首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A numerical investigation of the bottom pressure and wave elevation generated by a planing hull in finite-depth water is presented. While the existing literature addresses the free-surface deformation and pressure field at the seafloor independently, this work proposes a direct comparison between the two hydrodynamic quantities. The dependence of the pressure disturbances at the ocean floor from the waves generated at the free-surface by a planing hull is studied for several values of both the depth and hull Froude numbers. The methodology employed is Smoothed Particle Hydrodynamics (SPH), a numerical technique based on the discretization of the continuum fields of hydrodynamics through mesh-less particles. The SPH code herein chosen is initially validated against experimental data for transom-stern flow. Subsequently, numerical simulations are presented for a planing hull in high-speed regimes. The results show a direct correlation between surface wave dynamics and hydrodynamic pressure disturbances at the seafloor as the value of the Froude number is varied. This is assessed by studying the inverse dependence of the low-pressure wake angle with the Froude number and by comparison of SPH results with similar works in the cited literature.  相似文献   

2.
A seakeeping analysis in the frequency domain is presented to predict the motion response of an air-lifted vessel (ALV) in waves. The ALV is supported by pressurised air in two separate cushion chambers; the pressure variation in the cushions has a significant effect on the motions of the vessel. The adiabatic gas law is used to couple cushion pressure and the free-surface elevation of water inside the chamber. Attention is focused on the waves generated by the pressure, and a method is presented to compute the corresponding free-surface elevation. New numerical schemes are proposed for calculating the three-dimensional free-surface elevation for the four wave numbers. Numerical results of the free-surface elevation, escape area, escape volume and motion responses of the ALV are provided.  相似文献   

3.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

4.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

5.
A non-linear coupled-mode system of horizontal equations is presented, modelling the evolution of nonlinear water waves in finite depth over a general bottom topography. The vertical structure of the wave field is represented by means of a local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional terms, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The present coupled-mode system fully accounts for the effects of non-linearity and dispersion, and the local-mode series exhibits fast convergence. Thus, a small number of modes (up to 5–6) are usually enough for precise numerical solution. In the present work, the coupled-mode system is applied to the numerical investigation of families of steady travelling wave solutions in constant depth, corresponding to a wide range of water depths, ranging from intermediate depth to shallow-water wave conditions, and its results are compared vs. Stokes and cnoidal wave theories, as well as with fully nonlinear Fourier methods. Furthermore, numerical results are presented for waves propagating over variable bathymetry regions and compared with nonlinear methods based on boundary integral formulation and experimental data, showing good agreement.  相似文献   

6.
The forced constant acceleration exit of two-dimensional bodies through a free-surface is computed for various 2D bodies (symmetric wedges, asymmetric wedges, truncated wedges and boxes). The calculations are based on the fully non-linear time-stepping complex-variable method of Vinje and Brevig (1981). The model was formulated as an initial boundary-value problem (IBVP) with boundary conditions specified on the boundaries (dynamic and kinematic free-surface boundary conditions) and initial conditions at time zero (initial velocity and position of the body and free-surface particles). The formulated problem was solved by means of a boundary-element method using collocation points on the boundary of the domain and stepped forward in time using Runge–Kutta and Hamming predictor–corrector methods. Numerical results for the deformed free-surface profile, pressure along the wetted region of the bodies and force experienced by the bodies are given for the exit. The analytical added-mass force is presented for the exit of symmetric wedges and boxes with constant acceleration using conformal mappings. To verify the numerical results, the added-mass force and the numerical force are compared and give good agreement for the exit of a symmetric wedge at a time zero (t = 0) as expected but only moderate agreement for the box.  相似文献   

7.
非线性波浪波面追踪的一种新模式   总被引:1,自引:0,他引:1  
基于Laplace方程的Green积分表达式和波面BemouUi方程所建立的非线性波动数学模型,是一个时域上具有初始值的边值问题,而精确地追踪自由表面的波动位置,给出波面运动瞬时的波面高度和波面势函数,是建立时域内非线性波浪数值模式的基础。本文采用0-1混合型边界元剖分计算域边界并离散Laplace方程的Green积分表达式,采用有限元剖分自由水面并推导满足自由表面非线性边界条件的波面有限元方程,联立计算域内以节点波势函数和波面位置高度的时间增量为未知量的线性方程组,通过时步内的循环迭代,给出每个时步上的波面位置和波面势函数,从而建立了一种新的非线性波浪波面追踪模式。数值造波水槽内的波浪试验表明,其数值模拟结果具有良好的计算精度。  相似文献   

8.
The problem of a uniform current passing through a circular cylinder submerged below an ice sheet is considered. The fluid flow is described by the linearized velocity potential theory, while the ice sheet is modelled through a thin elastic plate floating on the water surface. The Green function due to a source is first derived, which satisfies all the boundary conditions apart from that on the body surface. Through differentiating the Green function with respect to the source position, the multipoles are obtained. This allows the disturbed velocity potential to be constructed in the form of an infinite series with unknown coefficients which are obtained from the boundary condition. The result shows that there is a critical Froude number which depends on the physical properties of the ice sheet. Below this number there will be no flexural waves propagating to infinity and above this number there will be two waves, one on each side of the body. When the depth based Froude number is larger than 1, there will always be a wave at far upstream of the body. This is similar to those noticed in the related problem and is different from that in the free surface problem without ice sheet. Various results are provided, including the properties of the dispersion equation, resistance and lift, ice sheet deflection, and their physical features are discussed.  相似文献   

9.
A method of incorporating pressure forcing into a nonlinear potential flow wave model is presented. A semi-analytical pseudo-spectral method is used to calculate dynamic response of a water body exposed to evolving local pressure distribution. Surface slope coherent and slope proportional pressure functions are directly applied through a pressure term appearing in the dynamic free-surface boundary condition of a formulated initial boundary-value problem. First, a monochromatic pressure distribution is used to generate steady regular waves of permanent form. The pressure-induced wave motion exhibits stable harmonic structure for deepwater, transitional water and shallow water waves. In the next step, a more complex pressure system is used to initiate multi-component wave propagation. It is demonstrated that the proposed method provides well-posed initial conditions for studying various water wave scenarios within a framework of nonlinear potential flow solutions.  相似文献   

10.
Run-up on a large fixed body in waves and current have been calculated using both a fully nonlinear time-domain boundary element model and a finite-order time-domain boundary element model, the latter being correct to second order in the wave steepness and to first-order in the current strength. The results from the two models agree well in the low Froude number and low wave steepness regime. This serves as a cross-validation of the two boundary element models. Furthermore, the two sets of data provide an excellent method for examining the domain of validity for the second-order method. Such limits are, for the case studied, given in terms of maximum Froude number and maximum wave steepness.  相似文献   

11.
This paper presents a potential-based boundary element method for solving a nonlinear free-surface flow problem for a Wigley catamaran moving with a uniform speed in deep water. Since the interior flow of each monohull of the catamaran is different from the exterior flow, both monohulls must be considered as lifting bodies. The pressure Kutta condition is imposed at the trailing-edge of the lifting body by determining the dipole distribution, which generates required circulation on the lifting part. The effects of wave interference and hull separation on the hydrodynamic characteristics of the catamaran hull are analyzed and the validity of the computer scheme is examined by comparing the wave resistance with the numerical results of others. The present method could be a useful design tool for screening the suitable combinations of hull parameters and hull spacing at the preliminary design stage of catamaran hull.  相似文献   

12.
《Ocean Modelling》2010,33(3-4):143-156
We present a physically and numerically motivated boundary-value problem for each vertical ocean column, whose solution yields a parameterized mesoscale eddy-induced transport streamfunction. The new streamfunction is a nonlocal function of the properties of the fluid column. It is constructed to have a low baroclinic mode vertical structure and to smoothly transition through regions of weak stratification such as boundary layers or mode waters. It requires no matching conditions or regularization in unstratified regions; it satisfies boundary conditions of zero transport at the ocean surface and bottom; and it provides a sink of available potential energy for each vertical seawater column, but not necessarily at each location within the column. Numerical implementation of the methodology requires the solution of a one-dimensional tridiagonal problem for each vertical column. To illustrate the approach, we present an analytical example based on the nonlinear Eady problem and two numerical simulations.  相似文献   

13.
A higher-order non-hydrostatic model in a σ-coordinate system is developed. The model uses an implicit finite difference scheme on a staggered grid to simultaneously solve the unsteady Navier-Stokes equations (NSE) with the free-surface boundary conditions. An integral method is applied to resolve the top-layer non-hydrostatic pressure, allowing for accurately resolving free-surface wave propagation. In contrast to the previous work, a higher-order spatial discretization is utilized to approximate the large horizontal pressure gradient due to steep surface waves or rapidly varying topographies. An efficient direct solver is developed to solve the resulting block hepta-diagonal matrix system. Accuracy of the new model is validated by linear and nonlinear standing waves and progressive waves. The model is then used to examine freak (extreme) waves. Features of downshifting focusing location and wave asymmetry characteristics are predicted on the temporal and spatial domains of a freak wave.  相似文献   

14.
This paper aims to validate a numerical seakeeping code based on a 3D Rankine panel method by comparing its results with experimental data. Particularly, the motion response and hull-girder loads on a real modern ship, a 6500 TEU containership, are considered in this validation study. The method of solution is a 3D Rankine panel method which adopts B-spline basis function in the time domain. The numerical code is based on the weakly nonlinear scheme which considers nonlinear Froude-Krylov and restoring forces. The main focus of this study is given to investigate the nonlinear characteristics of wave-induced loads, and to validate this present scheme for industrial use in the range of low Froude number. The comparisons show that the nonlinear motions and hull-girder loads, computed by the present numerical code, have good overall agreements with experimental results. It is found that, for the better accuracy of computational results, particularly at extreme waves in oblique seas, the careful treatment of soft-spring (or compatible) system is recommended to the control of non-restoring motions such as surge, sway, and yaw.  相似文献   

15.
Fully nonlinear wave-body interactions with surface-piercing bodies   总被引:1,自引:0,他引:1  
W.C. Koo  M.H. Kim   《Ocean Engineering》2007,34(7):1000-1012
Fully nonlinear wave-body interactions for stationary surface-piercing single and double bodies are studied by a potential-theory-based fully nonlinear 2D numerical wave tank (NWT). The NWT was developed in time domain by using boundary element method (BEM) with constant panels. MEL free surface treatment and Runge–Kutta fourth-order time integration with smoothing scheme was used for free-surface time simulation. The acceleration-potential scheme is employed to obtain accurate time derivative of velocity potential. Using the steady part of nonlinear force time histories, mean and a series of higher-harmonic force components are calculated and compared with the experimental and numerical results of other researchers. The slow-decaying second-harmonic vertical forces are investigated with particle velocities and corresponding body pressure. Typical patterns of two-body interactions, shielding effect, and the pumping/sloshing modes of water column in various gap distances are investigated. The pumping mode in low frequencies is demonstrated by the comparison of velocity magnitudes.  相似文献   

16.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   

17.
柏威  滕斌 《海洋工程》2001,19(3):43-50
采用二阶时域理论对非线性波浪在任意三维物体周围的绕射问题进行了研究,对自由表面边界条件进行Taylor级数展开,应用摄动展开可以建立相应的边值问题,而且此边值问题的计算域不随时间变化,运用基于B-样条的边界元方法求解每一时刻的波浪场,二阶自由表面边界条件在时间上进行数值积分,在自由表面加了一个人工阻尼层以避免波浪的反射,速度势分解为已知的入射势和未知的散射势,初始条件采用二阶Stokes波浪场,通过加入物体表面边界条件,得到散射势在时间和空间上的发展,本文对圆柱所受规则波的二阶波浪力和波浪爬高进行了计算,数值结果表明此理论计算准确,效率高,数值稳定。  相似文献   

18.
One of the most important aspects, in the ACS and multi stepped hull design, is the choice of the geometrical shape of the cavity and the steps. In this article a complete experimental and numerical campaign on a multi stepped ACS has been carried out, varying the velocity and the air flow rate under the hull. The experimental tests have been conducted in an ITTC Towing Tank allowing to validate the numerical simulations obtained by means of a CFD U-RANSe (Unesteady Reynolds Averaged Navier-Stokes equations) code. The CFD setup is described in detail. From this campaign a critical analysis of the Froude number influence on the air cushion shape has been argued. The authors identified four different behaviours, from low to very high Froude numbers. The use of CFD has allowed to observe quantities of difficult evaluation by means of traditional experimental test, as e.g. the frictional component of the resistance, the airflow path lines and the volume of fraction in transversal and longitudinal sections. The results have been discussed.  相似文献   

19.
Non-linear loads on a fixed body due to waves and a current are investigated. Potential theory is used to describe the flow, and a three-dimensional (3D) boundary element method (BEM), combined with a time-stepping procedure, is used to solve the problem. The exact free-surface boundary conditions are expanded about the still-water level by Taylor series so that the solution is evaluated on a time-invariant geometry. A formulation correct to second order in the wave steepness and to first order in the current speed is used. Numerical results are obtained for the first-order and the second-order oscillatory forces and for the second-order mean force on a fixed vertical circular cylinder in waves and a current. The second-order oscillatory forces on the body in waves and current are new results, while the remaining force components are verified by comparison with established numerical and analytical models. It is shown that the current can have a significant influence on the forces, and especially on the amplitude of the second-order oscillatory component.  相似文献   

20.
A plane problem of free stationary gravitational waves in a horizontal current with vertical shear of the velocity is studied in the linear statement. The determination of the parameters of waves is reduced to the solution of the Sturm–Liouville boundary-value problem. For some vertical distributions of current velocity, we obtain analytic solutions. We propose a numerical algorithm for finding the parameters of waves. On the basis of the performed analysis, we establish the possibility of existence of stationary surface waves in currents for certain ranges of the Froude number. As the Froude number decreases, the waves become shorter, which leads to a faster attenuation of waves disturbances with depth. Under the actual conditions, the waves are short and suffer the influence of shear currents only in the subsurface layer of the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号