首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham''s theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.  相似文献   

2.
Spatial and Temporal Variations of Sound Speed at the PN Section   总被引:3,自引:0,他引:3  
Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Measurements of the three-dimensional (3-D) structure of a sound-speed field in the ocean with the spatial and temporal resolution required for prediction of acoustic fields are extremely demanding in terms of experimental assets, and they are rarely available in practice. In this study, a simple analytic technique is developed within the ray approximation to quantify the uncertainty in acoustic travel time and propagation direction that results from an incomplete knowledge or purely statistical characterization of sound-speed variability in the horizontal plane. Variation of frequency of an acoustic wave emitted by a narrowband source due to a temporal variation of environmental parameters is considered for deterministic and random media. In a random medium with locally statistically homogeneous, time-dependent 3-D fluctuations of the sound speed, calculation of the signal frequency and bearing angle variances as well as the travel-time bias due to horizontal refraction is approximately reduced to integration of respective statistical parameters of the environmental fluctuations along a ray in a background, range-dependent, deterministic medium. The technique is applied to acoustic transmissions in a coastal ocean, where tidally generated nonlinear internal waves are the prevailing source of sound-speed fluctuations, and in a deep ocean, where the fluctuations are primarily due to spatially diffuse internal waves with the Garrett–Munk spectrum. The significance of 3-D and four-dimensional (4-D) acoustic effects in deep and shallow water is discussed.  相似文献   

4.
This paper aims to analyse acoustic-propagation character in the front area of Kuroshio Extension (KE). By analysing Argo data and the Sea surface height (SSH) data in this KEF area, a two-dimensional (2D) sound-speed feature model (SSPFM) characterising the KEF is proposed. The SSPFM has a transition zone with a width about 100 km and the sound channel changes from 1000 m south of KEF to 300 m north of KEF, resulting in a sharp gradient about 7 m/km. Along with the meandering character of the KEF axis, the sharp gradient results in a rather complicated acoustic environment in the KEF area. With reanalysis data from the hybrid coordinate ocean model, a three-dimensional (3D) sound-speed environment is established. The acoustic propagation character in the KEF area is then analysed with the 2D SSPFM and the 3D acoustic environment. Results show that the KEF affects acoustic propagation mainly by modifying the sound channel depth. Given that acoustic propagation in the KEF area is influenced mainly by the meandering KEF, with the near-real-time SSH data to locate the KEF, the 2D SSPFM is able to provide a near-real-time estimate of the underwater 3D acoustic environment.  相似文献   

5.
In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency(90–170 k Hz) and low frequency(0.5–3 k Hz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710–1713 m/s with a weak positive gradient in the sand sample after being boiled(as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model(EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases(about 80%)both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.  相似文献   

6.
高爽  杨光兵  熊学军 《海岸工程》2022,41(2):144-152
声散射是重要的声学现象,海洋水体产生的高频声散射信号既可用于开展多种目的的声学海洋学研究,也可能对水下声学设备产生干扰,而海洋水体背景声散射具有显著的时空变异特征,因此针对特定海区开展声散射时变观测具有重要意义。本文利用在南海北部布放的锚系系统所搭载的声学多普勒流速剖面仪,获取了覆盖4个季节的累计约80 d的声散射数据,数据包括75 kHz和300 kHz两个频段,观测水深几乎覆盖了从海面到约600 m水深的整个水体。结果表明,水体在垂向上分布着上散射层和深散射层2个主要散射层。上散射层分布深度在冬夏较浅,位于约100 m以浅,在春秋较深,位于约200 m以浅;深散射层分布深度同样为冬季最浅,位于约300 m以深,但夏季则最深,位于约400 m以深。因此,两散射层的距离在夏季最远,在春秋最近。2个散射层的声散射强度(Sv)同样具有明显的季节变化,上散射层散射强度夏秋较强而春冬较弱,深散射层则正好相反。  相似文献   

7.
A new extended Gibbs thermodynamic potential of seawater   总被引:1,自引:0,他引:1  
A new and extended Gibbs thermodynamic potential function of seawater is proposed to overcome generally known weaknesses of the International Equation of State of Seawater 1980 and its associated formulas (EOS80). It is valid for applied pressures up to 100 MPa (10,000 dbar), temperatures from −2-40°C, and practical salinities up to 42. At ambient pressure, it is applicable in heat capacity and density up to salinity 50. It includes the triple point of water for reference and is, over its range of validity, fully consistent with the current 1995 international scientific pure water standard, IAPWS95. In conjunction with an improved Gibbs potential of ice, it provides freezing temperatures of seawater for pressures up to 50 MPa (5000 dbar). It is compiled from an extensive set of experimental seawater data, rather than being derived from EOS80 equations. Older seawater data were specifically recalibrated for compatibility with the recent pure water standard. By this procedure, experimental high-pressure densities proved consistent with sound speeds confirmed by deep-sea travel time measurements. Temperatures of maximum density are described within their experimental uncertainty. For very low salinities, Debye-Hückel limiting laws are recompiled using latest physical and chemical constants. The potential function is expressed in the 1990 International Temperature Scale ITS-90.  相似文献   

8.
原位测量技术在黄海沉积声学调查中的应用   总被引:11,自引:3,他引:8  
介绍了最新研制的基于液压驱动贯入的自容式海底沉积声学原位测量系统及其在南黄海中部海底沉积声学调查中的应用。该系统可以实现对海底沉积物声速和声衰减系数进行原位测量,通过液压驱动装置将四根声学探杆匀速贯入到海底沉积物中,减少了对沉积物的扰动,可按照预设的工作参数在海底全自动工作,无需甲板上人员实时控制,采集的声波信号自容式存储于存储单元。系统工作水深为500 m,测量深度为1 m,测量频率为30 kHz,采样频率为10 MHz。使用该系统在南黄海中部获得了40个站位不同类型沉积物的声学特性原位测量数据,并使用CTD剖面仪对该系统声速测量进行了标定,相对误差均小于0.5%,表明该系统测量数据准确、可靠。  相似文献   

9.
Building empirical equations is an effective way to link the acoustic and physical properties of sediments. These equations play an important role in the prediction of sediments sound speeds required in underwater acoustics.Although many empirical equations coupling acoustic and physical properties have been developed over the past few decades, further confirmation of their applicability by obtaining large amounts of data, especially for equations based on in situ acoustic measurement techniques, is required. A sediment acoustic survey in the South Yellow Sea from 2009 to 2010 revealed statistical relationships between the in situ sound speed and sediment physical properties. To improve the comparability of these relationships with existing empirical equations, the present study calculated the ratio of the in situ sediment sound speed to the bottom seawater sound speed, and established the relationships between the sound speed ratio and the mean grain size, density and porosity of the sediment. The sound speed of seawater at in situ measurement stations was calculated using a perennially averaged seawater sound speed map by an interpolation method. Moreover, empirical relations between the index of impedance and the sound speed and the physical properties were established. The results confirmed that the existing empirical equations between the in situ sound speed ratio and the density and porosity have general suitability for application. This study also considered that a multiple-parameter equation coupling the sound speed ratio to both the porosity and the mean grain size may be more useful for predicting the sound speed than an equation coupling the sound speed ratio to the mean grain size.  相似文献   

10.
The May 2001 Geoacoustic Inversion Techniques Workshop provided synthetic transmission loss (TL) data for four cases with range-dependent shallow-water all-liquid environments. In two of these cases ("0" and "1"), the sea floor has constant slope and the geoacoustic model (GAM) is range independent. Cost functions have been computed using a new adiabatic-mode TL algorithm (which uses an exact velocity boundary condition at the sloping sea floor), as one parameter in the GAM is varied. Two frequencies (80 and 220 Hz) were selected. In case 0, the sea-floor slope is 0.0183 and the GAM comprises an inhomogeneous layer over a basement. The sea-floor sound-speed was selected as the variable parameter. The resulting cost minima at 80 and 220 Hz are displaced from the actual sound speed by 2.3 and 3.4 m/s, respectively. In case 1, the sea-floor slope is 0.012 and the GAM comprises one homogenous layer, five inhomogeneous layers, and a basement. The selected parameter was the sound-speed in the homogeneous layer. The corresponding cost minima are displaced by -1.2 and +1.1 m/s. The relative values of these four errors indicate that mode coupling increases with sea-floor slope and that there may be a dependence on frequency at the greater slope.  相似文献   

11.
This paper applies a full-field technique to invert bottom sound profile and bottom reflectivity from simulated acoustic data in a shallow water environment. Bottom sound-speed profile and bottom reflectivity have been traditionally estimated using seismic reflection/refraction techniques when acoustic ray paths and travel time can be identified and measured from the data. However, in shallow water, the many multipaths due to bottom reflection/refraction make such identification and measurement rather difficult. A full-field inversion technique is presented here that uses a broad-band source and a vertical array for bottom sound-speed and reflectivity inversion. The technique is a modified matched field inversion technique referred to as matched beam processing. Matched beam processing uses conventional beamforming processing to transform the field data into the beam domain and correlate that with the replica field also in the beam domain. This allows the analysis to track the acoustic field as a function of incident/reflected angle and minimize contamination or mismatch due to sidelobe leakage  相似文献   

12.
In acoustic tomographic system capable of performing in situ two-dimensional (2D) acoustic imaging of shallow water sediments is described. This system is capable of resolving inhomogeneities greater than 10 cm and differentiating sound-speed variations greater than 2%, A tomographic inversion is performed in a 2D vertical slice of about 1 m 2 (1 m×1 m) using three identical probes, with each consisting of 70 evenly distributed transducers. In normal deployments, two of the probes are oriented vertically and are separated by about 1 meter, and the third is positioned horizontally right above the two vertical probes. The additional horizontal probe greatly improves the horizontal resolution of the system compared to conventional crosshole tomographic setups. Numerical simulations are performed to evaluate the influences of arrival time detection error and transducer position error on the performance of the tomography system. For an arrival time of 500 ns (standard deviation) and a position error of 4 mm (standard deviation), sound-speed anomalies of greater than 0.8% can be correctly predicted near the upper portion (close to the horizontal probe) and are resolvable near the lower portion. A controlled laboratory experiment was conducted to evaluate the performance of the system. The location of a polyurethane block (Conap EN22) used as a known target is correctly predicted while the inverted sound speed is about 9% lower than that from its actual value. Field data taken from a saturated muddy site are presented and analyzed. The inverted mean sound speed and attenuation are about 1480 ms-1 and 20 dBm-1, respectively  相似文献   

13.
Acoustic signals from small explosive charges have been measured with sonobuoys on twelve tracks in Australian northern shallow waters with the aim of assessing whether useful geoacoustic information could be obtained. Using the frequency band from 14 to 70 Hz, travel times of head waves were monitored, and the sound speeds and depths of corresponding interfaces in the seabed were derived. The water sound speed varied a little with range, and its depth dependence was allowed for by using its average value. Head waves from interfaces indistinguishable from the seafloor (the water/seabed interface) were detected on only three of the tracks, with derived sound speeds of 2100 to 2300 m/s. The first sub-bottom interfaces were from 50 to 600 m beneath the seafloor, and their sound speeds ranged from around 2000 m/s to 6400 m/s. Thus the head waves were from chalk or limestone, cemented sediments in which sound-speed gradients would be small. The amount of data obtained for the seafloor was limited by incoherence of the signals and, for some tracks, by excessive spacing between shots. The incoherence is generally attributed to multiple head waves that are individually unresolvable, while on two tracks there were indications of medal ground waves. Occasional anomalous data were obtained, but generally the assumptions of the simple interpretation method were found to be valid. Since no curvature in the range-time lines was observed, there was no evidence of sub-bottom sound-speed gradients being significant  相似文献   

14.
This paper presents results of combined consideration of sound coherence and array signal processing in long-range deep-water environments. Theoretical evaluation of the acoustic signal mutual coherence function (MCF) of space for a given sound-speed profile and particular scattering mechanism is provided. The predictions of the MCF are employed as input data to investigate the coherence-induced effects on the horizontal and vertical array gains associated with linear and quadratic beamformers with emphasis on the optimal ones. A method of the radiation transport equation is developed to calculate the MCF of the multimode signal under the assumption that internal waves or surface wind waves are the main source of long-range acoustic fluctuations in a deep-water channel. Basic formulations of the array weight vectors and small signal deflection are then exploited to examine optimal linear and quadratic processors in comparison with plane-wave beamformers. For vertical arrays, particular attention is paid also to evaluation of the ambient modal noise factor. The numerical simulations are carried out for range-independent environments from the Northwest Pacific for a sound frequency of 250 Hz and distances up to 1000 km. It was shown distinctly that both signal coherence degradation and modal noise affect large-array gain, and these effects are substantially dependent on the processing technique used. Rough surface sound scattering was determined to cause the most significant effects  相似文献   

15.
A Munk profile and a set of propagating internal-wave modes are used to construct a three-dimensional time-varying ocean sound-speed model. Three-dimensional ray tracing is employed to simulate long-range sound propagation of a broadband acoustic signal. Methods are developed to convert three-dimensional ray-tracing results to acoustic time-domain amplitude and phase measurements. The ocean sound-speed model is defined deterministically, and the model acoustic receptions are analyzed deterministically. A single internal-wave mode that is “spatially synchronizes” to an arrival can coherently focus and defocus the acoustic energy. These internal waves can cause an arrival's amplitude fluctuation to mimic Rayleigh fading; however, the time-domain phase is stable, in contradiction to the classical Rayleigh fading environment where the received phase is uniformly distributed. For example, the received power attributed to an early arrival propagated over a 750-km range can fluctuate over 40 dB, while the time-domain phase remains within a quarter of a 75 Hz cycle. The characteristics of the time-domain phase are important for establishing coherent integration times at the receiver  相似文献   

16.
Kinematic global positioning system (GPS) positioning and underwater acoustic ranging can combine to locate an autonomous underwater vehicle (AUV) with an accuracy of /spl plusmn/30cm (2-/spl sigma/) in the global International Terrestrial Reference Frame 2000 (ITRF2000). An array of three precision transponders, separated by approximately 700 m, was established on the seafloor in 300-m-deep waters off San Diego. Each transponder's horizontal position was determined with an accuracy of /spl plusmn/8 cm (2-/spl sigma/) by measuring two-way travel times with microsecond resolution between transponders and a shipboard transducer, positioned to /spl plusmn/10 cm (2-/spl sigma/) in ITRF2000 coordinates with GPS, as the ship circled each seafloor unit. Travel times measured from AUV to ship and from AUV to transponders to ship were differenced and combined with AUV depth from a pressure gauge to estimate ITRF2000 positions of the AUV to /spl plusmn/1 m (2-/spl sigma/). Simulations show that /spl plusmn/30 cm (2-/spl sigma/) absolute positioning of the AUV can be realized by replacing the time-difference approach with directly measured two-way travel times between AUV and seafloor transponders. Submeter absolute positioning of underwater vehicles in water depths up to several thousand meters is practical. The limiting factor is knowledge of near-surface sound speed which degrades the precision to which transponders can be located in the ITRF2000 frame.  相似文献   

17.
基于海底表层沉积物声速特征的南海地声模型   总被引:1,自引:1,他引:0  
邹大鹏  阎贫  卢博 《海洋学报》2012,34(3):80-86
在由垂直声速梯度建立的地声模型基础上,通过引入沉积物与海水声速比和沉积物压缩波与切变波声速比两个表征沉积物声学特征参数得到更全面和有实际指导意义的地声模型。在沉积物声波传播FCMCM模型基础上,基于热作用和重力作用下沉积物两相介质的应力应变分析,建立TFCMCM和DFCFCM模型,运用模型校正表层沉积物声速特征来计算和解释地声模型。根据海底表层沉积物存在低声速和高声速两种类型,结合沉积物沿纵深孔隙度不变和变化两种类型,得到南海海底沉积物的两类四种典型地声模型:低声速孔隙度不变型、低声速孔隙度减小型、高声速不变型和高声速孔隙度减小型。运用这四种典型地声模型的组合解释了卢博提出的南海三种典型声速结构。认知声速结构将为南海声学探测海底、划分海底区域提供模型支持。  相似文献   

18.
Historical hydrographic data are used to determine the spatial and seasonal patterns of uncertainty in thermohaline and sound-speed fields in a well-sampled region, the continental shelf and slope in the Middle Atlantic Bight (MAB). Several different historical databases are combined to produce two-dimensional (2-D) plan view and cross-shelf fields of temperature, salinity, and sound speed in two separate regions, the New England shelf and the shelf off Delaware and Maryland. In addition, spatial maps of the sound-speed fields reveal that the maximum variance of the sound speed occurs at the edge of the continental shelf, in the vicinity of the shelfbreak front. The standard deviation of the sound speed was largest during the spring and summer, with magnitudes as large as 14 m/s in a narrow band coinciding with the mean position of the shelfbreak front. During spring the peak in variance was located near the surface outcrop of the front, but during summer the maximum variance was centered at a depth of 30 m, immediately beneath the seasonal thermocline. Comparisons with both synoptic measurements from the Shelfbreak PRIMER experiment as well as moored time series from the Nantucket Shoals Flux Experiment confirm that the shelfbreak front is a "hotspot" of uncertainty (maximum variance), and that the vertical structure of the peak variance is dependent on the presence or absence of the seasonal thermocline  相似文献   

19.
The effects of refracting sediments on low-frequency sound propagation in range-dependent oceans are studied with parabolic equation models. The predictions of three sediment sound-speed models for low-frequency propagation are compared. Two factors that result in sediment sound-speed gradients are considered. Variation in static pressure due to the variation in the weight of overlying material causes sediment sound speed to increase with depth. The thermodynamic influence of the ocean results in large sound-speed gradients in a boundary layer in the uppermost layer of the sediment. The associated affects of attenuation on propagation are also considered. Both time-domain and frequency-domain results are presented  相似文献   

20.
海洋声速剖面严重影响着水下声传播特性,近实时地获取声速剖面对水下声通信、水下定位、鱼群探测等都有重要意义。单经验正交函数回归(single Empirical Orthogonal Function regression,sEOF-r)方法通过建立声速剖面的经验正交系数与海面遥感数据之间的线性回归关系来反演声速剖面。但是,海洋是一个复杂的动力系统,声速与海面遥感数据并不是简单的线性关系,因此,本文基于Argo历史网格数据,通过自组织映射(Self-Organizing Map,SOM)生成海平面高度异常(Sea Level Anomaly,SLA)、海表面温度(Sea Surface Temperature,SST)等海表遥感数据以及表层声速仪测量的表层声速与声速剖面异常之间的非线性映射;然后利用近实时的海表遥感数据和表层声速反演三维海洋声速场。声速剖面反演的结果表明,在多源信息融合的优势下,本文方法的反演性能最稳定且精度最高,声速剖面的平均反演精度比经典sEOF-r方法提高约2 m/s,比未考虑表层声速的经典SOM方法提高约1 m/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号