首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nick Eyles   《Sedimentary Geology》2006,190(1-4):257-268
Water plays a dominant role in many glacial processes and the erosional, depositional and climatic significance of meltwaters and associated fluvioglacial processes cannot be overemphasized. At its maximum extent c. 20,000 years ago, the volume of the Laurentide ice sheet was 33 × 106 km3 (about the same as the volume of all ice present today on planet Earth). The bulk of this was released as water in little more than 10,000 years. Pulses of meltwater flowing to the Atlantic Ocean from large ice dammed lakes altered thermohaline circulation of the world's oceans and global climate. One such discharge event via Hudson Bay at 8200 years BP released 160,000 km3 of water in 12 months. Global sea levels recovered from glacial maximum low stands reached at about 20,000 years ago at an average rate of 15 m per thousand years but estimates of shorter term rates suggest as much as 20 m sea level rise in 1000 years and for short periods, rates as high as 4 m per hundred years. Meltwaters played a key role in lubricating ice sheet motion (and thus areal abrasion) across the inner portions of the ice sheet where it slid over rigid crystalline bedrock of the Canadian Shield. The recharge of meltwater into the ice sheets bed was instrumental in generating poorly sorted diamict sediments (till) by sliding-induced shearing and deformation of overpressured sediment and soft rock. The transformation of overpressured till into hyperconcentrated slurries in subglacial channels may have generated a highly effective erosional tool for selective overdeepening and sculpting of bedrock substrates. Some workers credit catastrophic subglacial ‘megafloods’ with the formation of drumlins and flutes on till surfaces. Subglacial melt river systems were instrumental in reworking large volumes of glaciclastic sediment to marine basins; it has been estimated that less than 6% of the total volume of glaciclastic sediment produced during the Pleistocene remains on land. Fluvioglacial and glaciolacustrine sediments and landforms dominate large tracts of the ‘glacial’ landscape in North America. The recharge of subglacial meltwater into underlying bedrock and sediment aquifers created transient reversals in the long-term equilibrium flow directions of basinal fluids. With regard to pre-Pleistocene glacial record, meltwaters moved enormous volumes of terrestrial ‘glaciclastic’ sediment to marine basins and thus played a key role in preserving a record of glaciation, a record otherwise almost entirely lost on land.  相似文献   

2.
The Blackspring Ridge (BSR), located in south-central Alberta, Canada, is dominated by a prominent flute field. Flutes (elongated streamlined depressions) and ridges (elongate streamlined hills) are up to 15 km long and are composed of two material types: in situ bedrock, and in situ pre-Laurentide glaciation fluvial sand and gravel beds. The preglacial beds are Tertiary or early Quaternary in age. The beds are undisturbed, maintain primary bedding structures, and even maintain clast imbrication. No till overlies the gravel beds, although in places large granite boulder erratics lie on the surface, indicating that ice was present in the region in the past. Because the ridges are composed of preglacial materials, they are remnant erosional landforms rather than constructional landforms. Geomorphic and sedimentary evidence favor subglacial meltwater as the erosional agent, rather than ice. We suggest that the elevation of the BSR relative to basal ice would have resulted in confined subglacial meltwater flow, with associated flow acceleration and increased scouring resulting in flute formation. This meltwater stripped away any till cover, leaving behind only a few boulders. Observations at the BSR flute field preclude the possibility that flutes and remnant ridges are the result of deformation of soft clayey beds.  相似文献   

3.
Characteristics of large‐scale fluting and hummocky terrain on the Canadian Prairies test glacial and meltwater hypotheses for landform genesis. These tests defend the meltwater model. Neither sedimentary nor glaciotectonic processes can fully explain such erosional landforms. Province‐scale flow paths, which mark palaeo‐ice streams and subglacial flood routes, contain large‐scale fluting with flanking hummock terrain. Antecedent relief causes these paths to differ from other flood landscapes such as the Scablands. Proponents of the glacial hypothesis use an invalid analogy between Icelandic and Prairie landsystems. They suggest that groove‐ploughing formed large‐scale fluting, and that ice pushing created hummocky terrain. However, landform location, form, and extent, surface lags, truncated architecture, and landform associations favour the meltwater hypothesis. A simple thought experiment and clear understanding of the principle of least number of assumptions answer the criticisms that meltwater forms cannot cross‐cut and that the meltwater hypothesis disregards proper hypothesis testing. An example of cross‐cutting erosional marks supports this theory. No narrow tract of smoothed terrain with fluting terminates at the glacially thrust Neutral Hills, negating an important point in the glacial hypothesis. While neither the glacial hypothesis nor postglacial winnowing explain boulder and cobble lags with percussion marks, meltwater processes explain them well. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The glacial geomorphology of Teesdale and the North Pennines uplands is analysed in order to decipher: a) the operation of easterly flowing palaeo-ice streams in the British-Irish Ice Sheet; and b) the style of regional deglaciation. Six landform categories are: i) bedrock controlled features, including glacitectonic bedrock megablocks or ‘rubble moraine’; ii) discrete mounds and hills, often of unknown composition, interpreted as weakly streamlined moraines and potential ‘rubble moraine’; iii) non-streamlined drift mounds and ridges, representing lateral, frontal and inter-ice stream/interlobate moraines; iv) streamlined landforms, including drumlins of various elongation ratios and bedrock controlled lineations; v) glacifluvial outwash and depositional ridges; and vi) relict channels and valleys, related to glacial meltwater incision or meltwater re-occupation of preglacial fluvial features. Multiple tills in valley-floor drumlin exposures indicate that the subglacial bedform record is a blend of flow directions typical of areas of discontinuous till cover and extensive bedrock erosional landforms. Arcuate assemblages of partially streamlined drift mounds are likely to be glacially overridden latero-frontal moraines related to phases of “average glacial conditions” (palimpsests). Deglacial oscillations of a glacier lobe in mid-Teesdale are marked by five inset assemblages of moraines and associated drift and meltwater channels, named the Glacial Lake Eggleshope, Mill Hill, Gueswick, Hayberries and Lonton stages. The Lonton stage moraines are thought to be coeval with bedrock-cored moraines in the central Stainmore Gap and likely record the temporary development of cold-based or polythermal ice conditions around the margins of a plateau-based icefield during the Scottish Readvance.  相似文献   

5.
《Geodinamica Acta》2013,26(3):177-195
Pluridisciplinary fieldwork highlights features generated by an extended ice-sheet in the Djado Basin during the Hirnantian. Two glacial palaeovalley systems associated with glacial pavements and separated by thin glaciomarine interstadial series are revealed. Rigid glacial pavements characterised by abrasion erosion are differentiated from soft glacial pavements characterised by soft-bed deformation. Glacial pavements are associated with subglacial bedforms such as megaflutes, flutes and meltwater channels. They are also associated with clastic dykes and glaciotectonic structures such as deformed flutes, subglacial folds and duplex structures. This record demonstrates that ice was warm-based and flowed rapidly on the highfluid- pressure soft substrate, as for ice streams. The erosional glacial landscape is typical of areal scouring, and the depositional sediment-landform assemblage corresponds to subglacial processes. These data afford a reconstruction of glacial events which is consistent with the two polyphased low-frequency glacial cycles inferred in previous studies. During interstadial and postglacial stages, grabens, normal faults, radial extensional microfaults and extensional dihedrons were generated by extensional tectonics during glacio-isostatic rebound. In sectors highly affected by this tectonics, doleritic dykes reflect a basal crust fusion increase induced by adiabatic decompression.  相似文献   

6.
Evidence is presented for cold-based glacial erosion, deposition and deformation from the Allan Hills, South Victoria Land, Antarctica. Different erosional features such as scrapes, striae and grooves, depositional features including till, isolated boulders and ice-cored debris cones and three scales of glaciotectonism resulting from cold-based glacial advance are described, and conceptual models are presented based on these observations and those of advancing cold-based glaciers elsewhere. The models entail: (i) ice block apron overriding and entrainment, and (ii) ice-bed separation leading to the formation of a cavity on the down-glacier side of escarpments. The models are most applicable to a horizontally stratified, lithified sedimentary bedrock substrate, but our criteria may assist in correctly interpreting features such as boulder trains, modified bedrock tors and complex cosmogenic exposure histories which have been noted in several regions that may have experienced cold-based glaciation during Pleistocene glacial maxima.  相似文献   

7.
电子自旋共振(ESR)技术是一种确定物质成分和结构的顺磁性质的分析方法,也能够用于沉积物定年。该方法的测量技术和测年的物理机制等还处于发展阶段。冰川作用过程十分复杂,形成各种类型的冰川沉积物,其顺磁信号的归零机制有显著差异,ESR测年的实验方案也有所差异。因此,识别冰碛物类型,采集合适的样品对于ESR测年的准确性十分重要。冰下融出碛和滞碛经过了冰下磨蚀过程,结构致密,细颗粒基质含量高,石英砂中的一些杂质芯的ESR信号能够衰退。许多冰上融出碛,结构疏松,但细颗粒基质含量高,不但经过了搬运过程中的冰下磨蚀过程使ESR信号衰退,又经历了沉积时的冰上阳光直射过程使信号衰退,一些样品的ESR信号能够完全晒退。冰水湖泊和冰水河流沉积的细砂和粉砂来源于冰下研磨的产物,信号会衰退;在搬运沉积过程中又可能被阳光直射,信号进一步衰退。其它类型的冰碛物的ESR信号衰退机制不明,或粒径不适合用ESR方法测年。采集冰碛物ESR年代样品时,最好同时采集信号衰退机制相同的现代冰碛物样品,以便对照,并用于扣除可能的残留信号。  相似文献   

8.
9.
This paper presents an historical and in places informal account of the meltwater hypothesis, which invokes enormous outburst floods for the formation of subglacial bedforms. It begins with a brief discussion of the difficulties of determining processes of formation for landforms, which are not seen in formation. Analogy provides a solution to these difficulties. Analogy between erosional marks at the bases of turbidites and drumlins, which were the starting point for this hypothesis, rests on the idea that inverted erosional marks at the ice bed are subsequently infilled to form drumlins. Field tests on the sedimentology, architecture, and landform associations of drumlins in the Livingstone Lake drumlin field are outlined before more extensive work on bedrock erosional forms and flood routes is introduced. Bedrock erosional forms played a central part in establishing the hypothesis since their form and ornamentation are confidently interpreted as fluvial. Their form and genesis are discussed mainly with reference to sites at French River and Wilton Creek, Ontario, though some remarkable bedrock erosional forms in Antarctica support their regional extent. Initially in the meltwater hypothesis, drumlins were thought to be cavity fills and erosional drumlins were recognized later. This development is shown to be central to the realization that drumlin composition may be inferred from drumlin form. The scale of drumlin fields, measured at about 103 km2, and the magnitude of the inferred floods require that the flood events were regional. Regional-scale flood tracts in Ontario, Quebec, Alberta and the Northwest Territories extending over 1000 km in length and several hundred kilometers in width, support this suggestion. Floods, had they occurred, would have caused rapid rates of sea level rise and may have changed climate through their effects on ocean stratification and sea surface temperatures. The meltwater hypothesis covers a range of bedforms besides drumlins and bedrock erosional marks—fluting, Rogen moraine, hummocky terrain, and transverse ridges. Recent work shows how these forms are best explained by the meltwater hypothesis. The roles of water storage and release, which underpin the theory of the meltwater hypothesis, remain poorly understood.  相似文献   

10.
Subglacial meltwater plays a significant yet poorly understood role in the dynamics of the Antarctic ice sheets. Here we present new swath bathymetry from the western Amundsen Sea Embayment, West Antarctica, showing meltwater channels eroded into acoustic basement. Their morphological characteristics and size are consistent with incision by subglacial meltwater. To understand how and when these channels formed we have investigated the infill of three channels. Diamictons deposited beneath or proximal to an expanded grounded West Antarctic Ice Sheet are present in two of the channels and these are overlain by glaciomarine sediments deposited after deglaciation. The sediment core from the third channel recovered a turbidite sequence also deposited after the last deglaciation. The presence of deformation till at one core site and the absence of typical meltwater deposits (e.g., sorted sands and gravels) in all three cores suggest that channel incision pre-dates overriding by fast flowing grounded ice during the last glacial period. Given the overall scale of the channels and their incision into bedrock, it is likely that the channels formed over multiple glaciations, possibly since the Miocene, and have been reoccupied on several occasions. This also implies that the channels have survived numerous advances and retreats of grounded ice.  相似文献   

11.
A typical stratigraphy below a streamlined till plain in Northumberland, England, consists of cross-cutting lodgement till units, within and between which occur repeated shoestring interbeds of ‘cut and fill’ channels. Till units have erosional lower contacts; in certain cases marked changes in erratic content and local ice flow direction are evident from one till unit to another. These lodgement till complexes have hitherto been described by ‘tripartite’ schemes of lower grey till (s) and upper reddened till (s) identified with respect to ‘middle’ fluvial horizons; regional correlation proceeding on the basis of matching ‘middle’ horizons, with the whole sequence commonly interpreted as evidence for multiple glaciation. Data indicates, by way of contrast, that these lodgement till complexes were deposited during a single phase of subglacial deposition. Till deposition was not continuous but was interrupted by erosional episodes. Changes in the mix of bedrock lithologies transported by the glacier down a single flow line or by lateral displacement of basal ice flow units within the glacier result in till units of different facies to be emplaced when deposition recommences, a process referred to as ‘unconformable facies superimposition’. Subglacial meltwater flow was also a characteristic of the glacier bed; channeled glaciofluvial sediment bodies are found as ribbon-like inclusions in the till and appear to have been deposited rapidly. These so-called ‘middle’ fluvial horizons occur repeatedly in section, their lateral extent at any given exposure being dependent upon the orientation of the exposure with respect to former ice flow direction. These lenses act as internal drainage blankets and have accelerated postglacial soil formation in the drier climate of eastern Britain accounting for the reddened colour of upper till(s). It is suggested that this model of subglacial deposition can be employed in other areas of northern England characterized by subglacial (lodgement till plain) terrains.  相似文献   

12.
Glacial deposits and landforms, interpreted from the continuous seismic reflection data, have been used to reconstruct the Late Weichselian ice-sheet dynamics and the sedimentary environments in the northeastern Baltic Sea. The bedrock geology and topography played an important role in the glacial dynamics and subglacial meltwater drainage in the area. Drumlins suggest a south-southeasterly flow direction of the last ice sheet on the Ordovician Plateau. Eskers demonstrate that subglacial meltwater flow was focused mostly within bedrock valleys. The eskers have locally been overlain by a thin layer of till. Thick proximal outwash deposits occupy elongated depressions in the substratum, which often occur along the sides of esker ridges. Ice-marginal grounding-line deposit in the southern part of the area has a continuation on the adjacent Island of Saaremaa. Therefore, we assume that its formation took place during Palivere Stadial of the last deglaciation, whereas the moraine bank extending southwestward from the Serve Peninsula is tentatively correlated with the Pandivere Stadial. The wedge-shaped ice-marginal grounding-line deposit was locally fed by subglacial meltwater streams during a standstill or slight readvance of the ice margin. The thickness of the glacier at the grounding-line was estimated to reach approximately 180 m. In the western part of the area, terrace-like morphology of the ice-marginal deposit and series of small retreat moraines 10–20 km north of it suggest stepwise retreat of the ice margin. Therefore, a rather thin and mobile ice stream was probably covering the northeastern Baltic Sea during the last deglaciation.  相似文献   

13.
天山第四纪冰川擦痕特征及分布规律   总被引:1,自引:0,他引:1  
根据冰蚀痕迹的统计数据 ,着重讨论了天山高山地区冰岩界面形成过程和冰川擦痕分布规律。典型的冰碛岩一般有擦面和擦痕。冰川槽谷的横剖面上 ,从侧部向中部 ,擦痕密度逐渐增大 ,槽谷的谷壁向谷底的转折处是擦痕密度由小转大的突变点 (拐点 ) ,反映了磨蚀作用不断增强。而冰坎的擦痕密度则呈现较大的波动。冰坎迎冰面的粗大擦痕密度远比槽谷中的擦痕密度大。羊背石从顶部到侧部 ,擦痕密度由大变小  相似文献   

14.
A subglacial till formed from a sandstone bedrock has a variable grain-size distribution which reflects its variable genesis. Glacial comminution processes were simulated by artificial mill experiments with fragments of the sandstone bedrock. Pure crushing caused disintegration along mineral boundaries into separate minerals, most mineral grains retaining their primary size during the crushing process. Abrasion produced cracks across the minerals and resulted in silt-sized rock flour. The experiments indicate that most of the sand-sized till material formed as a result of crushing, while the silt is mainly the result of abrasion. The sand and silt are both regarded as components resistant to further glacial comminution, but are formed by different comminution processes. By considering also the coarser till material, the general principles of glacial breakdown of resistant rocks from boulders to sand or silt can be illustrated. A matrix index and an abrasion index based on the mill experiments distinguish well between genetically different subglacial till types  相似文献   

15.
High-resolution seismic and bathymetric data offshore southeast Ireland and LIDaR data in County Waterford are presented that partially overlap previous studies. The observed Quaternary stratigraphic succession offshore southeast Ireland (between Dungarvan and Kilmore Quay) records a sequence of depositional and erosional events that supports regional glacial models derived from nearby coastal sediment stratigraphies and landforms. A regionally widespread, acoustically massive facies interpreted as the ‘Irish Sea Till’ infills an uneven, channelized bedrock surface overlying irregular mounds and deposits in bedrock lows that are probably earlier Pleistocene diamicts. The till is truncated and overlain by a thin, stratified facies, suggesting the development of a regional palaeolake following ice recession of the Irish Sea Ice Stream. A north–south oriented seabed ridge to the north is interpreted as an esker, representing southward flowing subglacial drainage associated with a restricted ice sheet advance of the Irish Ice Sheet onto the Celtic Sea shelf. Onshore topographic data reveal streamlined bedforms that corroborate a southerly advance of ice onto the shelf across County Waterford. The combined evidence supports previous palaeoglaciological models. Significantly, for the first time, this study defines a southern limit for a Late Midlandian Irish Ice Sheet advance onto the Celtic Sea shelf. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
Filtered subglacial meltwater samples were collected daily during the onset of melt (May) and peak melt (July) over the 2011 melt season at the Athabasca Glacier (Alberta, Canada) and analyzed for strontium-87/strontium-86 (87Sr/86Sr) isotopic composition to infer the evolution of subglacial weathering processes. Both the underlying bedrock composition and subglacial water–rock interaction time are the primary influences on meltwater 87Sr/86Sr. The Athabasca Glacier is situated atop Middle Cambrian carbonate bedrock that also contains silicate minerals. The length of time that subglacial meltwater interacts with the underlying bedrock and substrate is a predominant determining factor in solute concentration. Over the course of the melt season, increasing trends in Ca/K and Ca/Mg correspond to overall decreasing trends in 87Sr/86Sr, which indicate a shift in weathering processes from the presence of silicate weathering to primarily carbonate weathering.Early in the melt season, rates of carbonate dissolution slow as meltwater approaches saturation with respect to calcite and dolomite, corresponding to an increase in silicate weathering that includes Sr-rich silicate minerals, and an increase in meltwater 87Sr/86Sr. However, carbonate minerals are preferentially weathered in unsaturated waters. During the warmest part of a melt season the discharged meltwater is under saturated, causing an increase in carbonate weathering and a decrease in the radiogenic Sr signal. Likewise, larger fraction contributions of meltwater from glacial ice corresponds to lower 87Sr/86Sr values, as the meltwater has lower water–rock interaction times in the subglacial system. These results indicate that although weathering of Sr-containing silicate minerals occurs in carbonate dominated glaciated terrains, the continual contribution of new meltwater permits the carbonate weathering signal to dominate.  相似文献   

17.
《Quaternary Science Reviews》2007,26(19-21):2375-2405
Late Devensian glacigenic sediments and landforms along the north-west coast of Wales document the advance and subsequent retreat of the eastern margin of an Irish Sea Ice Stream that met, coalesced and ultimately uncoupled from ice radiating outwards from the adjacent Welsh Ice Cap centred over Snowdonia. Across the boundary between the two former ice masses is a set of sediment–landform assemblages that reflect rapidly changing erosional and depositional conditions during ice interaction. From the inner part of the ice-stream the assemblages range outwards, from a subglacial depositional assemblage, characterised by drumlin swarms; through a subglacial erosional assemblage, marked by prominent bedrock scours and large subglacial rock channels; through an ice-marginal assemblage, identified by closely spaced, glaciotectonised push moraines and intervening marginal sandur troughs; into a freely expanding proglacial sandur and lacustrine delta assemblage. The ice-marginal assemblage provides evidence for numerous oscillatory episodes during retreat and at least 20 ice-marginal limits can be identified. At least 11 of these display multiple criteria for identifying readvance and, in the ideal case, is characterised by a moraine form built by localised tectonic stacking of diamict to the rear, fronted by a clastic wedge of ice-front alluvial fan gravel and intercalated flow till. The distribution of sediment–landform assemblages suggests a highly dynamic, convergent ice-stream flow pattern, with high ice velocity, a sharply delineated lateral shear margin, pervasive ice-marginal glaciotectonic deformation and a tightly focused ice-marginal sediment delivery system; all signature characteristics of contemporary ice streams.  相似文献   

18.
Nine seismic stratigraphic units were distinguished, and their distribution mapped, in an 80 × 130 km submeridionally oriented area in the north-central Baltic Sea, east of Gotska Sandön and Farö. Analysis of these units revealed a great influence of the bedrock topography on the structure and distribution of the glacial deposits. Major glacially eroded valleys in the Baltic Clint, connecting the Faro Deep and the North Central Baltic Basin (Harff & Winterhalter 1996) across a narrow sill, form an extensive submeridional bedrock depression. The concentration of ice flow into this depression is reflected in the drumlinized surface of the till near the Baltic Clint. Large eskers in the elongated bedrock depressions and on the Ordovician Plateau mark the locations of former subglacial meltwater conduits. Termination of the eskers with extensive glacio fluvial outwash fans at the northern limit of the Farö Deep, the presence of subaquatic melt-out till in the bottom of it, and wedge-shaped ice-marginal grounding-line deposit on the Silurian Plateau suggest floating ice margin conditions in the low-lying areas and a local ice shelf confined to the Frö Deep during the deglaciation.  相似文献   

19.
《Quaternary Science Reviews》2007,26(9-10):1384-1397
To investigate the drainage conditions that might be expected to develop beneath soft-bedded ice sheets, we modeled the subglacial hydrology of the James Lobe of the Laurentide Ice Sheet from Hudson Bay to the Missouri River. Simulations suggest the James Lobe had little effect on regional groundwater flow because the poorly conductive Upper-Cretaceous shale that occupies the upper layer of the bedrock would have functioned as a regional aquitard. This implies that general northward groundwater flow out of the Williston Basin has likely persisted throughout the Quaternary. Moreover, the simulations indicate that the regional aquifer system could not have drained even the minimum amount of basal meltwater that might have been produced from at the glacier bed. Therefore, excess drainage must have occurred by some sort of channelized drainage network at the ice–till interface. Using a regional groundwater model to determine the hydraulic conductivity for an equivalent porous medium in a 1-m thick zone between the ice and underlying sediment, and assuming conduit dimensions from previous theoretical work, we use a theoretical karst aquifer analog as a heuristic approach to estimate the spacing of subglacial conduits that would have been required at the ice–till interface to evacuate the minimum water flux. Results suggest that for conduits assumed to be on the order of a tenth of a meter deep and up to a meter wide, inter-conduit spacing must be on the order of tens–hundreds of meters apart to maintain basal water pressures below the ice overburden pressure while evacuating the hypothesized minimum meltwater flux.  相似文献   

20.
A field of uraniferous boulders was discovered in a drift-covered valley west of Dismal Lakes. Glacial geological information was combined with boulder location and trace element till geochemical data to model the dispersal of the boulders; and to predict their likely bedrock source. Uraniferous bedrock was eroded by the last, westward flowing glacial ice to cover the area. The debris was englacially transported and subsequently deposited during subglacial melt-out of ice block(s) stagnating below active ice. The distribution of the boulders forms acrude, westward-opening fan centred on the easternmost boulder and oriented with the last ice-flow direction. The largest uranium values from surface till samples (-2 μm fraction) occur 6.2 km east of the main boulder concentration or 1.5 km east of the first boulder occurrence. The likely bedrock source is 6.0 to 6.6 km east of the main boulder concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号