首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive fluid-flow experiments in fractures subjected to normal stress suggest the potential for either increased or decreased permeability resulting from fracture-surface dissolution. We present a computational model that couples mechanical deformation and chemical alteration of fractures subjected to constant normal stress and reactive fluid flow. The model explicitly represents micro-scale roughness of the fracture surfaces and calculates elastic deformation of the rough surfaces using a semi-analytical approach that ensures the surfaces remain in static equilibrium. A depth-averaged reactive transport model calculates chemical alteration of the surfaces, which leads to alteration of the contacting fracture surfaces. The mechanical deformation and chemical alteration calculations are explicitly coupled, which is justified by the disparate timescales required for equilibration of mechanical stresses and reactive transport processes. An idealized analytical representation of dissolution from a single contacting asperity shows that under reaction-limited conditions, contacting asperities can dissolve faster than the open regions of the fracture. Computational simulations in fractures with hundreds of contacting asperities show that the transition from transport-limited conditions (low flow rates) to reaction-rate-limited conditions (high flow rates) causes a shift from monotonically increasing permeability to a more complicated process in which permeability initially decreases and then increases as contacting asperities begin to dissolve. These results are qualitatively consistent with a number of experimental observations reported in the literature and suggest the potential importance of the relative magnitude of mass transport and reaction kinetics on the evolution of fracture permeability in fractures subjected to combined normal stress and reactive fluid flow.  相似文献   

2.
Physical Modelling of Stress-dependent Permeability in Fractured Rocks   总被引:2,自引:1,他引:1  
This paper presents the results of laboratory experiments conducted to study the impact of stress on fracture deformation and permeability of fractured rocks. The physical models (laboratory specimens) consisted of steel cubes simulating a rock mass containing three sets of orthogonal fractures. The laboratory specimens were subjected to two or three cycles of hydrostatic loading/unloading followed by the measurement of displacement and permeability. The results show a considerable difference in both deformation and permeability trends between the first loading and the subsequent loading/unloading cycles. However, the micrographs of the contact surfaces taken before and after the tests show that the standard deviation of asperity heights of measured surfaces are affected very little by the loadings. This implies that both deformation and permeability are rather controlled by the highest surface asperities which cannot be picked up by the conventional roughness characterization technique. We found that the dependence of flow rate on mechanical aperture follows a power law with the exponent n smaller or larger than three depending upon the loading stage. Initially, when the maximum height of the asperities is high, the exponent is slightly smaller than 3. The first loading, however, flattens these asperities. After that, the third loading and unloading yielded the exponent of around 4. Due to the roughness of contact surfaces, the flow route is no longer straight but tortuous resulting in flow length increase.  相似文献   

3.
The response of deformable fractures to changes in fluid pressure controls phenomena ranging from the flow of fluids near wells to the propagation of hydraulic fractures. We developed an analysis designed to simulate fluid flows in the vicinity of asperity‐supported fractures at rest, or fully open fractures that might be propagating. Transitions between at‐rest and propagating fractures can also be simulated. This is accomplished by defining contact aperture as the aperture when asperities on a closing fracture first make contact. Locations on a fracture where the aperture is less than the contact aperture are loaded by both fluid pressure and effective stress, whereas locations where the aperture exceeds the contact aperture are loaded only by fluid pressure. Fluid pressure and effective stress on the fracture are determined as functions of time by solving equations of continuity in the fracture and matrix, and by matching the global displacements of the fracture walls to the local deformation of asperities. The resulting analysis is implemented in a numerical code that can simulate well tests or hydraulic fracturing operations. Aperture changes during hydraulic well tests can be measured in the field, and the results predicted using this analysis are similar to field observations. The hydraulic fracturing process can be simulated from the inflation of a pre‐existing crack, to the propagation of a fracture, and the closure of the fracture to rest on asperities or proppant. Two‐dimensional, multi‐phase fluid flow in the matrix is included to provide details that are obscured by simplifications of the leakoff process (Carter‐type assumptions) used in many hydraulic fracture models. Execution times are relatively short, so it is practical to implement this code with parameter estimation algorithms to facilitate interpretation of field data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Natural fractures are characterized by rough surfaces and complex fluid flows. A large distribution of apertures (residual voids) within their walls and the presence of contact points (in situ normal loads) produce heterogeneous flows (channeling). The resulting permeabilities, porosities or fluid–rock exchange surfaces cannot be realistically modeled by parallel and smooth plate models. Four natural fractures are sampled at different depths and degrees of alteration in the Soultz sandstone and granite (EPS1 drillhole, Soultz-sous-Forêts, Bas-Rhin, France). The fracture surfaces are measured with mechanical profilometry and maps of asperity heights (XYZ). Resulting local apertures (XYe) are then calculated. A statistical study of the surface profiles (XZ) show that the fractures are more or less rough and tortuous according to the types of alteration. Altered samples are characterized by smoother surfaces of fractures. Such differences imply that (i) the average fracture aperture is not representative for the whole fracture and that (ii) the different local apertures should be integrated in hydraulic and mechanical models. A hydraulic model (finite difference calculations) of fluid flow, taking into account the elastic closure (Hertz contact theory) of fractures with depth, is used. Maps of contact points and relative local loads within the fracture planes are compared to flow maps. They show different channeling of fluid flows. Strongly altered fractures are characterized by homogeneous fluxes despite the presence of numerous contact zones during the closure of fracture. By contrast, fresh fractures develop, increasing fluid flow channels with depth.Fracture closure (increasing normal stress) does not systematically increase the channeling of fluid flow. There is evidence for a general smoothing out of the irregularities of the fracture walls due to precipitation of secondary minerals, indicating that the cubic law can be commonly valid, also at great crustal depth but this validity depends on the degree of fracture alteration. Mineralogical and geochemical observations, thus, should be taken into account to perform more accurate permeability calculations and models of fluid circulation in fracture networks.  相似文献   

5.
The variation of the shear strength of infilled rock joints under cyclic loading and constant normal stiffness conditions is studied. To simulate the joints, triangular asperities inclined at angles of 9.5° and 18.5° to the shear movement were cast using high-strength gypsum plaster and infilled with clayey sand. These joints were sheared cyclically under constant normal stiffness conditions. It was found that, for a particular normal stiffness, the shear strength is a function of the initial normal stress, initial asperity angle, joint surface friction angle, infill thickness, infill friction angle, loading direction and number of loading cycles. Based on the experimental results, a mathematical model is proposed to evaluate the shear strength of infilled rock joints in cyclic loading conditions. The proposed model takes into consideration different initial asperity angles, initial normal stresses and ratios of infill thickness to asperity height.  相似文献   

6.
张维庆  张玉军 《岩土力学》2013,34(Z1):523-532
针对笔者开发的双重孔隙-裂隙介质热-水-应力(T-H-M)耦合二维有限元分析程序中使用的应力腐蚀和压力溶解模型,引入水饱和度修正因子。以一个假设的位于含水地层中的高放废物地质处置模型,拟定3种初始裂隙水饱和度的计算工况(Sw20=1.0、0.8、0.2)进行热-水-应力耦合的数值模拟,考察岩体中的温度、裂隙开度的闭合速率、闭合量、孔(裂)隙水压力、地下水流速和应力的变化、分布等情况。结果显示,随着初始裂隙水饱和度的由高值到低值,应力腐蚀和压力溶解产生的闭合速率从大变小,裂隙开度由初始值趋于残余值,粗糙面接触率由初始值趋于其名义接触率的时间也增加,裂纹应力强度因子的下降亦变慢;近场的裂(孔)隙水压力的变化、分布及其流速矢量场的形态有明显的不同;3种工况的岩体中的应力量值及分布的差别不大。  相似文献   

7.
项彦勇  任鹏 《岩土力学》2014,35(10):2845-2854
核废物地质处置、地热开发、石油开采等工程领域都可能涉及稀疏裂隙岩体中的水流-传热过程。现有的裂隙岩体水流-传热理论模型和计算方法基本上都是以平行光滑壁面裂隙模型为基础的,没有考虑裂隙的壁面局部接触对水流、水-岩热交换以及岩体传热的影响。针对粗糙壁面裂隙水流过程,阐述了基于Stokes方程的Reynolds润滑方程及Hele-Shaw裂隙模型,采用MATLAB软件中的PDE工具求解,并与Walsh的等效水力开度公式进行对比;分析壁面局部接触裂隙水流-传热与填充裂隙水流-传热的相似性,提出了瞬时局部热平衡假设的适用条件,并在裂隙局部接触体传热满足Biot数条件的前提下,计算分析裂隙局部接触体与水流之间的局部热平衡时间及其影响因素;在裂隙局部接触体与水流之间满足瞬时热平衡假设的前提下,利用填充裂隙水流-传热的解析解,计算了壁面局部接触裂隙水及两侧岩石的温度分布,并分析了裂隙局部接触面积率、裂隙开度、裂隙水平均流速对岩石温度和裂隙水温度的影响特征,结果表明:(1)在设定条件下,由于裂隙局部接触体与裂隙水流之间的热交换,裂隙水流对其两侧岩石温度的影响范围随接触面积率的增大而减小,裂隙两侧岩石对裂隙水流温度的影响程度随接触面积率的增大而增大;(2)裂隙开度和裂隙水流速对岩石温度和裂隙水温度的影响方式的影响是一致的,即由于裂隙水流量随裂隙开度和裂隙水流速的增大而增大,裂隙水流对其两侧岩石温度的影响范围随裂隙开度和裂隙水流速的增大而增大,裂隙两侧岩石对裂隙水流温度的影响程度随裂隙开度和裂隙水流速的增大而减小。  相似文献   

8.
Summary  The mechanical and hydromechanical behaviour of isolated rock joints is of prime importance for a correct understanding of the behaviour of jointed rock masses. This paper focuses on the mechanical behaviour of a fracture under normal stress (fracture closure), using approaches based on both experimentation and modelled analysis. Experimental closure tests were carried out by positioning four displacement transducers around a fracture, leading to results which tended to vary as a function of transducer location. Such variations can be explained by the non-constant void space distribution between both walls of the fracture. The present study focuses on the importance of transducer location in such a test, and on the significant role played, in terms of mechanical response, by the morphology of the fracture surfaces. An analytical mechanical model is then developed, which takes into account the deformation of surface asperities and of the bulk material surrounding the fracture; it also includes the effects of mechanical interaction between contact points. The model is validated by simulating the behaviour which is very similar to experimental observations. Various parametric studies (scale effect, spatial distribution of contact points) are then carried out. The study of scale effects reveals a decrease in the normal stiffness with increasing fracture size. Finally, analysis of the role of various mechanical parameters has shown that the most influential of these is Young’s modulus corresponding to the bulk material surrounding the joint. Many applications, such as geothermal fluid recovery from fractures, could benefit from these results. Correspondence: Antoine Marache, Université Bordeaux 1, GHYMAC, Av. des Facultés, 33405 Talence Cedex, France  相似文献   

9.
The effects of the fracture scale (size) and normal stress on the shear behavior of a fracture were investigated in direct shear rig using mortar fracture replicas of different sizes (100–200 mm), which were reproduced from a tensile fracture created in granite. Monotonic shear loading was applied at normal stresses of 0.3 and 1 MPa for shear displacements of 2 and 20 mm. The change in surface topography was measured by using a profile measurement system with a laser profilometer to determine the changes in surface damage and the aperture during shear. Additionally, the effect of gouge material on the non-linearity of the closure curve during shear was investigated. The results show that the standard deviation of the initial aperture during shear increases not only with scale but also with the normal stress, since the matedness decreases due to the fact that asperities are more damaged with normal stress, and accordingly, the non-linearity in the closure curve during shear increases with normal stress. The results also show that the non-linearity of the closure curve during shear increases with the presence of gouge material/debris that is produced in the shearing process. This is mainly because gouge is soft and easily deforms under the application of normal stress. Moreover, gouge material is distributed non-uniformly around the contact areas. Thus, the normal stiffness during shear decreases not only with a decrease in the matedness between the surfaces, but also with the presence of gouge material.  相似文献   

10.
The failure mechanism of hydraulic fractures in heterogeneous geological materials is an important topic in mining and petroleum engineering. A three-dimensional (3D) finite element model that considers the coupled effects of seepage, damage, and the stress field is introduced. This model is based on a previously developed two-dimensional (2D) version of the model (RFPA2D-Rock Failure Process Analysis). The RFPA3D-Parallel model is developed using a parallel finite element method with a message-passing interface library. The constitutive law of this model considers strength and stiffness degradation, stress-dependent permeability for the pre-peak stage, and deformation-dependent permeability for the post-peak stage. Using this model, 3D modelling of progressive failure and associated fluid flow in rock are conducted and used to investigate the hydro-mechanical response of rock samples at laboratory scale. The responses investigated are the axial stress–axial strain together with permeability evolution and fracture patterns at various stages of loading. Then, the hydraulic fracturing process inside a rock specimen is numerically simulated. Three coupled processes are considered: (1) mechanical deformation of the solid medium induced by the fluid pressure acting on the fracture surfaces and the rock skeleton, (2) fluid flow within the fracture, and (3) propagation of the fracture. The numerically simulated results show that the fractures from a vertical wellbore propagate in the maximum principal stress direction without branching, turning, and twisting in the case of a large difference in the magnitude of the far-field stresses. Otherwise, the fracture initiates in a non-preferred direction and plane then turns and twists during propagation to become aligned with the preferred direction and plane. This pattern of fracturing is common when the rock formation contains multiple layers with different material properties. In addition, local heterogeneity of the rock matrix and macro-scale stress fluctuations due to the variability of material properties can cause the branching, turning, and twisting of fractures.  相似文献   

11.
Summary A hydro-mechanical testing system, which is capable of measuring both the flow rates and the normal and shear displacement of a rock fracture, was built to investigate the hydraulic behaviour of rough tension fractures. Laboratory hydraulic tests in linear flow were conducted on rough rock fractures, artificially created using a splitter under various normal and shear loading. Prior to the tests, aperture distributions were determined by measuring the topography of upper and lower fracture surfaces using a laser profilometer. Experimental variograms of the initial aperture distributions were classified into four groups of geostatistical model, though the overall experimental variograms could be well fitted to the exponential model. The permeability of the rough rock fractures decayed exponentially with respect to the normal stress increase up to 5 MPa. Hydraulic behaviours during monotonic shear loading were significantly affected by the dilation occurring until the shear stress reached the peak strength. With the further dilation, the permeability of the rough fracture specimens increased more. However, beyond shear displacement of about 7 to 8 mm, permeability gradually reached a maximum threshold value. The combined effects of both asperity degradation and gouge production, which prohibited the subsequent enlargement of mean fracture aperture, mainly caused this phenomenon. Permeability changes during cyclic shear loading showed somewhat irregular variations, especially after the first shear loading cycle, due to the complex interaction from asperity degradations and production of gouge materials. The relation between hydraulic and mechanical apertures was analyzed to investigate the valid range of mechanical apertures to be applied to the cubic law. Received June 12, 2001; accepted February 26, 2002 Published online September 2, 2002  相似文献   

12.
Feng  Yongcun  Gray  K. E. 《Acta Geotechnica》2019,14(2):377-402

Near-wellbore fracture tortuosity has important impacts on the productivity of fractured oil and gas wells and the injectivity of CO2 or solids disposal injectors. Previous models for simulating near-wellbore fracture tortuosity usually assume fracture growth in linear-elastic media, without considering the effects of porous features of the rock. In this paper, a 2D fully coupled model is developed to simulate near-wellbore fracturing using the XFEM-based cohesive segment method. The model takes into account a variety of crucial physical aspects, including fracture extension and turning, fluid flow in the fracture, fluid leak-off through wellbore wall and fracture surfaces, pore fluid flow, and rock deformation. The proposed model was verified against two sets of published experimental results. Numerical examples were carried out to investigate the effects of various parameters on near-wellbore fracture trajectory, injection pressure, and fracture width. Results show that near-wellbore fracture behaviors are not only dependent on rock elastic properties and field stresses, but also greatly influenced by porous properties of the rock, such as permeability and leak-off coefficient. Some field implications were provided based on the simulation results. By overcoming some limitations of the previous models, the proposed model predicts more realistic fracture evolution in the near-wellbore region and provides an attractive tool for design and evaluation of many field operations, for which near-wellbore fracture behaviors play an important role on their successes.

  相似文献   

13.
This paper presents laboratory results regarding the shear behaviour of an artificial tensile fracture generated in granite. We used a direct shear rig to test fractures of different sizes (from 100 mm to 200 mm) under various shear displacements up to 20 mm and cyclic shear stresses with constant normal stress of 10 MPa. To determine the evolution of surface damage and aperture during shear, cyclic loading was performed at designated shear displacements. These changes in the surfaces topography were measured with a laser profilometer ‘non-contact surface profile measurement system’. In addition, changes were also measured directly by using pressure-sensitive film.

The results showed that the standard deviation (SD) of the initial aperture of the sheared fracture significantly increases with both shear displacement and size, which result in an increase in the non-linearity of the closure curve (since the matedness of the fracture surfaces decreases with shear displacement). Therefore, we concluded that shear dilation is not only governed by the surfaces sliding over each other, but is also strongly influenced by the non-linearity of closure with shear displacement. Furthermore, while the shear stiffness of the fracture during the initial stage decreases with fracture size, it increases with fracture size in the residual stage. This can be attributed to the fact that only small asperities with short wavelengths were mainly damaged by shearing. Moreover the result showed that the damaged zones enlarge and localise with shear displacement, and eventually tend to form perpendicular to the shear displacement.  相似文献   


14.
In the direct shear test (DST), an internal moment is distributed within the rock specimen by non‐coaxial shear loads applied to the specimen, which cause non‐uniform distributions of both the traction on the loading planes and the stress and deformation in the specimen. To examine the validity of the DST for a rock fracture and to clarify the effect of specimen height, both the stress and deformation in a fracture in the DST were analyzed for specimens with three different heights using a three‐dimensional finite element method with quadratic joint elements for a fracture model. The constitutive law of the fracture considers the dependence of the non‐linear behavior of closure on shear displacement and that of shear stiffness on normal stress and was implemented in simulation code to give a conceptional fracture with uniform mechanical properties to extract only the effect of non‐uniform traction on the stress and deformation in the fracture. The results showed that both normal and shear stresses are concentrated near the end edges of the fracture, and these stress concentrations decrease with a decrease in the specimen height according to the magnitude of the moment produced by the non‐coaxial shear loads. Furthermore, although closure is greater near the end edges of the fracture, where normal stress is concentrated, this concentration of closure is not so significant within the range of this study because of the non‐linear behavior of closure, that is, closure does not significantly increase with an increase in normal stress at large normal stresses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
翟明磊  郭保华  王辰霖  焦峰 《岩土力学》2019,40(Z1):217-223
开展贯通裂隙岩样在法向卸荷下的压剪破坏研究,有助于更好地理解岩体裂隙在卸荷条件下的失稳特征。对单裂隙贯通岩样开展剪切应力峰前一系列法向卸荷破坏试验,分析了法向卸荷下试样裂隙的变形及能量演化规律。结果表明,法向卸荷下裂隙压剪失稳时的法向应力大于常规直剪试验的对应值,裂隙的抗剪能力减弱;剪切位移随法向应力减小而增大;卸荷变形比K随裂隙轮廓面积比Rs的增加而增大;卸荷过程中总变形能U0由减小转变为增加的现象可用于预测岩石裂隙卸荷失稳。研究结果对理解贯通裂隙岩体压剪卸荷失稳破坏具有一定参考意义。  相似文献   

16.
Summary. In a fractured rock mass, variations in stress and fluid pressure induced by engineering activities can significantly affect the hydrogeological properties. A significant change in fracture transmissivities can also be experienced in the far-field. The simulation of this kind of change requires a Hydro-Mechanical (HM) coupled model. The purpose of this paper is to show how such a model can be used to analyse the evolution of deformation and pressure in a fracture subjected to fluid injection. A 2D BEM-FEM code is used to solve the non-linear system of equations that describe the dependency of transmissivity on local fracture closure. The results of a sensitivity analysis of the essential fracture parameters allow one to gain insight into the importance of the HM models in the framework of the hydrogeology of fractured rock masses. Results obtained from a system of two impervious blocks and a saturated fracture are reported, in order to show the possibilities offered by this technique.  相似文献   

17.
An elasto-plastic constitutive model is introduced for rock joints under cyclic loading, considering the additional shear resistance generated by the asperity damage in the first forward shear cycle and sliding mechanism for further shearing. A series of cyclic loading direct shear tests was conducted on artificial joints with triangular asperities and replicas of a real rock asperity surface under constant normal stiffness (CNS) conditions. The model was calibrated and then validated using selected data sets from the experimental results. Model simulations were found to be in good agreement with the rock joints behaviour under cyclic loading and CNS conditions both in stress prediction and dilation behaviour. In addition, dynamic stability analysis of an underground structure was carried out, using Universal Distinct Element Code and the proposed constitutive model.  相似文献   

18.
Static friction along inclined cracks in photoelastic models increases with both the loading and frictional displacement before the larger crack-wall asperities are broken or completely over-ridden. Elastic shocks resulting from successive stick-slip during this stage can be repeated more or less indefinitely with repeated loading and unloading. Locked-in residual stresses, especially around crack tips, result when the model is unloaded, because of frictional coupling between crack walls. Favorable crack arrays for initial growth in the model include particular sets of en-echelon cracks inclined 45° to the stress axis, but the critical orientation may be smaller in brittle rock if crack-wall friction in rock is greater than in the model. Axial growth of en-echelon cleavage cracks, inclined at angles smaller than 45°, was observed in feldspar during deformation of a pegmatite having a mineralogy and texture similar to granite. Their growth follows predictions derived from photoelastic model studies.Crack growth in the pegmatite begins between half and two-thirds of the ultimate strength. The first flaws to grow, however, also include pre-existing axially oriented cleavage cracks in the feldspar. Crack growth occurs randomly throughout the specimen as stress is increased, without much evidence that grain boundaries are activated for crack growth. But when the applied stress approaches the ultimate strength, two new features are observed. There is an abrupt development of finite frictional slip along favorably inclined flaws and grain boundaries, beginning with displacements of the order of the dimensions of grain-boundary asperities. Crack growth still occurs at various locations throughout the specimen at this stage, but there is also a detectable concentration of growth along potential shear zones. Flaw-wall friction appears to be one of the critical factors that determine the pegmatite's ultimate strength and the instability of through-going fracture.  相似文献   

19.
张玉军  徐刚  杨朝帅 《岩土力学》2013,34(2):559-567
在使用Yasuhara等建立的裂隙开度的应力腐蚀和压力溶解模型的基础上,考虑裂隙闭合量对裂隙刚度的影响,针对一个假设的位于非饱和双重孔隙-裂隙岩体中且有核素泄漏的高放废物地质处置模型,拟定两种计算工况:(1)裂隙的刚度系数是裂隙闭合量的线性函数;(2)裂隙刚度为常数,进行热-水-应力-迁移耦合的二维有限元数值模拟,考察了岩体中的温度、裂隙开度的闭合速率、闭合量、孔(裂)隙水压力、地下水流速、核素浓度、裂隙刚度和正应力的变化、分布等情况。结果表明,两种工况岩体中的温度场、孔(裂)隙水压力、地下水流速、核素浓度无明显差别;裂隙闭合基本由应力腐蚀产生;在相同计算时间内两种工况的裂隙闭合量较为接近,工况1略大;工况1中离玻璃固化体越近,裂隙刚度值越高,并且在玻璃固化体附近的应力值较大,且集中程度较高。  相似文献   

20.
Examining the evolution of fracture permeability under stressed and temperature-elevated conditions, a series of flow-through experiments on a single rock fracture in granite has been conducted under confining pressures of 5 and 10 MPa, under differential water pressures ranging from 0.04 to 0.5 MPa, and at temperatures of 20–90 °C, for several hundred hours in each experiment. Measurements of fluid and dissolved mass fluxes, and post-experimental microscopy, were conducted to constrain the progress of mineral dissolution and/or precipitation and to examine its effect on transport properties. Generally, the fracture aperture monotonically decreased with time at room temperature, and reached a steady state in relatively short periods (i.e., <400 h). However, once the temperature was elevated to 90 °C, the aperture resumed decreasing and kept decreasing throughout the rest of the experimental periods. This reduction may result from the removal of the mineral mass from the bridging asperities within the fracture. Post-experimental observations by scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy (SEM-EDX), revealed the formation of several kinds of secondary minerals such as silica and calcite. However, the precipitated minerals seemed to have had little influence on the flow characteristics within the fracture, because the precipitation was limited to quite local and small areas. The evolving rates and ultimate magnitudes of the fracture aperture are likely to be controlled by the stress exerted over the contacting asperities and temperatures, and by the prescribed flow conditions. Thus, this complex behavior should be attributed to the coupled chemically- and mechanically-induced effect. A coupled chemo–mechano conceptual model, accounting for pressure and free-face dissolutions, is presented in this paper to follow the evolution of the fracture permeability observed in the flow-through experiments. This model addresses the two dissolution processes at the contacting asperities and the free walls within the fractures, and is also capable of describing multi-mineral dissolution behavior. The model shows that the evolution of a fracture aperture (or related permeability) and of element concentrations may be followed with time under arbitrary temperature and pressure conditions. The model predictions for the evolving fracture aperture and elements concentrations show a relatively good agreement with the experimental measurements, although it is not possible to replicate the abrupt reduction observed in the early periods of the experiments, which is likely to be due to an unaccounted mechanism of more stress-mediated fracture compaction driven by the fracturing of the propping asperities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号