数和力学参数的回归方程,实现利用物理参数评价力学参数的目的。以北京大理岩中的青白石和汉白玉为研究对象,对8个边长为150 mm立方体试样进行施密特回弹测试,对40个Ф50 mm×100 mm的圆柱体试样进行里氏硬度、纵波波速测试和单轴压缩试验,得到了大理岩的回弹值、里氏硬度值、纵波波速与单轴抗压强度、弹性模量。分别以单轴抗压强度和弹性模量为因变量,选择单个或两个物理参数作为自变量建立回归方程。通过对比相关系数发现:(1)对于单个物理参数,单轴抗压强度与D探头里氏硬度值的相关性最好,而弹性模量与回弹值的相关性最好;(2)对于两个物理参数,单轴抗压强度(或弹性模量)都与回弹值和D探头里氏硬度值的组合相关性最好。  相似文献   

15.
四川输电线路经过的山区场地中,碎石土地基分布普遍,而碎石土是一种介于岩石和土体之间特殊的岩土体,水平受荷碎石土桩基础在不同含石量下水平承载特性具有较大的差异,现行规范给出的地基水平抗力系数的比例系数m值取值范围较为宽泛。研究碎石土地基在不同含石量下桩-土水平作用特性与m值取值是输电线路塔桩基设计中有待解决的问题。通过室内单桩水平静载试验,得到了不同含石量的碎石土地基对桩顶位移、桩身内力、地基水平抗力系数的比例系数m值的影响,以及不同含石量下m值的变化趋势。对比分析得到试验特征规律,研究桩身弯矩、剪力曲线与桩侧土压力曲线,不同含石量条件的m值变化趋势。结果表明:随着碎石土地基含石量提高,桩身最大弯矩值呈非线性增大,且最大弯矩值约在埋深0.3 m截面位置处;碎石土含石量的提高,地基土水平抗力会有所增大,桩侧土压力零点位置也会有所提高;m值随着含石量的提高而增大。含石量每提高10%,m值约增大1.15~1.40倍,该项研究可作为地基水平抗力系数的比例系数m值取值的一个参考。  相似文献   

16.
PDC钻头综合受力模型的试验研究   总被引:1,自引:0,他引:1  
模拟钻头上的切削齿的不同的切削断面形状、重叠切削状态及磨损状态,利用PDC切削齿对多种岩样进行了切削试验,研究了切削面积、接触弧长、切削齿后倾角、岩石抗钻强度、切削齿磨损高度等因素对PDC切削齿受力的影响规律。结果表明,切削面积相同情况下切削齿受力随接触弧长、岩石可钻性极值、切削齿磨损高度分别呈线性,幂函数和指数函数趋势变化;切削齿受力最小的后倾角在5~10°区间内。引入弧长系数、磨损高度系数,建立了PDC切削齿综合受力模型。根据力的平衡原理,推导得出完整的PDC钻头受力计算模型,为PDC钻头优化设计和合理使用提供了理论依据。  相似文献   

17.
黄福有  张路青  周剑  马显东 《地球科学》2022,47(12):4583-4595
切向恢复系数是滚石碰撞回弹的重要控制参数,目前的理论公式不能完全反映其作用机制,这是滚石动力学研究的一个难点问题.为此,根据滚石不同的回弹状态,提出基于入射角度变化的切向力模型;进一步,以切向接触理论和动能定理为基础,考虑碰撞过程中切向的摩擦耗能与变形耗能,推导了切向恢复系数的理论公式;最后研究入射速度、入射角、被撞击物体的变形模量对切向恢复系数的影响.结果表明:滚动回弹的切向恢复系数主要受切向变形量的影响;滑动回弹时,入射速度对切向恢复系数的影响参数为\begin{document}$ {v}^{\frac{1}{20}} $\end{document},切向恢复系数随着其增加而缓慢减少;入射角度对切向恢复系数的影响参数为$ \frac{\mathrm{c}\mathrm{o}{\mathrm{s}}^{\frac{1}{20}}{\beta }_{i}}{\mathrm{t}\mathrm{a}\mathrm{n}{\beta }_{i}} $,切向恢复系数随其增加而增大;被撞击物体的变形模量对切向恢复系数的影响参数为$ {E}_{2}^{-\frac{5}{8}} $,切向恢复系数随其增加而增加.基于摩擦与变形耗能的切向恢复系数计算公式为滚石的碰撞回弹过程提供了新的计算模型.   相似文献   

18.
石崇  王盛年  刘琳  陈鸿杰 《岩土力学》2012,33(11):3393-3399
冰水堆积体是一种典型的混合介质,由软弱“土”与坚硬“石”构成,其参数选取和分析方法困难。利用数字图像重构方法模拟冰水堆积体结构特征,可反映块石分布特征;以基于图像识别的块石分割和颗粒离散元建模分析方法,研究了堆积体内介质分布、土体颗粒强度对混合介质力学参数的影响规律,分析了冰水堆积体变形、峰值抗剪强度及峰后段抗剪强度的变化规律。结果表明:冰水堆积体混合介质在峰值前的变形曲线呈非线性硬化性,峰后呈现塑性特性,其综合抗剪摩擦角随基质土的黏结强度提高而降低;当块石含量小于25%时,抗剪切强度近似等于基质土强度,块石含量高于25%时,抗剪切强度随块石含量增加而提高;由于受块石空间分布影响,块石含量与摩擦角间的相关性要比其与黏结强度间的高;该成果应用于云南古水水电站坝前冰水堆积体发现,含块石混合介质内摩擦角比纯土高0°~8°,与工程判断较吻合。该方法能弥补室内试验不能考虑大尺寸块石的困难,可作为室内试验获取力学参数方法的有益补充。  相似文献   

19.
PDC锚杆钻头回转钻进的力学特性与试验   总被引:1,自引:0,他引:1  
针对煤矿巷道锚固孔快速精准钻进的施工需求,通过建立PDC锚杆钻头回转钻进力学模型,对其主要力学影响因素进行了理论分析。结果表明:PDC切削齿轴向力随压入深度的增大而增大,随切入角的增大表现出先减小后增大的趋势;当煤系岩石摩擦系数f为0.20~0.43时,可得最优切入角为15.0°~18.3°,此时在相同压入深度条件下轴向力和切向力最小。并进一步结合煤系岩石的力学特性,提出了PDC切削齿作用下的岩石破碎条件,得出不同压入深度时轴向力和切向力的关系。利用自主研发的钻进试验台对模拟岩样进行了钻进试验,试验结果验证了PDC锚杆钻头回转钻进力学模型的正确性。研究结果为PDC锚杆钻头优化设计,锚固孔钻进效率与精度的提高,以及钻进轴向力和切向力的变化预测等提供了理论依据。   相似文献   

20.
Estimation of rock physicomechanical properties using hardness methods   总被引:1,自引:0,他引:1  
The purpose of this study is to investigate the statistical relationship between hardness value and physicomechanical properties of constructional and cover rocks. The definition, measurement of hardness and classification of the rocks used are very important in construction sector. From this point of view, rock hardness is one of the most important parameters for the determination of rock properties. In this study, the determination of hardness and the physicomechanical properties of constructional and cover rocks in Çukurova region was accomplished using various methods in the laboratory. Statistical relations between physicomechanical properties and hardness of rocks were also determined. High correlations were found between the hardness methods (Shore Scleroscope, Schmidt hammer hardness), which are cheap and easy to use, and other physical and mechanical properties. It was found that physicomechanical properties can be estimated using hardness methods and compared with the calculated value from different empirical equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号