首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Farouk El-Baz 《Icarus》1975,25(4):495-537
The Apollo missions have gradually increased our knowledge of the Moon's chemistry, age, and mode of formation of its surface features and materials Apollo 11 and 12 landings proved that mare materials are volcanic rocks that were derived from deep-seated basaltic melts about 3.7 and 3.2 billion years ago, respectively. Later missions provided additional information on lunar mare basalts as well as the older, anorthositic, highland rocks. Data on the chemical make-up of returned samples were extended to larger areas of the Moon by orbiting geochemical experiments. These have also mapped inhomogeneities in lunar surface chemistry, including radioactive anomalies on both the near and far sides.Lunar samples and photographs indicate that the moon is a well-preserved museum of ancient impact scars. The crust of the Moon, which was formed about 4.6 billion years ago, was subjected to intensive metamorphism by large impacts. Although bombardment continues to the present day, the rate and size of impacting bodies were much greater in the first 0.7 billion years of the Moon's history. The last of the large, circular, multiringed basins occurred about 3.9 billion years ago. These basins, many of which show positive gravity anomalies (mascons), were flooded by volcanic basalts during a period of at least 600 million years. In addition to filling the circular basins, more so on the near side than on the far side, the basalts also covered lowlands and circum-basin troughs.Profiles of the outer lunar skin were constructed from the mapping camera system, including the laser altimeter, and the radar sounder data. Materials of the crust, according to the lunar seismic data, extend to the depth of about 65 km on the near side, probably more on the far side. The mantle which underlies the crust probably extends to about 1100 km depth. It is also probable that a molten or partially molten zone or core underlies the mantle, where interactions between both may cause the deep-seated moonquakes.The three basic theories of lunar origin—capture, fission, and binary accretion—are still competing for first place. The last seems to be the most popular of the three at this time; it requires the least number of assumptions in placing the Moon in Earth orbit, and simply accounts for the chemical differences between the two bodies. Although the question of origin has not yet been resolved, we are beginning to see the value of interdisciplinary synthesis of Apollo scientific returns. During the next few years we should begin to reap the fruits of attempts at this synthesis. Then, we may be fortunate enough to take another look at the Moon from the proposed Lunar Polar Orbit (LPO) mission in about 1979.  相似文献   

2.
The principal chemical element composition and inferred mineralogy of the powdered lunar surface material at seven mare and one terra sites on the Moon are compared. The mare compositions are all similar to one another and comparable to those of terrestrial ocean ridge basalts except in having higher titanium and much lower sodium contents than the latter. These analyses suggest that most, if not all, lunar maria have this chemical composition and are derived from rocks with an average density of 3.19 g cm–3. Mare Tranquillitatis differs from the other maria in having twice the titanium content of the others.The chemical composition of the single highland site studied (Surveyor 7) is distinctly different from that of any of the maria in having much lower amounts of titanium and iron and larger amounts of aluminium and calcium. Confirmation of these general characteristics of lunar highland material has come from recent observations by the Apollo 15 Orbiter. The inferred mineralogy is 45 mole percent high anorthite plagioclase and the parent rocks have an estimated density of 2.94 g cm–3. The Surveyor 7 chemical composition is the principal contributor to present estimates of the overall chemical composition of the lunar surface.Presented at the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 14–25, 1971. This paper is an expanded and updated version of a paper presented at the Apollo 12 Lunar Science Conference, Houston, Texas, January 11–14, 1971, and published in the Proceedings of this Conference (Turkevich, 1971).  相似文献   

3.
Lunar heat-flow calculations are carried out for a model Moon in which (a) near-surface initial temperatures are very high (as the occurence of a surface anorthositic layer seems to require), and (b) heat-generating radionuclides are transported upward when melting occurs. Near-surface regions are found to cool and then experience a resurgence of high temperature, as radionuclide-rich magmas from the lunar interior accumulate near the surface. This peaking of near-surface temperature can be brought into correspondence with the episode of vulcanism (∼ 3.5 × 109 years ago) that gave rise to the basalts represented in the Apollo samples, if we assume relatively high lunar temperatures in early times (due to high initial temperatures, or high content of radioactive elements, or both).  相似文献   

4.
The regolith samples returned by the Chang'E-5 mission (CE-5) contain the youngest radiometrically dated mare basaltic clasts, which provide an opportunity to elucidate the magmatic activities on the Moon during the late Eratosthenian. In this study, detailed petrographic observations and comprehensive geochemical analyses were performed on the CE-5 basaltic clasts. The major element concentrations in individual plagioclase grain of the CE-5 basalts may vary slightly from core to rim, whereas pyroxene has clear chemical zonation. The crystallization sequence of the CE-5 mare basalts was determined using petrographic and geochemical relations in the basaltic clasts. In addition, both fractional crystallization (FC) and assimilation and fractional crystallization models were applied to simulate the chemical evolution of melt equilibrated with plagioclase in CE-5 basalts. Our results reveal that the melt had a TiO2 content of ~3 wt% and an Mg# of ~45 at the onset of plagioclase crystallization, suggesting a low-Ti parental melt of the CE-5 basalts. The relatively high FeO content (>14.5 wt%) in melt equilibrated with plagioclase could have resulted in extensive crystallization of ilmenite, unlike in Apollo low-Ti basalts. Furthermore, our calculations showed that the geochemical evolution of CE-5 basaltic melt could not have occurred in a closed system. On the contrary, the CE-5 basalts could have assimilated mineral, rock, and glass fragments that have higher concentrations of KREEP elements (potassium, rare earth elements, and phosphorus) in the regolith during magma flow on the Moon's surface. The presence of the KREEP signature in the CE-5 basalts is consistent with literature remote sensing data obtained from the CE-5 landing site. These KREEP-bearing fragments could originate from KREEP basaltic melts that may have been emplaced at the landing site earlier than the CE-5 basalts.  相似文献   

5.
Northwest Africa (NWA) 4898 is the only low‐Ti, high‐Al basaltic lunar meteorite yet recognized. It predominantly consists of pyroxene (53.8 vol%) and plagioclase (38.6 vol%). Pyroxene has a wide range of compositions (En12–62Fs25–62Wo11–36), which display a continuous trend from Mg‐rich cores toward Ca‐rich mantles and then to Fe‐rich rims. Plagioclase has relatively restricted compositions (An87–96Or0–1Ab4–13), and was transformed to maskelynite. The REE zoning of all silicate minerals was not significantly modified by shock metamorphism and weathering. Relatively large (up to 1 mm) olivine phenocrysts have homogenous inner parts with Fo ~74 and sharply decrease to 64 within the thin out rims (~30 μm in width). Four types of inclusions with a variety of textures and modal mineralogy were identified in olivine phenocrysts. The contrasting morphologies of these inclusions and the chemical zoning of olivine phenocrysts suggest NWA 4898 underwent at least two stages of crystallization. The aluminous chromite in NWA 4898 reveals that its high alumina character was inherited from the parental magma, rather than by fractional crystallization. The mineral chemistry and major element compositions of NWA 4898 are different from those of 12038 and Luna 16 basalts, but resemble those of Apollo 14 high‐Al basalts. However, the trace element compositions demonstrate that NWA 4898 and Apollo 14 high‐Al basalts could not have been derived from the same mantle source. REE compositions of its parental magma indicate that NWA 4898 probably originated from a unique depleted mantle source that has not been sampled yet. Unlike Apollo 14 high‐Al basalts, which assimilated KREEPy materials during their formation, NWA 4898 could have formed by closed‐system fractional crystallization.  相似文献   

6.
Average data for igneous and/or metaigneous rocks and soils from seven lunar sites are presented. There are compositional similarities between Apollo 11 and Luna 16 eastern maria, Ap 12 and 15 western maria and between Ap 16 and L 20 highlands. Subtle differences do exist between the paired mare sites and the two highland sites and striking differences between the eastern and western maria. Chondritic normalized REE (rare earth element) patterns for igneous rocks and soils from all sites range from 7-350 generally with negative Eu anomalies. Anorthositic gabbroes to anorthosites, presumably highland material, exhibit a positive Eu anomaly. The REE patterns or Sr isotopic ratios suggest two lava flows each for the L 16 and Ap 14 sites, at least four lava flows for the Ap 11 and 12 site and about six for the Ap 15 site. Paucity of lunar andesites suggests rather limited lunar chemical differentiation. Norite-KREEP is a prominent component at Ap 12, 14 and 15, less at Ap 11 and 16 and L 16 and apparently very low at the L 20 highland site. Derivation of lunar soils can be best explained using multi-component mixing systems. Characterization of meteoritic impacting bodies is also observed in addition to a steady state veil of 1.9% carbonaceous Cl like material in soils. Interelement correlations impose constraints on the primitive composition of the Moon and on magmatic processes like selective volatilization.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

7.
Abstract— Major element and sulfur concentrations have been determined in experimentally heated olivine‐hosted melt inclusions from a suite of Apollo 12 picritic basalts (samples 12009, 12075, 12020, 12018, 12040, 12035). These lunar basalts are likely to be genetically related by olivine accumulation (Walker et al. 1976a, b). Our results show that major element compositions of melt inclusions from samples 12009, 12075, and 12020 follow model crystallization trends from a parental liquid similar in composition to whole rock sample 12009, thereby partially confirming the olivine accumulation hypothesis. In contrast, the compositions of melt inclusions from samples 12018, 12040, and 12035 fall away from model crystallization trends, suggesting that these samples crystallized from melts compositionally distinct from the 12009 parent liquid and therefore may not be strictly cogenetic with other members of the Apollo 12 picritic basalt suite. Sulfur concentrations in melt inclusions hosted in early crystallized olivine (Fo75) are consistent with a primary magmatic composition of 1050 ppm S, or about a factor of 2 greater than whole rock compositions with 400–600 ppm S. The Apollo 12 picritic basalt parental magma apparently experienced outgassing and loss of S during transport and eruption on the lunar surface. Even with the higher estimates of primary magmatic sulfur concentrations provided by the melt inclusions, the Apollo 12 picritic basalt magmas would have been undersaturated in sulfide in their mantle source regions and capable of transporting chalcophile elements from the lunar mantle to the surface. Therefore, the measured low concentration of chalcophile elements (e.g., Cu, Au, PGEs) in these lavas must be a primary feature of the lunar mantle and is not related to residual sulfide remaining in the mantle during melting. We estimate the sulfur concentration of the Apollo 12 mare basalt source regions to be ~75 ppm, which is significantly lower than that of the terrestrial mantle.  相似文献   

8.
9.
A.E. Ringwood 《Icarus》1976,28(3):325-349
Recent hypotheses of lunar evolution hold that the Moon was extensively or completely melted and differentiated about 4.6 b.y. ago, resulting in formation of the plagioclase-rich lunar highlands underlain by a great thickness of complementary ferromagnesian cumulates. Mare basalts are interpreted as being formed by subsequent remelting of these cumulates. These hypotheses are tested experimentally in the cases of several bulk compositions which have been proposed for the Moon—those of Taylor and Jakes, Ganapathy and Anders, Wänke and co-workers, and Anderson. An extensive experimental investigation of melting equilibria displayed by the Taylor-Jakes model at high pressures and temperatures is presented. This permits a quantitative evaluation of the manner in which a model Moon with this composition would crystallize and differentiate under conditions of (i) total melting throughout, and (ii) total melting only of an outer shell a few hundred kilometers thick. A detailed study is made of the capacity of the cumulates underlying the crust in these models to produce mare basalts by a second stage of partial melting. A wide range of experimentally based arguments is presented, showing that for both cases, partial melting of such cumulates would produce magmas with compositions quite unlike those of mare basalts. In order to minimize these difficulties, bulk lunar compositions containing substantially smaller abundances of involatile components (e.g. CaO, Al2O3, TiO2) relative to major components of intermediate volatility (e.g. MgO, SiO2, FeO) than are specified in the Taylor-Jakes model, appear to be required. Other bulk lunar composition models proposed by Ganapathy and Anders, Wänke and co-workers and Anderson, were similarly tested in the light of experimental data. All of these are far too rich in (Ca and Al) relative to (Mg + Si + Fe) to yield, after melting and differentiation, cumulates capable of being parental to mare basalts. Moreover these compositions, whdn melted and differentiated, appear incapable of matching the composition of the pyroxene component of the lunar highland crust.A brief discussion of the petrogenesis of mare basakts is presented. The most promising model is one in which only the outer few hundred kilometers of the Moon were melted and differentiated around 4.6 b.y. ago. Continued radioactive heating of the deep undifferentiated lunar interior provided a second generation of primitive magmas up to 1.5 b.y. after the early melting and differentiation. These primitive magmas participated in assimilative interactions with late-stage differentiates formed near the crust-mantle boundary during the 4.6 b.y. differentiation. These interactions might explain some trace element and isotopic characteristics of mare basalts. The model possesses some attractive characteristics relating to the thermal evolution of the Moon.  相似文献   

10.
Three types of igneous rocks, all ultimately related to basaltic liquids, appear to be common on the lunar surface. They are: (1) iron-rich mare basalts, (2) U-, REE-, and Al-rich basalts (KREEP), and (3) plagioclase-rich or anorthositic rocks. All three rock types are depleted in elements more volatile than sodium and in the siderophile elements when relative element abundances are compared with those of carbonaceous chondrites. The chemistry and age relationships of these rocks suggest that they are derived from a feldspathic, refractory element-rich interior that becomes more pyroxenitic; that is, iron/magnesium-rich; with depth.It is suggested that the deeper parts of the lunar interior tend toward chondritic element abundances. The radial variation in mineralogy and bulk chemical composition inferred from the surface chemistry is probably a primitive feature of the Moon that reflects the accretion of refractory elementenriched materials late in the formation of the body.  相似文献   

11.
In 1972, Apollo 17 astronauts returned 170.4 kg of lunar material. Within 1 month of their return, a subset of those samples was specially curated with the forethought that future analytical techniques would offer new insight into the formation and evolution of the Moon. Of interest in this work is sample 71036, a basalt collected from the rim of Steno crater in the Taurus–Littrow Valley, which was stored frozen and was processed and released for study 50 years later. We report, for the first time, the detailed mineralogy and petrology of 71036 and its companion samples 71035, 71037, and 71055 using a novel combination of 2-D and 3-D methods. We investigate lunar volatiles through in situ measurements of apatite and 3-D measurements of vesicles to understand the degassing histories of the Steno crater basalts. Our coupled 2-D petrography and 3-D tomography data sets support a model of the Steno crater basalts crystallizing in the upper crust of a mare lava flow. Apatite F and OH chemistry and the late-stage deformation of voids and formation of smaller vesicles provide evidence supporting coeval degassing of volatiles and crystallization of mesostasis apatite in Apollo 17 basalts. This work helps to close knowledge gaps surrounding the origin, magmatic evolution, emplacement, and crystallization history of high-titanium basalts.  相似文献   

12.
Lunar seismic data from three Apollo seismometers are interpreted to determine the structure of the Moon's interior to a depth of about 100 km. The travel times and amplitudes ofP arrivals from Saturn IV B and LM impacts are interpreted in terms of a compressional velocity profile. The most outstanding feature of the model is that, in the Fra Mauro region of Oceanus Procellarum, the Moon has a 65 km thick layered crust. Other features of the model are: (i) rapid increase of velocity near the surface due to pressure effects on dry rocks, (ii) a discontinuity at a depth of about 25 km, (iii) near constant velocity (6.8 km/s) between 25 and 65 km deep, (iv) a major discontinuity at 65 km marking the base of the lunar crust, and (v) very high velocity (about 9 km/s) in the lunar mantle below the crust. Velocities in the upper layer of the crust match those of lunar basalts while those in the lower layer fall in the range of terrestrial gabbroic and anorthositic rocks.Lamant-Doherty Geological Observatory Contribution No. 1768.  相似文献   

13.
We have classified 1858 lithic and vitreous fragments from the Luna 16 core-tube sample. They were taken from the soil fractions ranging in size from 150 to 425 μ, at levels A and G (γ). No important differences are observed between the proportions of particle types in levels A and G, nor between the soils of Luna 16 and those from the Apollo 11 landing site in the nearby Mare Tranquillitatis. Luna 16 basalts are texturally and mineralogically similar to Apollo 11 basalts, though the former are characterized by more Fe-rich olivines and pyroxenes and by lower ilmenite contents than are Apollo 11 basalts. The atomic ratio Al/Ti in Luna 16 basalt pyroxenes in about 1.5; Apollo 11 basalt pyroxenes have Al/Ti = 2.0, indicating the possibility of a lower mean valence for Ti in the Luna 16 material than in the Apollo 11 material. Most light-colored lithic fragments are anorthositic rather than noritic in character and are comparable to Apollo 11 anorthosites in mineral chemistry. We believe they are samples of terra regions to the north of the Luna 16 landing site. Triangular diagrams plotting normative plagioclase, normative mafics plus oxides, and normative orthoclase plus apatite neatly separate the three major types of lunar materials — mare basalts, anorthosites, and noritic rocks — and reveal that the Luna 16 regolith is composed of mare basalt and anorthosite, with very little norite component. Colorless-to-greenish glass occurs in the Luna 16 sample, which has high Fe and low Ti; it may represent gabbroic rock related to the anorthosites  相似文献   

14.
The lunar interior is comprised of two major petrological provinces: (1) an outer zone several hundred km thick which experienced partial melting and crystallization differentiation 4.4–4.6 b.y. ago to form the lunar crust together with an underlying complementary zone of ultramafic cumulates and residua, and (2) the primordial deep interior which was the source region for mare basalts (3.2–3.8 b.y.) and had previously been contaminated to varying degrees with highly fractionated material derived from the 4.4–4.6 b.y. differentiation event. In both major petrologic provinces, basaltic magmas have been produced by partial melting. The chemical characteristics and high-pressure phase relationships of these magmas can be used to constrain the bulk compositions of their respective source regions.Primitive low-Ti mare basalts (e.g., 12009, 12002, 15555 and Green Glass) possessing high normative olivine and high Mg and Cr contents, provide the most direct evidence upon the composition of the primordial deep lunar interior. This composition, as estimated on the basis of high pressure equilibria displayed by the above basalts, combined with other geochemical criteria, is found to consist of orthopyroxene + clinopyroxene + olivine with total pyroxenes > olivine, 100 MgO/(MgO + FeO) = 75–80, about 4% of CaO and Al2O3 and 2× chondritic abundances of REE, U and Th. This composition is similar to that of the earth's mantle except for a higher pyroxene/olivine ratio and lower 100 MgO/(MgO + FeO).The lunar crust is believed to have formed by plagioclase elutriation within a vast ocean of parental basaltic magma. The composition of the latter is found experimentally by removing liquidus plagioclase from the observed mean upper crust (gabbroic anorthosite) composition, until the resulting composition becomes multiply saturated with plagioclase and a ferromagnesian phase (olivine). This parental basaltic composition is almost identical with terrestrial oceanic tholeiites, except for partial depletion in the two most volatile components, Na2 and SiO2. Similarity between these two most abundant classes of lunar and terrestrial basaltic magmas strongly implies corresponding similarities between their source regions. The bulk composition of the outer 400 km of the Moon as constrained by the 4.6-4.4 b.y. parental basaltic magma is found to be peridotitic, with olivine > pyroxene, 100 MgO/ (MgO + FeO) 86, and about 2× chondritic abundances of Ca, Al and REE. The Moon thus appears to have a zoned structure, with the deep interior (below 400 km) possessing somewhat higher contents of FeO and SiO2 than the outer 400 km. This zoned model, derived exclusively on petrological grounds, provides a quantitative explanation of the Moon's mean density, moment of inertia and seismic velocity profile.The bulk composition of the entire Moon, thus obtained, is very similar to the pyrolite model composition for the Earth's mantle, except that the Moon is depleted in Na (and other volatile elements) and somewhat enriched in iron. The similarity in major element composition extends also to the abundances of REE, U and Th. These compositional similarities, combined with the identity in oxygen isotope ratios between the Moon and the Earth's mantle, are strongly suggestive of a common genetic relationship.  相似文献   

15.
Possible models for the thermal evolution of the Moon are constrained by a wide assortment of lunar data. In this work, theoretical lunar temperature models are computed taking into account different initial conditions to represent possible accretion models and various abundances of heat sources to correspond to different compositions. Differentiation and convection are simulated in the numerical computational scheme.Models of the thermal evolution of the Moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion. Differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the Moon and are not resolvable with presently available data.If the Apollo 15 heat flow is a representative value, the average uranium concentration in the moon is 65±15 ppb. This is consistent with achondritic bulk composition (between howardites and eucrites) for the Moon.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

16.
Abstract High-Ti basalts from the Apollo collections span a range in age from 3.87 Ga to 3.55 Ga. The oldest of these are the common Apollo 11 Group B2 basalts which yield evidence of some of the earliest melting of the lunar mantle beneath Mare Tranquillitatis. Rare Group D high-Ti basalts from Mare Tranquillitatis have been studied in an attempt to confirm a postulated link with Group B2 basalts (Jerde et al., 1994). The initial Sr isotopic ratio of a known Group D basalt (0.69916 ± 3 at 3.85 Ga) lies at the lower end of the tight range for Group B2 basalts (87Sr/86Sr = 0.69920 to 0.69921). One known Group D basalt and a second postulated Group D basalt yield indistinguishable initial ?Nd (1.2 ± 0.6 and 1.2 ± 0.3) and again lie at the lower end of the range for the Group B2 basalts from Apollo 11 (+2.0 ± 0.4 to +3.9 ± 0.6, at 3.85 Ga). A third sample has isotopic (87Sr/86Sr = 0.69932 ± 2; ?Nd = 2.5 ± 0.4; at 3.59 Ga; as per Snyder et al., 1994b) and elemental characteristics similar to the Group A high-Ti basalts returned from the Apollo 11 landing site. Ages of 40Ar-39Ar have been determined for one known Group D basalt and a second postulated Group D basalt using step-heating with a continuous-wave laser. Suspected Group D basalt, 10002, 1006, yielded disturbed age spectra on two separate runs, which was probably due to 39Ar recoil effects. Using the “reduced plateau age” method of Turner et al. (1978), the ages derived from this sample were 3898 ± 19 and 3894 ± 19 Ma. Three separate runs of known Group D basalt 10002, 116 yielded 40Ar/39Ar plateau ages of 3798 ± 9 Ma, 3781 ± 8 Ma, and 3805 ± 7 Ma (all errors 2σ). Furthermore, this sample has apparently suffered significant 40Ar loss either due to solar heating or due to meteorite impact. The loss of a significant proportion of 40Ar at such a time means that the plateau ages underestimate the “true” crystallization age of the sample. Modelling of this Ar loss yields older, “true” ages of 3837 ± 18, 3826 ± 16, and 3836 ± 14 Ma. These ages overlap the ages of Group B2 high-Ti basalts (weighted average age = 3850 ± 20 Ma; range in ages = 3.80 to 3.90 Ga). The combined evidence indicates that the Group D and B2 high-Ti basalts could be coeval and may be genetically related, possibly through increasing degrees of melting of a similar source region in the upper mantle of the Moon that formed >4.2 Ga ago. The Group D basalts were melted from the source first and contained 3–5×more trapped KREEP-like liquid than the later (by possibly only a few million years) Group B2 basalts. Furthermore, the relatively LREE- and Rb-enriched nature of these early magmas may lend credence to the idea that the decay of heat-producing elements enriched in the KREEP-like trapped liquid of upper mantle cumulates, such as K, U, and Th, could have initiated widespread lunar volcanism.  相似文献   

17.
The principal minor element (including Ti) characteristics of mare basalts which must be explained by an acceptable theory of petrogenesis are reviewed. Thes include: (i) Theabsolute abundances of incompatible elements vary over a twentyfold range yet therelative abundances within this group rarely deviate by more than a factor of two from the chondritic relative abundances. (ii) The sizes of the europium and strontium anomalies show a general trend to decrease as the absolute abundances of incompatible elements decrease. This trend is also one of increasing degree of partial melting and implies that the source region did not possess intrinsic Eu or Sr anomalies. (iii) Titanium seems to behave largely as an incompatible element. (iv) Many mare basalts have Rb/Sr model ages of about 4.5 b.y. whereas their crystallization ages are 3.2–3.8 b.y.Recent hypotheses have proposed that mare basalts formed by equilibrium partial melting of pyroxene-rich cumulates which underlay and were complementary to the anorthositic crust. According to a variant of this category, the residual liquid resulting from fractional crystallization of the highlands and their complementary cumulates segregated to form an intermediate layer between the highlands and the underlying primary cumulates. This highly fractionated residual liquid crystallized to form a pyroxene-olivine-ilmenite assemblage. High-Ti mare basalts subsequently formed by partial melting of this layer, whereas low-Ti basalts formed by partial melting of the underlying cumulates. These hypotheses are examined in detail and are rejected on several grounds.A new hypothesis based upon partial melting under conditions of surface or local equilibrium is proposed. It is assumed that the moon accreted from material which had ultimately formed by fractional condensation from a gas phase of appropriate composition. The essential members of the condensation sequence with falling temperature were perovskite, melilite, spinel, fassaite, forsterite, enstatite, alkali felspar. As the gas cooled over an extended period (>100 yr) large megacrysts (> 1 m) were formed. Trace elements were partitioned into these phases according to equilibrium condensation and crystal chemical relationships. Trivalent rare earths and other incompatible elements mainly entered perovskite, most of the Eu and Sr entered melilite whilst Rb entered alkali felspar. Radiogenic87Sr thus produced remained within the alkali felspar. The moon accreted from a mixture of these condensates to form a disequilibrium mineral assemblagewith a bulk composition similar to that of the pyroxenite source region of mare basalts as derived from experimental petrological considerations. After heating deep in the lunar interior, solid state reaction occurred around megacryst boundaries to form an equilibrium pyroxenite containing large unreacted cores of refractory melilite and perovskite. The latter mineral readily forms low melting point liquids when in contact with pyroxenes whereas melilite remains relatively inert. As partial melting commenced, all the perovskite and other low-melting accessory minerals (eg. alk. felspar) entered the first batch of liquid which thereby received most of the incompatible elements and87Sr (but not Eu and common Sr) present in the source region. Further melting of the pyroxenite matrix occurred under conditions of surface equilibrium. As the degree of partial melting increased, the first batch of incompatible-element-rich liquid was diluted by major elements from the pyroxenite matrix whilst refractory melilite cores were gradually consumed, thereby supplying relatively constant amounts of Eu and Sr to liquids so produced. It is considered that this model is capable of explaining the principal minor element characteristics of mare basalts and is consistent with interpretations of the major element chemistry of their source region based upon experimental petrology.  相似文献   

18.
The Northwest Africa (NWA) 773 clan of lunar meteorite stones are coarse‐grained breccias that provide an opportunity to examine a lunar igneous system that includes inferred intrusive and extrusive lithologies, possibly related through a common liquid line of descent from a single source region. Such extensive sampling of a single very low‐Ti (VLT) magmatic system on the Moon is unprecedented among the lunar samples. This study focuses on the olivine gabbro (OG), anorthositic gabbro (AG), and ferroan gabbro (FG) lithologies variably contained in NWA 773, NWA 2727, NWA 3160, NWA 3170, NWA 7007, and NWA 10656. Mineral compositions in the three gabbros indicate the crystallization sequence OG → AG → FG. Petrologic modeling of these three lithologies, and an olivine phyric basalt that also occurs in the NWA 773 clan, however, suggests that the relationship among the lithologies is more complex. The OG and basalt can be modeled as originating from a VLT KREEP‐bearing parental melt similar to the Apollo 14 Green Glass b1 composition through mainly equilibrium crystallization. The AG and FG, however, do not fit this simple model and require either a more complex crystallization sequence involving fractional crystallization, magma chamber recharge, or perhaps heterogeneity in the source region.  相似文献   

19.
Abstract– Sixty named lunar meteorite stones representing about 24 falls have been found in Oman. In an area of 10.7 × 103 km2 in southern Oman, lunar meteorite areal densities average 1 g km?2. All lunar meteorites from Oman are breccias, although two are dominated by large igneous clasts (a mare basalt and a crystalline impact‐melt breccia). Among the meteorites, the range of compositions is large: 9–32% Al2O3, 2.5–21.1% FeO, 0.3–38 μg g?1 Sm, and <1 to 22.5 ng g?1 Ir. The proportion of nonmare lunar meteorites is higher among those from Oman than those from Antarctica or Africa. Omani lunar meteorites extend the compositional range of lunar rocks as known from the Apollo collection and from lunar meteorites from other continents. Some of the feldspathic meteorites are highly magnesian (high MgO/[MgO + FeO]) compared with most similarly feldspathic Apollo rocks. Two have greater concentrations of incompatible trace elements than all but a few Apollo samples. A few have moderately high abundances of siderophile elements from impacts of iron meteorites on the Moon. All lunar meteorites from Oman are contaminated, to various degrees, with terrestrial Na, K, P, Zn, As, Se, Br, Sr, Sb, Ba, U, carbonates, or sulfates. The contamination is not so great, however, that it seriously compromises the scientific usefulness of the meteorites as samples from randomly distributed locations on the Moon.  相似文献   

20.
The ultraviolet and visible albedos of a number of terrestrial basalts, gabbros and anorthosites have been investigated over the wavelength range 800 Å to 8000 Å and compared with previously reported measurements of the lunar albedo. For most of the terrestrial samples the albedo changed only slightly between visible and middle ultraviolet wavelengths in striking contrast to the Moon where the ultraviolet albedo is about a factor of five or ten less than it is in the visible. Some of the lighter coloured terrestrial anorthositic samples were however found to have albedo curves that fairly closely approximate the ultraviolet darkening of the Moon. The general shape of the lunar ultraviolet albedo may be caused by a layer of anorthositic fragments on the Moon such as have been found to be a very abundant component of the Apollo ‘coarse-fines’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号