首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magma degassing at Soufrière Hills Volcano (SHV) is characterised by an almost permanent SO2 flux and a HCl production rate which mainly depends on dome growth rate. Degassing processes have been studied through textural, H2O and halogen analyses of clasts collected between 1995 and 2006 on the dome and in pyroclastic flows and vulcanian eruption deposits. Cl, Br and I are strongly depleted in melts during H2O degassing with no significant Cl–Br–I fractionation, whereas F is almost unaffected. All magmas erupted at SHV have followed a multi-step degassing path from the magma chamber up to a shallow depth ( 1 km, P  20 MPa). From that depth, however, effusive and explosive paths are distinct; vulcanian eruptions are the result of closed system degassing (CSD), while effusive dome growth is the result of CSD up to a very shallow depth (≤ 200 m, P  5–2 MPa) followed by open system degassing (OSD). CSD is modelled using the H2O solubility law, the perfect gas law and partition coefficients of halogens between a rhyolitic melt and H2O vapour (dv − li). Gas loss characteristic of OSD is modelled using a Rayleigh law. Degassing induced crystallisation is introduced through the ratio of crystallisation and degassing rates, which ranges from 150–500. dv − lCl for OSD ranges between 50–300, increasing with melt Cl content. For CSD, the lower effective dv − lCl ( 20) is attributed to kinetic effects.

Dome forming activity has a greater impact on atmospheric chemistry than vulcanian eruptions because OSD is much more efficient at extracting halogens. The model shows that HCl flux is a good proxy for the dome forming eruption rate. Comparison between model and measured gas compositions suggests a high HBr–BrO conversion rate (BrO/Total Br  1/3) in the SHV gas plume.

The degassing behaviour of Cl, Br and I implies similar Cl/Br ( 160) and Br/I ( 90) in initial melts, volcanic clasts and high temperature gases. The low Cl/Br at SHV compared to other island arcs ( 250–300) is attributed to a shallow, pre-eruptive Br enrichment. The almost permanent dome extrusion at SHV since 1995 has likely had a significant regional atmospheric impact because of the very efficient effusive degassing and the high conversion rate of halogens into reactive species within the gas plume.  相似文献   


2.
The study of glass inclusions inside mantle minerals provides direct information about the chemistry of naturally occurring mantle-derived melts and the fine-scale complexity of the melting process responsible for their genesis. Minerals in a spinel lherzolite nodule from Grande Comore island contain glass inclusions which, after homogenization by heating, exhibit a continuous suite of chemical compositions clearly distinct from that of the host basanitic lava. The compositions range from silicic, with nepheline–olivine normative, 64 wt% SiO2 and 11 wt% alkali oxides, to almost basaltic, with quartz normative, 50 wt% SiO2 and 1–2 wt% alkali oxides. Within a single mineral phase, olivine, the inferred primary melt composition varies from 54 to 64 wt% SiO2 for MgO content ranging from 8 to 0.8 wt%. An experimental study of the glass and fluid inclusions indicates that trapped melts represent liquids that are in equilibrium with their host phases at moderate temperature and pressure (T≈1230°C and P≈1.0 Gpa for melts trapped in olivine). Quantitative modelling of the compositional trends defined in the suite shows that all of the glasses are part of a cogenetic set of melts formed by fractional melting of spinel lherzolite, with F varying between 0.2 and 5%. The initial highly silicic, alkali-rich melts preserved in Mg-rich olivine become richer in FeO, MgO, CaO and Cr2O3 and poorer in SiO2, K2O, Na2O, Al2O3 and Cl with increasing melt fractions, evolving toward the basaltic melts found in clinopyroxene. These results confirm the connection between glass inclusions inside mantle minerals and partial mantle melts, and indicate that primary melts with SiO2 >60 wt%, alkali oxides >11%, FeO <1 wt% and MgO <1 wt% are generated during incipient melting of spinel peridotite. The composition of the primary melts is inferred to be dependent on pressure, and to reflect both the speciation of dissolved CO2 and the effect of alkali oxides on the silica activity coefficient in the melt. At pressures around 1 GPa, low-degree melts are characterized by alkali and silica-rich compositions, with a limited effect of dissolved CO2 and a decreased silica activity coefficient caused by the presence of alkali oxides, whereas at higher pressures alkali oxides form complexes with carbonates and, consequently, alkali-rich silica-poor melts will be generated.  相似文献   

3.
In the shallow magma chambers of volcanoes, the CO2 content of most basaltic melts is above the solubility limit. This implies that the chamber contains gas bubbles, which rise through the magma and expand. Thus, the volume of the chamber, its gas volume fraction and the gas flux into the conduit change with time in a systematic manner as a function of the size and number of gas bubbles. Changes in gas flux and gas volume are calculated for a bubble size distribution and related to changes in eruption regimes. Fire fountain activity, only present during the first quarter of the eruption, requires that the bubbles are larger than a certain size, which depends on the gas flux and on the bubble content[1]. As the chamber degasses, it loses its largest gas bubbles and the gas flux decreases, eventually suppressing the fire fountaining activity. Ultimately, an eruption stops when the chamber contains only a few tiny bubbles. More generally, the evolution of basaltic eruptions is governed by a dimensionless number, τ * ≈ τgΔρaO2/(18μhc), where τ = a characteristic time for degassing; a0 = the initial bubble diameter; μ = the magma viscosity; and hc = the thickness of the degassing layer. Two eruptions of the Kilauea volcano, Mauna Ulu (1969–1971) and Puu O'o (1983—present), provide data on erupted gas volume and the inflation rate of the edifice, which help constrain the spatial distribution of bubbles in the magma chamber: bubbles come mainly from the bottom of the reservoir, either by in situ nucleation long before the eruption or within a vesiculated liquid. Although the gas flux at the roof of the chamber takes similar values for both eruptions, the duration of both the fire fountaining activity and the entire eruption was 6 times shorter at Mauna Ulu than during the Puu O'o eruption. The dimensionless analysis explains the difference by a degassing layer 6 times thinner in the former than the latter, due to a 2 year delay in starting the Mauna Ulu eruption compared to the Puu O'o eruption.  相似文献   

4.
The 79 ad Plinian eruption of Vesuvius produced first a white pumice fallout from a high steady eruptive column, and then a grey pumice fallout originating from an oscillatory eruptive column with several partial column collapse events after which there was a total column collapse. This first total collapse was followed by renewed Plinian activity and produced the last grey pumice (GP) fallout deposit of the eruption. Textural characteristics (vesicularity and microcrystallinity) of a complete sequence of the pumice fallout deposits are presented along with the major element compositions and residual volatile contents (H2O, Cl) to constrain the degassing processes and the eruptive dynamics. Large variations in residual volatile contents exist between the different eruptive units. Textural features also strongly differ between white and grey pumices, but also within the grey pumices. The degassing processes were thus highly heterogeneous. We propose a new model of the 79 ad eruption in which pre-eruptive conditions (H2O saturation, magma temperature and viscosity) are the critical controls on the diversity of the syn-eruptive degassing processes and hence the eruptive dynamics. Cl contents measured in melt inclusions show that only the white pumice and the upper part of the grey pumice magma were H2O saturated prior to eruption. The white pumice eruptive units represent a typical closed-system degassing evolution, whereas the first grey pumice one, stored under similar pre-eruptive saturation conditions, follows a particular open-system degassing evolution. We suggest that the oscillatory regime that dominated the grey pumice eruptive phase is linked to pre-eruptive water undersaturation of most of the grey magma, and the associated time delays necessary for H2O exsolution. We also suggest that the high residual H2O content of the last grey pumice, deposited after the renewal of Plinian activity following the first total column collapse event, is due to syn-eruptive saturation of GP magma and reduced H2O exsolution efficiency resulting from speciation of dissolved H2O in the melt.  相似文献   

5.
Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3–4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7–1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO2 concentration of up to 140 ppm. (3) Water and CO2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2–2.8 wt.% and ≤290 ppm, respectively.Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists of a lower basaltic layer and an upper rhyolitic layer, might have existed during the post-caldera stage. Addition of CO2 from the underlying basaltic magma to the upper gas-undersaturated (degassed) rhyolitic magma increased CO2 concentration of the rhyolitic magma.  相似文献   

6.
This paper deals with sulfur, chlorine and fluorine abundances in the eruptive volcanic plume of the huge October 2002-January 2003 eruption of Mount Etna, aiming at relating the relevant compositional variations observed throughout with changes in eruption dynamics and degassing mechanisms. The recurrent sampling of plume acidic volatiles by filter-pack methodology revealed that, during the study period, S/Cl and Cl/F ratios ranged from 0.1-6.8 and 0.9-5.6, respectively. Plume S/Cl ratios increased by a factor of ∼10 as volcanic activity drifted from paroxysmal lava fountaining (mid- and late November) to passive degassing and minor effusion (early January), and then decreased to the low values (S/Cl=0.1) typical of the final stages of the eruption. Parallel variations in chlorine to fluorine ratios were also observed. A theoretical model is proposed for quantitative interpretation of these changes in plume composition. The model calculates the composition of a volatile phase exsolving from an ascending Etna magma, based on knowledge of solubilities and abundances in the undegassed melt of sulfur and halogens [T.M. Gerlach, EOS 72 (1991), 249, 254-255]. According to this model, degassing of Etnean basaltic melt at high pressures and depths (>100 MPa, 3 km) is likely to release a CO2+H2O-rich vapor phase with S/Cl molar ratios ∼1. Extensive sulfur and chlorine degassing from the melt would take place at shallower depth (P<20 MPa, 0.6 km), with S/Cl ratios in the vapor phase increasing as pressure drops to 0.1 MPa. Comparisons between model compositions and volcanic plume data demonstrate that the chemical trends observed during the eruption may be explained by increased degassing due to depressurization of a basaltic magma batch ascending toward the surface.  相似文献   

7.
Previous petrological and phase-equilibrium experimental studies on recent silicic andesites from Mount Pelée volcano have evidenced comparable pre-eruptive conditions for plinian and dome-forming (pelean herein) eruptions, implying that differences in eruptive style must be primarily controlled by differences in degassing behaviour of the Mount Pelée magmas during eruption. To further investigate the degassing conditions of plinian and pelean magmas of Mount Pelée, we study here the most recent Mount Pelée's products (P1 at 650 years B.P., 1902, and 1929 eruptions, which cover a range of plinian and pelean lithologies) for bulk-rock vesicularities, glass water contents (glass inclusions in phenocrysts and matrix glasses) and microtextures. Water contents of glass inclusions are scattered in the plinian pumices but on average compare with the experimentally-deduced pre-eruptive melt water content (i.e., 5.3–6.3 wt.%), whereas they are much lower in the dominant pelean lithologies (crystalline, poorly vesicular lithics and dome samples). This indicates that the glass inclusions of the pelean products have undergone strong leakage and do not represent pre-eruptive water contents. The water content of the pyroclast matrix glasses are thought to closely represent the residual water content in the melt at the time of fragmentation. Determination of the water contents of both the pre-eruptive melt and matrix glasses allows the estimation of the amount of water exsolved upon syn-eruptive degassing. We find the amount of water exsolved during the eruptive process to be higher in the pelean products than in the plinian ones, typically 90–100 and 65–70% of the initial water content, respectively. The vesicularities calculated from the amount of exsolved water compare with the measured vesicularities for the plinian pumices, consistent with a closed-system, near-equilibrium degassing up to fragmentation. By contrast, the low residual water contents, low groundmass vesicularities and extensive groundmass crystallization of the pelean products are direct evidence of open-system degassing. Microtextural features, including silica-bearing and silica-free voids in the pelean lithologies may represent a two-stage vesiculation.  相似文献   

8.
Recent understandings of planetary accretion have suggested that accumulation of a small number of large planetesimals dominates intermediate to final growth stages of the terrestrial planets, with impact velocity high enough to induce extensive melting of the planetesimal and target materials, resulting in formation of a large molten region in which gravitational segregation of silicate and metal, that is, core formation proceeds. In case of homogeneous accretion, volatiles contained in each planetesimal are likely subjected to partitioning among gas, silicate melt, and molten metallic iron at significantly high temperatures and pressures in such a massive molten region. Each phase would subsequently form the proto-atmosphere, -mantle, or-core, respectively. Such chemical reprocessing of H and C associated with core formation, which is followed by both degassing from mantle and atmospheric escape, may result in a diverse range of H2O/CO2 in planetary surface environments, which mainly depends on the H and C content relative to metallic iron in planetary building stones. This may explain inferred difference in volatile distribution between the Earth's (relatively H2O-rich, CO2-poor) and the martian (H2O-poor, CO2-rich) surface environments. Such volatile redistribution may be systematically described by using the retentivity of H2O, ξ, defined as follows: ξ = 1 − ([CO]0 + 2[CH4]0 + 2[C(gr)]0)/[H2O]0, where [i]0 represents mol number of species i partitioned into non-metallic phases, that is, gas and silicate melt in impact-induced molten region. When ξ > 0.5, relatively H2O-rich and CO2-poor surface environment may eventually evolve, although a small portion of H2O partitioned into the NON=metallic phases are possibly consumed by subsequent chemical reactions with reduced C-species with producing CO2 and H2. When ξ< 0.5, on the contrary, H2O consumption by the above reactions and selective loss of H2 to space may result in relative H2O-depleted and CO2-rich surface environment. Given the building stone composition by the two-component model by Ringwood (1977) and Wänke (1981), ξ is found to decrease with increasing the mixing fraction of the volatile-rich component: ξ > 0.5 for the mixing fraction smaller than about 15–20% and ξ < 0 for the mixing fraction larger than about 20–30%. This is not significantly dependent on temperature and pressure in molten region and H/C ratio in the building stone. The estimated mixing fraction of the volatile-rich component, about 10% for the Earth and 35% for Mars, is consistent with the observed difference in volatile distribution between the surfaces of both planets.  相似文献   

9.
Water, F, and Cl contents of melt inclusions in phenocrysts from the 2-ka-old Taupo and Hatepe plinian tephras, and the 22-ka-old Okaia tephra from the Taupo volcanic center, New Zealand, were measured by electron and ion microprobe. Major and trace element chemistry of the inclusions is similar to that of bulk rock, supporting our assumption that volatile contents of inclusions are representative of the magma in which the crystals grew. Inclusions in the 2-ka Taupo plinian tephra contain a mean of 4.3 wt% H2O, 450 ppm F, and 1700 ppm Cl; from the Hatepe plinian tephra 4.3 wt% H2O, 430 ppm F, and 1700 ppm Cl; and from the Okaia tephra 5.9 wt% H2O, 470 ppm F, and 2100 ppm Cl. Sulfur was below the detection limit of 200 ppm. The constant H2O, F and Cl from a number of stratigraphic horizons in the tephra deposits suggest that the Taupo and Hatepe plinian tephras (>8.2 km3 magma volume) were derived from a magma body that did not contain a strong volatile gradient. By inference, there is no pre-eruptive volatile difference between these plinian eruptions and a phrea-toplinian eruption which occurred between the two. Virtually no major element zonation is seen in this eruptive sequence. Although the Okaia tephra was also erupted from the Taupo volcanic center, probably from a similar vent area, its higher volatile contents and distinct composition as compared to the Taupo tephras show that it was derived from a different, and possibly deeper, magma body.  相似文献   

10.
We present the first sulfur and oxygen isotopic data for tephra from the catastrophic 1883 eruption of Krakatau. Sulfur isotopic ratios in unaltered Krakatau tephra erupted August 26–27, 1883 are markedly enriched in 34S relative to mantle sulfur. High δ34S values of +6.3 to +16.4‰ can best be explained by open-system or multi-stage degassing of SO2 from the oxidized rhyodacitic and gray dacitic magmas with 34S enrichment of SO2−4 remaining in the melt. Lower whole-rock δ34S values of +2.6‰ and +4.0‰ in two oxidized gray dacitic samples indicate more primitive subarc mantle sulfur in the 1883 magma chamber. Initial δ34S of the rhyodacitic magma was probably in the +1.5‰ to +4.0‰ range and similar to δ34S values measured in arc volcanic rocks from the Mariana Arc.  相似文献   

11.
The determination of the earthquake energy budget remains a challenging issue for Earth scientists, as understanding the partitioning of energy is a key towards the understanding the physics of earthquakes. Here we estimate the partition of the mechanical work density into heat and surface energy (energy required to create new fracture surface) during seismic slip on a location along a fault. Earthquake energy partitioning is determined from field and microstructural analyses of a fault segment decorated by pseudotachylyte (solidified friction-induced melt produced during seismic slip) exhumed from a depth of ~ 10 km—typical for earthquake hypocenters in the continental crust. Frictional heat per unit fault area estimated from the thickness of pseudotachylytes is ~ 27 MJ m− 2. Surface energy, estimated from microcrack density inside clast (i.e., cracked grains) entrapped in the pseudotachylyte and in the fault wall rock, ranges between 0.10 and 0.85 MJ m− 2. Our estimates for the studied fault segment suggest that ~ 97–99% of the energy was dissipated as heat during seismic slip. We conclude that at 10 km depth, less than 3% of the total mechanical work density is adsorbed as surface energy on the fault plane during earthquake rupture.  相似文献   

12.
Crystallization paths of basaltic (1763 eruption) and hawaiitic (1865 and 1329 eruptions) scoria from Etna were deduced from mineralogy and melt inclusion chemistry. The volatile behaviour was investigated through the study of melt inclusions trapped in the phenocrysts and those of the whole rocks and the matrix glasses. The results from the 1763 eruption point to the early crystallization of olivine Fo 81.7 from a water-rich alkaline basalt, with high Cl (1750–2000 ppm) and S (2100–2400 ppm) concentrations. The hawaiitic melt inclusions trapped in olivine Fo 74, salite and plagioclase are characterized by a decrease in Cl/K2O and S/K2O ratios. In each investigated system there is good correlation between K2O and P2O5. In the whole rocks, Cl ranges from 980 to 1680 ppm, from basaltic to hawaiitic lavas, whereas S (110–136 ppm) remains low. Cl and S behaviour in the 1763 magma suggests an early degassing stage of Cl and S, with CO2 and a water-rich gaseous phase for a pressure close to 100 MPa, consistent with a permanent outgassing at the summit craters of Etna. During the eruption, the sulphur remaining in the hawaiitic liquid is lost, and the degassing of chlorine is limited. Such a degassing model can be extended to the 1865 and 1329a.d. eruptions.  相似文献   

13.
Volcanic rocks from subduction zones are widely believed to originate by partial melting of mantle lherzolite modified by the addition of a fluid or melt extracted from the down-going slab. U-series disequilibrium in such magmas is commonly attributed to this particular melting process. A detailed study of U-series isotopes in the 650 y. B.P. eruptive sequence of Mt. Pelée (Martinique) shows that plinian products are in radioactive equilibrium, whereas dome-forming products of the same eruption are characterized by 238U-230Th disequilibrium. The same features apply to other plinian and dome-forming products of this volcano and systematically correspond to different eruptive styles. We attribute these characteristics to variable superficial interaction of magmas with the hydrothermal system during the final stages of eruption rather than to deep magma genesis processes. This conclusion might be generally applicable to arc magmas.  相似文献   

14.
The 1982–1983 eruptions of Galunggung represent a nine-month period of intermittent volcanic activity with significant changes in explosivity and emission of volatiles. Eruptions started with Vulcanian explosions but changed gradually to Strombolian activity. Compositions of juvenile material changed from basaltic andesite to high-Mg basalt, which are among the most primitive rock types known in the Indonesian arc system. Although bulk compositions suggest a single evolution trend, we infer from the compositions of melt inclusions in olivine phenocrysts that the magmas represent derivatives of a complex spectrum of primary melts. Primitive inclusions in olivine phenocrysts from magma erupted during the Strombolian phase contain up to 2000 ppm sulfur, but concentrations decrease rapidly with increasing SiO2 down to matrix glass values (50–100 ppm). ‘Vulcanian’ inclusions appear to be degassed before eruption (200 ppm S). Chlorine concentrations increase from 750 to 2200 ppm in Strombolian, and from 800 to 1500 in Vulcanian magmas, whereas matrix glass contains about 1000 ppm in both cases. Ash leachates show two cycles of decreasing S/Cl ratios: from 9.7 to 5.6 at the start of the activity, and from 12.2 to 2.0 after four months. As the second cycle follows upon increased seismic activity at shallow depth, it probably reflects degassing of fresh sulfur-rich magma arriving in the shallow Galunggung reservoir. In contrast to the degassed state of Vulcanian magma, the significant amounts of adsorbed sulfur on the ashes point to an excess source of sulfur, which was most likely derived from intruding Strombolian magma. Hence, the observed sulfur flux of 2 Mt is not in accordance with a petrologic estimate of 0.09 Mt. Using a published value of 550 Mt of erupted material about 0.34 km3 fresh undegassed magma is needed to account for the observed sulfur flux. This is close to the erupted volume of Vulcanian magma (0.26 km3), which presumably was replaced completely by Strombolian magma during the eruption. Using the petrologic method, we calculate a total release of 0.3 Mt chlorine, which agrees well with an output of 0.47 Mt estimated independently from S/Cl ratios of the ash leachates and TOMS sulfur yields. Ash leachates show that about 35% of the sulfur and 30% of the chlorine was scavenged from the eruption plumes. Our results suggest that sulfur and chlorine were largely decoupled during degassing, which resulted in considerable variations in S/Cl ratios during the Galunggung eruptions. We infer that sulfur degassing reflects the arrival of fresh magma at shallow depth, whereas chlorine is largely derived from simultaneously erupted material. As a consequence, the petrologic estimates are more consistent with observed emissions for chlorine than for sulfur.  相似文献   

15.
The Pomici di Mercato (PdM, 8,010 ± 40 a), also known in the literature as Pomici Gemelle or Pomici di Ottaviano, is one of the oldest Plinian eruptions of Somma-Vesuvius. This eruption occurred after the longest (7 ka) quiescence period of the volcano and was followed by more than 4 ka of repose. The erupted magma is phonolitic in composition. All the products have very low phenocrysts content (less than 3%) and show evidence of mineralogical disequilibria. They contain K-feldspar ± clinopyroxene (salite and diopside) ± plagioclase ± garnet ± biotite ± amphibole ± apatite ± Fe-Ti oxides. Pumice fragments collected at different stratigraphic heights are slightly less evolved and more enriched in radiogenic Sr composition upsection. The glass composition is fairly homogeneous in single pumice fragment and among pumice fragments from different layers. Glass separated from pumice fragments collected at different stratigraphic heights is homogeneous in the Sr-isotope composition (around a value of 0.70717). Glass is in isotopic equilibrium with salite throughout the entire sequence and with diopside at the base of the sequence. Diopside becomes more radiogenic upsection, reaching a value of 0.707458 ± 7, whereas feldspar is consistently slightly less radiogenic than glass. Nd-isotope composition is fairly uniform (ca. 0.51247) through the whole sequence. The isotopic disequilibria among glass, feldspar and diopside, together with the homogeneous isotopic composition of pumice glass in equilibrium with salite, and the mineralogical disequilibria between plagioclase and K-feldspar, imply that most of the diopside and plagioclase crystals are xenocrysts incorporated into the phonolitic magma during residence in a magma chamber and/or during ascent towards the surface. The PdM Tephra are compositionally and isotopically similar to the phonolitic, first-erupted products of the subsequent Pomici di Avellino Plinian eruption. On the basis of this similarity, we suggest that the magma feeding both eruptions resulted from the tapping of a unique magma chamber. Prior to the PdM eruption, this chamber was formed by a large and homogeneous phonolitic magma body. After the PdM eruption, as a consequence of new arrivals of more radiogenic in Sr, less-differentiated magma batches, the magma chamber progressively developed a slightly stratified phonolitic uppermost portion, capping a tephriphonolitic layer, both emitted during the subsequent Pomici di Avellino eruption.  相似文献   

16.
The previously poorly documented 26–16.6 ka interval of pyroclastic volcanism from Tongariro Volcano is marked by three distal lapilli fall units (Rt1-3) exposed in ring-plain deposits. The distal Rt1-3 units are tentatively correlated to proximal scoria deposits on the upper slopes of North Crater based on their dispersal patterns, petrography and geochemistry. Lapilli in each of the Rt1-3 deposits are characterised by variable groundmass crystallinity, vesicularity and colour within individual clasts. Matrix glasses are mostly microlite-free, and compositionally diverse across the deposits (SiO2 = 62–75 wt%), with wide composition ranges occurring within single clasts. The glasses represent different melts that were mingled and mixed shortly before eruption; a finding supported by widely variable Fe–Ti oxide equilibrium temperature estimates (∼830–1,200°C). Ranges of 30–160°C (typically 70°C) occur within individual clasts. Some clinopyroxene crystals display Mg-rich (∼Mg #88) rim zones around homogeneous low-Mg (∼Mg #68) cores, with abrupt transition zones. This zoning is interpreted as resulting from the injection of a more mafic melt into a stagnating, resident magma. Crystal-melt equilibria indicate that several episodes of mafic intrusion occurred, to produce hybrid melts with zoned crystals forming isolated ponds within the resident magma. Variable mixing from the percolation of melts and the coalescence of melt ponds would explain the wide range of melt compositions and equilibrium temperatures observed in the ejecta. The magma heterogeneity was preserved by quenching on prompt eruption, with much of the short-duration chaotic mixing of melts and crystals occurring in the conduit. The Rt1-3 eruptions were from an open magmatic system consisting of one or more long-lived stagnant crystal mush zones, from which eruptions were rapidly triggered by new injections of mafic magmas from greater depths. A similar pattern of magmatic dynamics was observed in the much smaller 1995 eruptions of the neighbouring Ruapehu Volcano.  相似文献   

17.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

18.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   

19.
Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150?ppm lower Ba at equivalent SiO2 content and 0.03?wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44?C57%), lack microlites, and have highly evolved groundmass glass compositions (76.4?C79.6?wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35?C49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4?C73.8?wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.  相似文献   

20.
Fuego volcano in Guatemala erupted in 1974 in a basaltic sub-Plinian event, which has been well documented and studied. In 1999, after a period of quiescence lasting 20 years, Fuego erupted again, this time less violently, but with persistent low-level activity. This study investigates the link between these episodes. Previous melt inclusion studies have shown magma erupted in 1974 to have been a volatile-rich hybrid tapped from a vertically extensive system. By contrast, magma erupted in 1999 and 2003 is similar in composition to that erupted in 1974, but melt inclusions are more evolved. Although melt inclusions from the later period are CO2 rich (up to ∼1,500 ppm), they have low H2O concentration (max 1.5 wt.%, compared to ∼6 wt.% in 1974). These melt inclusions have a modified H2O concentration due to diffusive re-equilibration at shallow pressures. Despite this diffusive exchange, both eruptions show evidence of recent mingling of the same low and higher K melts, one of which was slightly cooler than the other and as a result traversed the amphibole stability field. (210Pb/226Ra) data on selected bulk rock samples from 1974 suggest that whereas the cooler, more evolved end-member may have been degassing since the last major eruption in the 1930s, the warmer end-member intruded at most a decade prior to the 1974 eruption. The two end-members are thus batches of the same magma emplaced shallowly ∼30 years apart during which time the older batch was cooled and differentiated before mixing with the younger influx. The presence of the same two melts in the later eruptions suggests that magma in 1999 and 2003 is partly residual from 1974. The current eruptive activity is clearing the system of this residual magma prior to an expected new magma batch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号