首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
The Hexi Inland River Basin in an arid region of northwestern China was chosen as the study area for this research. The authors define the vulnerability of an oasis social-ecological system to glacier change; select 16 indicators from natural and socioeconomic systems according to exposure, sensitivity, and adaptive capacity; and construct a vulnerability-assessment indicator system aimed at an inland river basin in the arid region of Northwestern China. Vulnerability of the oasis socialecological system affected by glacier change in the study area is evaluated by Spatial Principal Component Analysis(SPCA) under the circumstance of glacier change. The key factors affecting the vulnerability are analyzed. The vulnerability of the oasis social-ecological system in the Hexi Inland River Basin affected by glacier change is of more than medium grade, accounting for about 48.0% of the total number of counties in the study area. In terms of the spatial pattern of the vulnerability, the oasis economic belt is the most vulnerable. With the rapid development of the area's society and economy, the exposure of the system to glacial changes is significantly increased; and an increase in glacial meltwater is not enough to overcome the impact of increased exposure, which is the main reason for the high vulnerability. Based on the result of the vulnerability analysis and combined with the present industrial structure in the Hexi Inland River Basin, near-,medium-, and long-term adaptation initiatives are put forward in the article.  相似文献   

2.
Identifying the problem regions and regional problems, and thus improving regional policies, are crucial for the sustainable development of various economic entities. The coordinated development of industrialization, informatization, urbanization and agricultural modernization(hereinafter referred to as "Sihua") is not only a practical need but an important strategic direction of integrating urban-rural development and regional development in recent China, and it also provides a significant perspective for identifying problem regions and regional problems so as to improve the regional policies. This study mainly aims to: firstly, establish a comprehensive evaluation index system so as to explore the spatial pattern of coordinated development of Sihua in China at prefecture level; secondly, to develop an evaluation criteria system to identify the problem regions and regional problems from the perspective of coordinated development of Sihua. This paper comes first in the scientific community to evaluate the coordinated development state of Sihua in China at prefecture level and identify the problem regions and regional problems from the perspective of Sihua development by quantitative analysis. This study may benefit the improvement of regional policies and thus contribute to the sustainable socio-economic development of China.  相似文献   

3.
Glaciers are the most important fresh-water resources in arid and semi-arid regions of western China. According to the Second Chinese Glacier Inventory(SCGI), primarily compiled from Landsat TM/ETM+ images, the Qilian Mountains had 2684 glaciers covering an area of 1597.81±70.30 km~2 and an ice volume of ~84.48 km~3 from 2005 to 2010. While most glaciers are small(85.66% are 1.0 km~2), some larger ones(12.74% in the range 1.0–5.0 km~2) cover 42.44% of the total glacier area. The Laohugou Glacier No.12(20.42 km~2) located on the north slope of the Daxue Range is the only glacier 20 km~2 in the Qilian Mountains. Median glacier elevation was 4972.7 m and gradually increased from east to west. Glaciers in the Qilian Mountains are distributed in Gansu and Qinghai provinces, which have 1492 glaciers(760.96 km~2) and 1192 glaciers(836.85 km~2), respectively. The Shule River basin contains the most glaciers in both area and volume. However, the Heihe River, the second largest inland river in China, has the minimum average glacier area. A comparison of glaciers from the SCGI and revised glacier inventory based on topographic maps and aerial photos taken from 1956 to 1983 indicate that all glaciers have receded, which is consistent with other mountain and plateau areas in western China. In the past half-century, the area and volume of glaciers decreased by 420.81 km~2(–20.88%) and 21.63 km~3(–20.26%), respectively. Glaciers with areas 1.0 km~2 decreased the most in number and area recession. Due to glacier shrinkage, glaciers below 4000 m completely disappeared. Glacier changes in the Qilian Mountains presented a clear longitudinal zonality, i.e., the glaciers rapidly shrank in the east but slowly in the central-west. The primary cause of glacier recession was warming temperatures, which was slightly mitigated with increased precipitation.  相似文献   

4.
Studying the response to warming of hydrological systems in China’s temperate glacier region is essential in order to provide information required for sustainable development.The results indicated the warming climate has had an impact on the hydrological cycle.As the glacier area subject to melting has increased and the ablation season has become longer,the contribution of meltwater to annual river discharge has increased.The earlier onset of ablation at higher elevation glaciers has resulted in the period of minimum discharge occurring earlier in the year.Seasonal runoff variations are dominated by snow and glacier melt,and an increase of meltwater has resulted in changes of the annual water cycle in the Lijiang Basin and Hailuogou Basin.The increase amplitude of runoff in the downstream region of the glacial area is much stronger than that of precipitation,resulting from the prominent increase of meltwater from glacier region in two basins.Continued observations in the glacierized basins should be undertaken in order to monitor changes,to reveal the relationships between climate,glaciers,hydrology and water supplies,and to assist in maintaining sustainable regional development.  相似文献   

5.
近40年天山冰川变化的遥感监测   总被引:3,自引:0,他引:3  
Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.  相似文献   

6.
1960年以来中国天山冰川面积及气候变化   总被引:11,自引:3,他引:8  
Based on the statistics of glacier area variation measured in the Chinese Tianshan Mountains since 1960,the response of glacier area variation to climate change is discussed systematically.As a result,the total area of the glaciers has been reduced by 11.5% in the past 50 years,which is a weighted percentage according to the glacier area variations of 10 drainage basins separated by the Glacier Inventory of China (GIC).The annual percentage of area changes (APAC) of glaciers in the Chinese Tianshan Mountains is 0.31% after the standardization of the study period.The APAC varies widely for different drainage basins,but the glaciers are in a state of rapid retreat,generally.According to the 14 meteorological sta-tions in the Chinese Tianshan Mountains,both the temperature and precipitation display a marked increasing tendency from 1960 to 2009 at a rate of 0.34℃·(10a)-1 and 11 mm·(10a) -1,respectively.The temperature in the dry seasons (from November to March) increases rapidly at a rate of 0.46℃·(10a)-1,but the precipitation grows slowly at 2.3 mm·(10a)-1.While the temperature in the wet seasons (from April to October) grows at a rate of 0.25℃·(10a)-1,but the precipitation increases at 8.7 mm·(10a)-1.The annual and seasonal climatic trends ac-celerate the retreat of glaciers.  相似文献   

7.
An overall greening over the Tibetan Plateau(TP) in recent decades has been established through analyses of remotely sensed Normalized Difference Vegetation Index(NDVI), though the regional pattern of the changes and associated drivers remain to be explored. This study used a satellite Leaf Area Index(LAI) dataset(the GLASS LAI dataset) and examined vegetation changes in humid and arid regions of the TP during 1982–2012. Based on distributions of the major vegetation types, the TP was divided roughly into a humid southeastern region dominated by meadow and a dry northwestern region covered mainly by steppe. It was found that the dividing line between the two regions corresponded well with the lines of mean annual precipitation of 400 mm and the mean LAI of 0.3. LAI=0.3 was subsequently used as a threshold for investigating vegetation type changes at the interanual and decadal time scales: if LAI increased from less than 0.3 to greater than0.3 from one time period to the next, it was regarded as a change from steppe to meadow, and vice versa. The analysis shows that changes in vegetation types occurred primarily around the dividing line of the two regions, with clear growth(reduction) of the area covered by meadow(steppe), in consistency with the findings from using another independent satellite product. Surface air temperature and precipitation(diurnal temperature range) appeared to contribute positively(negatively) to this change though climate variables displayed varying correlation with LAI for different time periods and different regions.  相似文献   

8.
Climate change is an important factor affecting the sustainable development of tourist destinations. Based on the monthly observation data of the main meteorological stations on the ground in Tibet from 1960 to 2015, this paper constructs a tourism climate index model. This index is used to quantitatively evaluate the tourism climate changes in Tibet, and investigate the impact of climate change on tourism. The results show that from 1960 to 2015, the temperature in Tibet increased by 1.35°C, and the tourism climate index changed significantly, especially in the regions of Changtang, Ngari and Kunlun Mountain. The fluctuation of temperature-humidity index, wind-chill index and index of clothing of these areas was larger than that of other regions. The changes of each index in different months are different, where spring observes larger changes while summer observes smaller changes. The tourism climate index in northwestern Tibet has increased, and the climate comfort period is expanding. In southeastern Tibet, the comfort level has declined and the comfort level in the central part has been slowly increasing. The comfort index in the southeastern part of Tibet has gradually declined, and the comfort index in central Tibet has slowly increased. According to the comprehensive assessment method including temperature and humidity index, wind-chill index, index of clothing and altitude adaptability index, the types of tourism climate index in Tibet can be divided into reduced, low-speed growth, medium-speed growth and rapid growth. Different regions should adopt alternative tourism products, strengthen energy conservation and emission reduction technology applications and green infrastructure construction, and appropriately control the scale of tourism activities so as to adapt to and mitigate the impact of climate change on tourist destinations.  相似文献   

9.
近50年气候变化背景下中国西部冰川面积状况分析(英文)   总被引:3,自引:1,他引:2  
Based on the glacier area variation records in the typical regions of China moni-tored by remote sensing, as well as the meteorological data of air temperature and precipitation from 139 stations and the 0℃ isotherm height from 28 stations, the glacier area shrinkage in China and its climatic background in the past half century was discussed. The initial glacier area calculated in this study was 23,982 km2 in the 1960s/1970s, but the present area was only 21,893 km2 in the 2000s. The area-weighted shrinking rate of glacier was 10.1%, and the interpolated annual percentage of area changes (APAC) of glacier was 0.3% a-1 since 1960. The high APAC was found at the Ili River Basin and the Junggar Interior Basin around the Tianshan Mountains, the Ob River Basin around the Altay Mountains, the Hexi Interior Basin around the Qilian Mountains, etc. The retreat of glacier was affected by the climatic background, and the influence on glacier of the slight-increased precipitation was counteracted by the significant warming in summer.  相似文献   

10.
Based on the glacier area variation records in the typical regions of China monitored by remote sensing, as well as the meteorological data of air temperature and precipitation from 139 stations and the 0℃ isotherm height from 28 stations, the glacier area shrinkage in China and its climatic background in the past half century was discussed. The initial glacier area calculated in this study was 23,982 km2 in the 1960s/1970s, but the present area was only 21,893 km2 in the 2000s. The area-weighted shrinking rate of glacier was 10.1%, and the interpolated annual percentage of area changes (APAC) of glacier was 0.3% a-1 since 1960. The high APAC was found at the Ili River Basin and the Junggar Interior Basin around the Tianshan Mountains, the Ob River Basin around the Altay Mountains, the Hexi Interior Basin around the Qilian Mountains, etc. The retreat of glacier was affected by the climatic background, and the influence on glacier of the slight-increased precipitation was counteracted by the significant warming in summer.  相似文献   

11.
中国天山冰川变化脆弱性研究   总被引:1,自引:0,他引:1  
蔡兴冉  李忠勤  张慧  徐春海 《地理学报》2021,76(9):2253-2268
冰川是重要的淡水资源,对社会经济发展和生态环境影响显著,而其变化的脆弱性也关乎区域生态服务和经济可持续发展。本文以中国天山为例,基于脆弱性的暴露度、敏感性、适应能力构建涵盖自然地理特征、人口状况、社会经济水平、农业发展和社会服务等因素的冰川变化脆弱性框架,并以此针对性构建评价指标体系,探析天山冰川变化脆弱性的空间特征,采用地理探测器模型探讨自然、社会、经济和人口等因素对冰川变化适应能力的影响及交互作用。结果表明:① 脆弱性等级由西部地区向东部地区呈降低趋势,且水平差异显著。天山东部地区脆弱性最低、中部地区次之、西部地区较高。② 暴露度、敏感性和适应能力在空间上分别存在明显正相关与负相关,表明区域范围内冰川变化具有高暴露、高敏感地区往往适应能力较低,进而导致脆弱性较高;反之,脆弱性较低。③ 天山应对冰川变化能力的空间异质性是自然、社会、经济和人口因素共同作用的结果。其中,第二、三产业产值、城镇人口数、城镇固定资产投资与年末单位从业人员等因素具有主导作用。  相似文献   

12.
The glacier is a crucial freshwater resource in arid and semiarid regions,and the vulnerability of the glacier change is intimately linked to regional ecological services and so-cio-economic sustainability.Taking the Tianshan Mountains region in China as an example,a basic framework for studying the vulnerability of glacier change was constructed so as to address factors such as physical geography,population status,socio-economic level,agri-cultural development,and social services.The framework was based on key dimensions,that is,exposure,sensitivity,and adaptability,and this constituted a targeted evaluation index system.We examined the spatial structure and spatial autocorrelation of the glacier change vulnerability using ArcGIS and GeoDa software.The influence and interaction of natural,so-cial,economic,population and other factors on glacier change adaptability was examined using the GeoDetector model.The results suggested the following:(1) The vulnerability level decreased from the western region to the eastern region with significant differences between the two regions.The eastern region had the lowest vulnerability,followed by the central re-gion,and then western region which had the highest vulnerability.(2) Significant positive and negative correlations were found between exposure,sensitivity,and adaptability,indicating that the areas with high exposure and high sensitivity to glacier change tended to have a low adaptive capacity,which led to high vulnerability,and vice versa.(3) The spatial heterogeneity regarding the ability to cope with glacier change reflected the combined effects of the natural,social,economic,and demographic factors.Among them,factors such as the production value of secondary and tertiary industries,the urban population,urban fixed-asset investment,and the number of employees played major roles regarding the spatial heterogeneity of glacier change.  相似文献   

13.
区域气候变化脆弱性综合评估研究进展   总被引:6,自引:1,他引:5  
区域脆弱性评估为脆弱性地区农户摆脱贫困、区域持续发展和政府制定适应策略提供科学依据.由于区域内部人地系统的复杂性,区域的脆弱性定量评估较为困难.中国脆弱性研究起步较晚,关注较早的是脆弱性区域的分布,但对区域内脆弱人群的脆弱性研究较少,认识上的不足影响了国家和地方政府制定科学的适应政策和措施.本文介绍了对脆弱性的认识,梳...  相似文献   

14.
喀喇昆仑山区冰川由于存在正物质平衡或跃动、前进现象,被称之为“喀喇昆仑异常”,不过该地区冰川变化差异显著,尤其是大型表碛覆盖冰川,呈现与其他类型冰川明显的差异性响应,为理解喀喇昆仑冰川异常的机理,冰川尺度的详细变化研究十分必要。音苏盖提冰川位于喀喇昆仑山乔戈里峰北坡,是中国面积最大的冰川,是典型的大型表碛覆盖冰川。通过应用TanDEM-X/TerraSAR-X(2014年2月)与SRTM-X DEM(2000年2月)的差分干涉测量方法计算音苏盖提冰川表面高程变化,并结合冰川表面流速对冰川表面高程变化和跃动进行分析和讨论。结果表明:2000—2014年音苏盖提冰川表面高程平均下降了1.68±0.94 m,即冰川整体厚度在减薄,年变化率为-0.12±0.07 m·a-1。冰川表面高程变化分布不均,其中南分支(S)冰流冰川整体减薄较为显著,冰川南分支冰流运动速度较快,前进/跃动的末端占据了冰川的主干,阻滞原主干冰川物质的向下运移(跃动),导致原主干冰舌表面高程上升;冰川厚度减薄随着海拔升高先下降后保持稳定,同时呈现一定的波动性;低海拔表碛区域消融大于裸冰区,可能存在较薄表碛,因热传导高、覆盖大量冰面湖塘和冰崖存在,加速了冰川消融;在坡度小于30 °的区域,冰川厚度减薄随着坡度的减小而加剧;坡向朝南冰川厚度略微增加(0.01 m),西南坡向冰川厚度略微减薄(-0.03 m),其他坡向冰川厚度减薄明显。近14 a来,表碛覆盖的音苏盖提冰川表面高程整体下降表明物质处于亏损状态,冰川跃动导致局部冰川表面高程的增加。  相似文献   

15.
1970-2016年冈底斯山冰川变化   总被引:2,自引:0,他引:2  
基于修订后的中国两次冰川编目数据及2015-2016年Landsat OLI遥感影像,对冈底斯山1970-2016年的冰川时空变化特征进行分析,并利用相应时段的气温和降水数据,对冰川变化原因进行探讨,为全面认识冈底斯山在气候变暖背景下冰川的响应规律及区域水资源合理利用提供科学依据。结果表明:① 2015-2016年冈底斯山共有冰川3953条,面积1306.45 km 2,冰储量约58.16 km 3;冰川数量以面积< 0.5 km 2的冰川为主,面积则以介于0.1~5 km 2的冰川为主。② 1970-2016年冈底斯山冰川面积共减少854.05 km 2(-39.53%),冰川面积变化相对速率高达-1.09%/a,消融期气温升高是导致该山区冰川退缩的最主要原因。与中国西部其他山系冰川变化相比,冈底斯山是冰川退缩最为强烈的地区,且近年来冰川退缩呈加快趋势。③ 冈底斯山冰川面积减少主要集中在海拔5600~6100 m之间,海拔6500 m以上区域基本没有变化。除南朝向和东南朝向外,冈底斯山其他朝向冰川数量和面积均呈减少趋势,其中北朝向冰川面积减少最多,西北朝向冰川面积变化最快。④ 冈底斯山冰川面积变化自西向东呈加快趋势,其中东段冰川面积变化相对速率高达-1.72%/a,中段次之(-1.67%/a),西段仅为-0.83%/a。  相似文献   

16.
过去44年乌鲁木齐河源一号冰川物质平衡结果及其过程研究   总被引:12,自引:2,他引:10  
通过1997—2003年度天山乌鲁木齐河源一号冰川物质平衡的观测结果,分析比较了过去44年间一号冰川物质平衡、累积物质平衡的变化过程,以及反映气候一地形要素和冰川发育条件要素的平衡线高度和冰川积累区比率,认为一号冰川负平衡波动期随时间推移而递增,目前处于其观测历史上物质平衡亏损最为强烈的时期。  相似文献   

17.
Worldwide examination of glacier change is based on detailed observations from only a small number of glaciers. The ground-based detailed individual glacier monitoring is of strong need and extremely important in both regional and global scales. A long-term integrated multi-level monitoring has been carried out on Urumqi Glacier No. 1 (UG1) at the headwaters of the Urumqi River in the eastern Tianshan Mountains of Central Asia since 1959 by the Tianshan Glaciological Station, Chinese Acamedey of Sciences (CAS), and the glaciological datasets promise to be the best in China. The boundaries of all glacier zones moved up, resulting in a shrunk accumulation area. The stratigraphy features of the snowpack on the glacier were found to be significantly altered by climate warming. Mass balances of UG1 show accelerated mass loss since 1960, which were attributed to three mechanisms. The glacier has been contracting at an accelerated rate since 1962, resulting in a total reduction of 0.37 km2 or 19.3% from 1962 to 2018. Glacier runoff measured at the UG1 hydrometeorological station demonstrates a significant increase from 1959 to 2018 with a large interannual fluctuation, which is inversely correlated with the glacier's mass balance. This study analyzes on the changes in glacier zones, mass balance, area and length, and streamflow in the nival glacial catchment over the past 60 years. It provides critical insight into the processes and mechanisms of glacier recession in response to climate change. The results are not only representative of those glaciers in the Tianshan mountains, but also for the continental-type throughout the world. The direct observation data form an essential basis for evaluating mountain glacier changes and the impact of glacier shrinkage on water resources in the interior drainage rivers within the vast arid and semi-arid land in northwestern China as well as Central Asia.  相似文献   

18.
1978-2015年喀喇昆仑山克勒青河流域冰川变化的遥感监测   总被引:1,自引:1,他引:0  
本文采用1978、1991、2001和2015年的Landsat MSS、TM、ETM+和OLI遥感影像,通过遥感图像计算机辅助分类和目视解译等方法提取冰川边界,分析喀喇昆仑山克勒青河流域冰川在1978-2015年间的进退变化。结果表明:1978-2015年间研究区冰川面积由1821.70 km2减少至1675.92 km2,减少145.78 km2,占1978年冰川总面积的8.00%;冰川消融率较低,在气候变暖的背景下反而呈现出退缩速率由快变慢的趋势。研究区东南向冰川退缩率明显高于西北向,冰川退缩率随冰川规模的增大而减小。研究区内有27处冰川在1978-2015年间发生过特殊的前进现象,面积与长度显著增加。其中,木斯塔冰川西侧冰川末端在1996-1998年间前进速度为904 m/a,乔戈里冰川东侧冰川末端在2007-2009年间前进速度为446 m/a,5Y654D0097冰川末端在1978-1990年间前进速度为238 m/a,初步判定这三条冰川为跃动冰川。以10 a为滞后期分析研究区周边气象站点资料发现:研究区气温持续升高,降水量以1981年为分界点呈现“先减后增”趋势是冰川退缩速率减慢的原因之一;此外,亚大陆型冰川性质、巨大山势条件和高山冷储作用,也可能是冰川退缩幅度较小的原因。  相似文献   

19.
The glaciers in the Sanjiangyuan Nature Reserve of China (SNRC) are a significant water resource for the Yangtze,Yellow,and Mekong rivers.Based on Landsat Thematic Mapper(TM)/Operational Land Imager (OLI) images acquired in 2000,2010,and 2018,the outlines of glaciers in the SNRC were obtained by combining band ratio method with manual interpretation.There were 1714 glaciers in the SNRC in 2018,with an area of 2331.15±54.84 km2,an ice volume of 188.90±6.41 km3,and an average length of 1475.4±15 m.During 2000-2018,the corresponding values of glaciers decreased by 69,271.95±132.06 km2,18.59±8.83 km3,and 84.75±34 m,respectively.Glaciers in the Yangtze River source area witnessed the largest area loss (-154.45 km2),whereas glaciers in the Mekong River source area experienced the fastest area loss (-2.02%·a-1) and the maximum reduction of the average length (-125.82 m).Overall,the retreat of glaciers in the SNRC exhibited an accelerating trend.Especially,the loss rate of glacier area in the Yellow River source area in 2010-2018 was more than twice that in 2000-2010.The glacier change is primarily attributed to the significant rise in temperature during the ablation period.Some other factors including the size,orientation and terminus elevation of glaciers also contributed to the heterogeneity of glacier change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号