首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.  相似文献   

2.
The Han-Xing region is located in the south Taihang Mountains (TM) in the central part of the North China Craton, and is an important iron producing area. The iron deposits in this region are of skarn type, related to an Early Cretaceous high-Mg diorite complex, including gabbro diorite, hornblende diorite, diorite, diorite porphyrite, and monzonite. In this study we report the detailed mineral chemistry of the high-Mg diorites and skarn rocks. The olivine in the gabbro diorite shows chemical composition similar to that in mantle peridotite xenoliths. Clinopyroxene in the gabbro diorite is dominantly augite, with only minor diopside, whereas the clinopyroxenes in the diorite and monzonite are diopside. Amphiboles in the high-Mg diorites show compositional range from magnesiohornblende to magnesiohastingsite, with minor pargasite and tschermakite. Most plagioclase in the high-Mg diorite is andesine and oligoclase. The magnesio-biotite in gabbro diorites shows chemical characteristics of re-equilibrated primary biotites and those in calc-alkaline rocks. In the diorite and diorite porphyrite, plagioclase shows complex chemical zoning. Clinopyroxene and garnet in skarn rocks show varying FeO contents, the former containing low FeO (< 9 wt.%) and occurring as the major skarn mineral in large-scale iron deposits, and the latter within small-scale iron deposits with high FeO (mostly > 25 wt.%) content. We computed the pressure, temperature, oxygen fugacity and water contents based on the mineral chemistry of amphibole and biotite. Based on the results, the magma crystallization can be divided into two stages, one within the deep magma chamber, forming clinopyroxene, amphibole and plagioclase phenocrysts; the other after emplacement, forming the rim of phenocrysts and matrix minerals. The magma during the early stage shows high temperature (~ 900 °C–950 °C), pressure (~ 300 MPa–500 MPa), relatively high logfO2 (NNO–NNO + 2), and H2O content in melt (4%–8%). During the late stage, the magma temperature dropped to about 750 °C, and pressure came down to less than 100 MPa, with the logfO2 rising to NNO + 1–NNO + 2.The zoning of amphibole and plagioclase records the process of magma mixing and crystallization, with injection of mafic magma into the felsic magma chamber. The relatively high logfO2 and H2O content inhibited partitioning of iron into mafic minerals and favored concentration of Fe in the melt. Iron ore precipitation occurred when the magma was emplaced at shallow level, and was principally controlled by the chemical composition of carbonate wall rocks. The high logfO2, Fe3 + rich ore-forming fluid generated andradite and clinopyroxene when it reacted with limestone and dolomitic limestone respectively.  相似文献   

3.
The Ilímaussaq intrusion, South Greenland, provides an exceptional test case for investigating the changes of stable Fe isotope fractionation of solidus phases with changes in the Fe3+/∑Fe ratio of an evolving melt. The intrusion comprises a sequence of four melt batches that were fed from the same parental alkali basaltic magma. Differentiation produced cumulate rocks that range from augite syenite (phase I) over peralkaline granite (phase II) to agpaitic syenites (phases IIIa and IIIb). Fe3+/∑Fe ratios in amphiboles increase substantially from phase I to phase II and III rocks and mark a major change in the parental magma composition from augite syenites to peralkaline granites and agpaitic syenites. Before this transition, olivine, clinopyroxene, and amphibole in augite syenite, the most primitive rock type in the Ilímaussaq Complex, have a uniform Fe isotope composition that is identical to that of the bulk of igneous crustal rocks and approximated by the average isotopic composition of basalts (δ56/54FeIRMM-014 = 0.072 ± 0.046‰). After the transition, amphiboles in the peralkaline granites and agpaitic syenites yield significantly heavier Fe isotope compositions with δ56/54FeIRMM-014 values ranging from 0.123 to 0.237‰. Contamination of the Ilímaussaq magma by ongoing crustal assimilation as cause for this increase can be excluded on the grounds of Nd isotope data. Large-scale metasomatic overprint with an external fluid can also be dismissed based on amphibole O and Li isotope systematics. Rather, the increase towards heavy Fe isotope compositions most likely reflects the change in chemical compositions of amphiboles (calcic in augite syenite to sodic in the agpaitic syenites) and their Fe3+/ΣFe ratios that mirror changes in the chemical composition of the melt and its oxygen fugacity. A sensitive adjustment of equilibrium Fe isotope fractionation factors to amphibole ferric/ferrous ratios is also supported by beta-factors calculated from Mössbauer spetroscopy data. Comparison of the measured isotope fractionation between clinopyroxene and amphibole with that predicted from Mössbauer data reveal Fe isotope systematics close to equilibrium in augite syenites but Fe isotopic disequilibrium between these two phases in phase IIIa agpaitic syenites. These results are in agreement with O and Li isotope systematics. While amphiboles in all Ilímaussaq lithologies crystallized at temperatures between 650 and 850 °C, textural evidence reveals later clinopyroxene crystallization at temperatures as low as 300–400 °C. Therefore, isotopic equilibrium at crystallization conditions between these two phases can not be expected, but importantly, subsolidus reequilibration can also be dismissed.  相似文献   

4.
Generally, arc-related or subduction-related mafic magmas are formed during or slightly postdate subduction, and characterized by depletion in high field strength elements (HFSEs) relative to the large ion lithophile elements (LILEs) and light rare-earth elements (LREEs). Combining with mineral chemistry and Sr–Nd isotopes, these geochemical characteristics were usually used to define an arc setting, especially for some ancient arcs that had been strongly modified by later tectonic activities. However, we report an exceptional case from the northern part of the Triassic Yidun Arc Belt, eastern Tibetan Plateau. The Ganluogou gabbro (∼152 Ma) occurs as several intrusive bodies. Its mineral assemblage is olivine (chrysolite), plagioclase (anorthite), clinopyroxene (diopside), amphibole (edenite and pargasite) and phlogopite. Whole rock geochemistry shows low SiO2 (42.87–46.99 wt.%), total rear earth elements (ΣREE = 22.8–28.4 ppm), Na2O + K2O (0.92–1.34 wt.%), and high Al2O3, MgO and FeO contents. It has small variations of initial 87Sr/86Sr ((87Sr/86Sr)i = 0.7053–0.7055) and εNd(t) values (−4.8 to −1.8). All the samples exhibit enrichment in LILEs including Th and U, but strongly depleted in HFSEs, including Nb, Ta, Zr and Hf. For the mineral chemistry, there are two type amphiboles. Amp(I) show higher V, Sc, Cr, Sr, Nb and Zr contents, but lower Th and U contents than those of Amp(II). Their REE patterns range from convex shape without Eu anomaly to LREE-enriched pattern with weak positive Eu anomaly. We suggest that Amp(I) was crystallized from a liquid that was mainly buffered by olivine, clinopyroxene and plagioclase, while Amp(II) crystallized from later melt that was mainly buffered by olivine. Based on clinopyroxene chemistry, compositions of coexisting olivine and plagioclase, and whole rock Sr–Nd isotopes, the parental magma of the Ganluogou gabbro is interpreted as a tholeiitic arc-affinity magma, which might be derived from an N-MORB mantle that had been metasomatised by slab-derived melts in the late Triassic (237–206 Ma). Thus, the Ganluogou gabbro provides an example that magmas exhibiting arc-affinity could in fact be formed in a post-orogenic extensional setting.  相似文献   

5.
The Aley Nb deposit in northern British Columbia, Canada, is hosted by metamorphosed calcite and dolomite carbonatites of anorogenic affinity emplaced in Lower Paleozoic sedimentary carbonate rocks in the Devonian. Primary Nb mineralization consists of pyrochlore (commonly comprising a U–Ta-rich and F-poor core) and ferrocolumbite developed as discrete crystals and replacement products after the pyrochlore. These phases and associated heavy minerals (apatite ± magnetite ± zircon ± baddeleyite) precipitated early in the magmatic history and probably formed laterally extensive cumulate layers up to at least 1.5 m in thickness. Fractionation of copious amounts of pyrochlore is reflected in the chemical composition of the carbonatites and their constituent minerals, which show large variations in Nb/Ta value, but a near-chondritic Zr/Hf ratio. Alkali-rich metasomatic rocks (in particular, fenites and glimmerites) associated with the carbonatites are barren; the bulk of Nb in these rocks is contained in rutile, phlogopite and, to a much lesser extent, amphibole. When the passive margin of North America became the zone of plate convergence in the Cretaceous, the host carbonatites were strongly deformed, which is manifested in structures and textures indicative of grain comminution, ductile flow, folding and, locally, brecciation. The structure and continuity of the cumulate units enriched in Nb minerals were profoundly affected by these processes. Interaction of the carbonatites with crustal fluids of complex chemistry resulted in extensive dolomitization, replacement of the pyrochlore and ferrocolumbite by fersmite, and development of hydrothermal parageneses consistent with the lower greenschist-facies conditions. At these late evolutionary stages, Nb was mobilized only to a very limited extent and sequestered in a variety of minerals (fersmite, euxenite, Mg-rich ferrocolumbite and Nb-bearing rutile) typically occurring as scarce minute crystals associated with hydrothermal dolomite, quartz and chlorite. Progressive enrichment of the deformed dolomite carbonatites in heavy C and O isotopes relative to primary calcite, coupled with changes in the trace-element composition of Nb phases, indicate that the fluids were equilibrated with the wall-rock sedimentary rocks hosting the Aley deposit and were capable of transporting F, (PO4)3 , U, Th and rare-earth elements, but not Nb.  相似文献   

6.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

7.
The destruction (or reactivation) of the North China Craton (NCC) is one of the important issues related to the Phanerozoic evolution of eastern China, although the processes of destruction remain debated. Two main mechanisms – delamination and thermal/chemical erosion – have been proposed based on the geochemistry of Mesozoic–Cenozoic basalts and entrained deep–seated xenoliths. A key criterion in distinguishing between these mechanisms is the nature of the melt, derived from delaminated crust or the asthenosphere, that modified the lithospheric mantle. Here we investigate the mechanism of destruction of the NCC based on mineral compositions and oxygen isotopic data from olivines, and strontium isotopic data for clinopyroxenes within websterite xenoliths from the Early Cretaceous Feixian basalts in the eastern NCC. Olivines in websterite xenoliths have higher Mg# (86–86.4), Ni content (2187–2468 ppm), and lower Ca (983–1134 ppm), Ti (58.1–76.1 ppm), and Mn (1478–1639 ppm) contents than olivine phenocrysts (Mg# = 71.0–77.3, Ni = 233–1038 ppm, Ca = 1286–2857 ppm, Ti = 120–300 ppm, and Mn = 2092–4106 ppm) from Late Cretaceous basalts. Additionally, olivines in websterite xenolith have δ18O values of 7.10 ± 0.21‰ to 8.40 ± 0.21‰, evidently higher than those of typical mantle-derived olivines. Similarly, orthopyroxenes (Opx) and clinopyroxenes (Cpx) in the websterite xenoliths have much higher Mg# (86.3–89.2 and 87.5–90.3, respectively), and Ni contents (1097–1491 ppm and 581–809 ppm, respectively) than orthopyroxene- and clinopyroxene-phenocrysts (Opx: Mg# = 82.2–83.9, Ni = 730–798 ppm; Cpx: Mg# = 74.2–84.6, Ni = 117–277 ppm) from Late Cretaceous basalts. The 87Sr/86Sr ratios of clinopyroxenes in the websterite xenoliths range from 0.70862 to 0.70979, and are much higher than those of clinopyroxene grains from peridotite xenoliths and basalts. These data indicate that olivines are the residue of ancient lithospheric mantle that was modified intensively by a melt derived from recycled continental crust, and that the silicic and calcic metasomatic melt might have been derived from the partial melting of the subducted Yangtze slab and delaminated lower crust of the NCC. The existence of recycled continental crust in the Mesozoic lithospheric mantle implies that delamination was an important mechanism of destruction of the NCC.  相似文献   

8.
Post-collisional ultrapotassic magmatic rocks (15.2–18.8 Ma), containing mantle xenoliths, are extensively distributed in the Sailipu volcanic field of the Lhasa terrane in south Tibet. They could be subdivided into high-MgO and low-MgO subgroups based on their petrological and geochemical characteristics. The high-MgO subgroup has olivine-I (Fo87–92), phlogopite and clinopyroxene as phenocryst phases, while the low-MgO subgroup consists mainly of phlogopite, clinopyroxene and olivine-II (Fo77–89). These ultrapotassic magmatic rocks have high MgO (4.6–14.5 wt%), Ni (145–346 ppm), Cr (289–610 ppm) contents, and display enrichment in light rare earth element (REE) over heavy REE and enriched large ion lithophile elements (LILE) relative to high field strength elements (HFSE) with strongly negative Nb-Ta-Ti anomalies in primitive mantle-normalized trace element diagrams. They have extremely radiogenic (87Sr/86Sr)i (0.7167–0.7274) and unradiogenic (143Nd/144Nd)i (0.5118–0.5120), high (207Pb/204Pb)i (15.740–15.816) and (208Pb/204Pb)i (39.661–39.827) at a given (206Pb/204Pb)i (18.363–18.790) with high δ18O values (7.3–9.7‰). Strongly linear correlations between depleted mid-ocean ridge basalt-source mantle (DMM) and the Indian continental crust (HHCS) in Sr-Nd-Pb-O isotopic diagrams indicate that the geochemical features could result from reaction between mantle peridotite and enriched components (fluids and melts) released by the eclogitized Indian continental crust (HHCS) in the mantle wedge. The high-MgO (13.7–14.5 wt%) subgroup displays higher (143Nd/144Nd)i, lower (87Sr/86Sr)i and (206Pb/204Pb)i ratios and lower δ18O values compared with the low-MgO (4.6–8.8 wt%) subgroup. High Ni (850–4862 ppm) contents of olivine phenocrysts and high whole-rock SiO2, NiO, low CaO contents indicate that the low-MgO ultrapotassic magmatic rocks are derived from partial melting of olivine-poor mantle pyroxenite. However, lower Ni concentrations of olivine phenocryst and lower whole-rock SiO2, NiO, higher CaO contents of the high-MgO ultrapotassic rocks may indicate their peridotite mantle source. This could be attributed to different amounts of silicate-rich components added into the mantle sources of the parental magmas in the mantle wedge caused by the northward subduction of the Indian continental lithosphere. The reaction-formed websterite xenoliths, reported for the first time in this study, are made up of anhedral and interlocking clinopyroxene (45–65 vol%) and orthopyroxene (30–50 vol%) with minor phlogopite (< 3 vol%) and quartz (< 2 vol%) and are suggested to be formed by silicate metasomatism of the mantle peridotite. The harzburgites, another major type of mantle xenolith in south Tibet, have a mineral assemblage of olivine (60–75 vol%), orthopyroxene (20–35 vol%), clinopyroxene (< 3 vol%), phlogopite (< 2 vol%) and spinel (< 2 vol%) and may have experienced subduction-related metasomatism. Combined with two types of ultrapotassic magmas, we propose that compositions of mantle wedge beneath south Tibet may gradually evolve from harzburgite through lherzolite to websterite with strong metasomatism of silicate-rich components in their mantle source region. Partial melting of the enriched mantle sources could be triggered by rollback of Indian continental slab during 25–8 Ma in south Tibet.  相似文献   

9.
The Changyi banded iron formation (BIF) in the eastern North China Craton (NCC) occurs within the Paleoproterozoic Fenzishan Group. The BIF shows alternating quartz-rich light and magnetite-rich dark bands with magnetite (15–65 vol.%), quartz (25–65 vol.%) and amphibole (15–30 vol.%) constituting the major minerals. Minor garnet, epidote, chlorite, calcite, biotite and pyrite occur locally. The BIF bands are interlayered with amphibolite, hornblende gneiss, biotite quartz schist, garnet biotite schist, biotite gneiss and leptynite, and are intruded by granites. LA-ICP-MS U–Pb dating on zircons separated from the BIF bands and the wallrocks constrains the depositional age as 2240–2193 Ma and metamorphic age as ~ 1864 Ma. The dominant composition of SiO2 + Fe2O3T (average value of 92.3 wt.%) of the BIF bands suggests their formation mainly through chemical precipitation. However, the widely varying contents of major elements such as Al2O3 (0.58–6.99 wt.%), MgO (1.00–3.86 wt.%), CaO (0.22–4.19 wt.%) and trace elements such as Rb (2.06–40.4 ppm), Sr (9.36–42.5 ppm), Zr (0.91–23.6 ppm), Hf (0.04–0.75 ppm), Cr (89.1–341 ppm), Co (2.94–30.4 ppm), and Ni (1.43–52.0 ppm) clearly indicate the incorporation of clastics, especially continental felsic clastics, as also confirmed by the presence of ancient detrital zircons in the BIF bands. When normalized against Post Archean Average Shale (PAAS), the seawater-like signatures of REE distribution patterns, such as LREE depletion, positive La and Y anomalies, and superchondritic Y/Ho ratios (average value of 36.3), support the deposition in seawater. Strong positive Eu anomalies (Eu/Eu*PAAS = 1.14–2.86) also suggest the participation of hydrothermal fluids. In addition, the sympathetic correlation between Cr, Co and Ni as well as the Co + Ni + Cu vs. ∑ REE and the Al2O3 vs. SiO2 relations further indicates that the iron and silica mainly originated from hydrothermal fluids. Combined with regional geological investigation and protolith restoration of the wallrocks, a continental rift environment is suggested for the Changyi BIF deposition. The appearance of negative CePAAS anomalies might suggest the influence of the Great Oxidation Event at the time of deposition. The Changyi BIF witnessed the major Paleoproterozoic rifting–collision events in the NCC and their unique distribution in the NCC contrasts with other examples elsewhere in the world.  相似文献   

10.
The Dalucao deposit, located in western Sichuan Province, southwestern China, in the western part of the Yangtze Craton, is one of the largest and most extensive rare earth element (REE) deposits in the Himalayan Mianning–Dechang REE belt. Moreover, the Dalucao deposit is the only deposit identified in the southern part of the belt. The Dalucao deposit contains the No. 1, 2, and 3 orebodies; the No. 1 and 3 orebodies are both hosted in two breccia pipes, located in syenite–carbonatite host rocks. Both pipes have elliptical cross-sections at the surface, with long-axis diameters of 200–400 m and short-axis diameters of 180–200 m; the pipes extend downwards for > 450 m. No. 1 and No. 3 have total thickness varying between 55 and 175 m and 14 to 58 m respectively. The REE mineralization is associated with four brecciation events, which are recorded in each of the pipes. The ore grades in the No. 1 and 3 orebodies are similar, and consist of 1.0%–4.5% rare earth oxides (REOs). The No. 1 orebody is characterized by a Type I mineral assemblage (fluorite + barite + celestite + bastnäsite), whereas the No. 3 orebody is characterized by a Type II assemblage (fluorite + celestite + pyrite + muscovite + bastnäsite + strontianite). Argon (40Ar/39Ar) dating of hydrothermal muscovite intergrown with REE minerals in typical ores from the No. 1 and 3 orebodies yielded similar ages of 12.69 ± 0.13 and 12.23 ± 0.21 Ma, respectively, which suggest that both mineral assemblages formed coevally, rather than in paragenetic stages. Both ages are also similar to the timing of intrusion of the syenite–carbonatite complex (12.13 ± 0.19 Ma). The ore-mineral assemblages occur in breccias, veinlets, and in narrow veins. The ore veinlets, which usually show a transition to mineralized breccia or brecciated ores, are commonly enveloped by narrow veins and stringer zones with comparable mineral assemblages. The brecciated ores form 95% of the volume of the deposit, whereas brecciated ores are only a minor constituent of other deposits in the Mianning–Dechang REE belt. The carbonatite in the syenite–carbonatite complexes contains high concentrations of S (0.07–2.32 wt.%), Sr (16,500–20,700 ppm), Ba (3600–8400 ppm), and light REEs (LREE) (2848–10,768 ppm), but is depleted in high-field-strength elements (HFSE) (Nb, Ta, P, Zr, Hf, and Ti). The syenite is moderately enriched in large-ion lithophile elements (LILE), Sr (155–277 ppm), and Ba (440–755 ppm). The mineralized, altered, and fresh syenites and carbonatites exhibit similar trace element compositions and REE patterns. Brecciation events, and the Dalucao Fault and its secondary faults around the deposit, contributed to the REE mineralization by facilitating the circulation of ore-forming fluids and providing space for REE precipitation. Some hydrothermal veins composed of coarse-grained fluorite and quartz are distributed in the syenite–carbonatite complex. The oxygen isotope compositions of ore-forming fluids in equilibrium with quartz at 215 °C are − 4.95‰ to − 7.45‰, and the hydrogen isotope compositions of fluid inclusions in coarse-grained quartz are − 88.4‰ to − 105.1‰. The syenite–carbonatite complex and carbonatite are main contributors to the mineralization in the geological occurrence. Thus, the main components of the ore-forming fluids were magmatic water, meteoric water, and CO2 derived from the decarbonation of carbonatite. According to the petrographic studies, bastnäsite mineralization developed during later stages of hydrothermal evolution and overprinted the formation of the brecciated fluorite–quartz hydrothermal veins. As low-temperature isotope exchange between carbonates of the carbonatite and water-rich magmatic fluids will lead to positive shifts in δ18O values of the carbonates, C–O isotopic compositions from the bulk primary carbonatite to hydrothermal calcite and bastnäsite changed (δ18OV-SMOW from 8.0‰ to 11.6‰, and δ13C V-PDB from − 6.1 to − 8.7‰). According to the chemical composition of syenite and carbonatite, REE chloride species are the primary complexes for the transport of the REEs in the hydrothermal fluids, and the presence of bastnäsite and parisite means the REE were precipitated as fluorocarbonates. High contents of Sr, Ba and S in the syenite–carbonatite complex led to the deposition of large amount of barite and celestite.  相似文献   

11.
The Middle Miocene porphyry granitoid stocks of Meiduk and Parkam porphyry copper deposits are intruded in the north-western part of the Dehaj-Sarduiyeh volcano-sedimentary belt in the south-eastern extension of the Urumieh-Dukhtar Magmatic Arc (UDMA) in Iran. The porphyritic to microgranular granitoids are mainly consist of quartz diorite, granodiorite and diorite. The whole rock geochemical analyses of these rocks reveals sub-alkaline, calc-alkaline, meta-peraluminous and I-type characteristics. Their geochemical characteristics such as Al2O3 content of 13.51–17.05 wt%, high Sr concentration (mostly >400 ppm), low Yb (an average of 0.74 ppm) and Y (an average of 9.02 ppm) contents, strongly differentiated REE patterns (La/Yb  20), lack of Eu anomaly (Eu/Eu1  1) are indicative of adakitic signature. Their enrichment in low field strength elements (LFSE) and conspicuous negative anomalies for Nb, Ta and Ti are typical of subduction related magmas. Detailed petrological studies and geochemical data indicated that Meiduk and Parkam porphyry granitoids were derived from amphibole fractionation of hydrous melts at a depth of >40 km in a post-collisional tectonic setting.  相似文献   

12.
The Huanglongpu carbonatite-related Mo ore field is located in the Lesser Qinling Orogenic belt in the southern margin of the North China block. The ore field is composed of six deposits, Yuantou, Wengongling, Dashigou, Shijiawan, Taoyuan and Erdaohe, all of which are genetically related to carbonatite dykes except for the Shijiawan deposit which is associated with a granitic porphyry. The Yuantou carbonatite dykes intruded into Archean gneiss and other carbonatites emplaced into Mesoproterozoic volcanic and sediment rocks. The carbonatites are mainly composed of calcite and variable amounts of quartz and K-feldspar and minor molybdenite. Re–Os dating of molybdenite from the Yuantou carbonatite yields a weighted average age of 225.0 ± 7.6 Ma, consistent with the molybdenite age (221 Ma) from the Dashigou deposit. The rocks are characterized by high heavy REE (HREE) contents and consistent flat REE distribution patterns with La/Ybcn ~ 1. Quartz in the carbonatites from Yuantou and Dashigou deposits shows consistent O isotopes (8.1–10.2‰) similar to the associated calcite (7.2–9.5‰). The quartz and associated K-feldspar contain lower Zr, Hf and higher HREE abundances and negligible Eu anomaly relative to those from the granite porphyry in Shijiawan. Both minerals are primary products in the carbonatitic liquid, and not captured from the wall-rocks or crustal-derived silicate magmas, or a hydrothermal origin. Thus, the Huanglongpu carbonatitic liquids were enriched in Si and Mo, which may be produced by intensely fractional crystallization of non-silicate minerals.  相似文献   

13.
Continental subduction and its interaction with overlying mantle wedge are recognized as fundamental solid earth processes, yet the dynamics of this system remains ambiguous. In order to get an insight into crust–mantle interaction triggered by partial melting of subudcted continental crust during its exhumation, we carried out a combined study of the Shidao alkaline complex from the Sulu ultrahigh pressure (UHP) terrane. The alkaline complex is composed of shoshonitic to ultrapotassic (K2O: 3.4–9.3 wt.%) gabbro, pyroxene syenite, amphibole syenite, quartz syenite, and granite. Field studies suggest that the mafic rocks are earlier than the felsic ones in sequence. LA-ICPMS zircon U–Pb dating on them gives Late Triassic ages of 214 ± 2 to 200 ± 3 Ma from mafic to felsic rocks. These ages are slightly younger than the Late Triassic ages (225–210 Ma) of the felsic melts from partial melting of the Sulu UHP terrane during exhumation. The alkaline rocks have wide ranges of SiO2 (49.7–76.7 wt.%), MgO (8.25–0.03 wt.%), Ni (126.0–0.07 ppm), and Cr (182.0–0.45 ppm) contents. The contents of MgO, total Fe2O3, CaO, TiO2 and P2O5 decrease with increasing SiO2 contents. The contents of Na2O, K2O, and Al2O3 increase from gabbro to amphibole syenite, and decrease from amphibole syenite to granite, respectively. The alkaline rocks have characteristics of an arc-like pattern in trace element distribution, e.g., enrichment of LREE, LILE (Rb and Ba), Th and U, depletion of HFSE (Nb, Ta, P and Ti), and positive Pb anomalies. From the mafic rocks to the felsic rocks, the (La/Yb)N ratios and the contents of the total REE, Sr and Ba decrease but the Rb contents increase. The alkaline rocks with high SiO2 contents also display features of an A2-type granitoids, e.g., high contents of total alkalis, Zr and Nb and high ratios of Fe2O3T/MgO, Ga/Al, Yb/Ta and Y/Nb, suggesting a post-collisional magmatism during exhumation of the Sulu UHP terrane. The alkaline rocks have homogeneous initial 87Sr/86Sr ratios (0.7058–0.7093) and negative εNd(t) values (− 18.6 to − 15.0) for whole-rock. The Sr–Nd isotopic data remain almost unchanged with varying SiO2 and MgO contents, suggesting a fractional crystallization (FC) process from the same parental magma. Our studies suggest a crust–mantle interaction in continental subduction interface as follows: (1) hydrous felsic melts from partial melting of subducted continental crust during its exhumation metasomatized the overlying mantle wedge to form a K-rich and amphibole-bearing mantle; (2) partial melting of the enriched lithospheric mantle generated the Late Triassic alkaline complex under a post-collisional setting; and (3) the alkaline magma experienced subsequent fractionational crystallization mainly dominated by olivine, clinopyroxene, plagioclase and alkali feldspar.  相似文献   

14.
Through detailed studies we have delineated a suite of banded TTG gneisses from the Zanhuang Complex. The protolith of the gneisses, predominantly tonalite, has undergone intensive metamorphism, deformation and anatexis and in a banded structure is intimately associated with melanocratic dioritic gneiss and leucocratic trondhjemitic veins. SHRIMP Zircon U–Pb data show that the tonalite was formed ca. 2692 ± 12 Ma ago. The tonalitic gneiss has the features of high SiO2 (67.76–73.31%), high Al2O3 (14.38–15.83%), rich in Na2O (4.48–5.07%) and poor in K2O (0.77–1.93%). The gneiss is strongly fractioned in REE ((La/Yb)N = 12.02–24.65) and shows a weak positive Eu anomaly (Eu/Eu* = 1.05–1.64). It has high contents of Ba (199–588 ppm) and Sr (200–408 ppm), low contents of Yb (0.32–1.00 ppm) and Y (3.41–10.3 ppm) with high Sr/Y ratios (21.77–96.77) and depletion in HFSE Nb, Ta and Ti. These characteristics are similar to those of the high-Si adakitic rocks. The melanocratic dioritic gneiss has low SiO2 (59.81%), high MgO (6.34%), high Al2O3 (14.02%) contents, rich in Na2O (3.7%) and poor in K2O (1.79%), with high Mg index (Mg# = 67). REE and trace elements are on the whole similar to that of the tonalitic gneiss, but compatible element abundances V (116 ppm), Cr (249 ppm), Co (37 ppm) and Ni (179 ppm) are higher. The leucocratic felsic bands (approximating trondhjemite in composition) have major oxides similar to that of the TTG gneisses but the REE and compatible elements are extremely low, which are indicative of the products of anatexis. The tonalitic gneiss has positive εNd(t) (2.37–3.29) and low initial Sr (0.69719–0.70068) values with depleted mantle Nd model age of ca. 2.8 Ga, suggesting its generation from partial melting of mantle-derived juvenile crust. The dioritic gneiss was also derived from subduction environment, but has undergone significant metasomatism of mantle wedge. The delineation of the ca. 2.7 Ga TTG gneisses in the Zanhuang Complex further proves that the North China Craton experienced large-scale continental crustal accretion in early Neoarchean, and gives new constraints on the subdivision of the early blocks and greenstone belts of the craton.  相似文献   

15.
The Khoynarood area is located in the northwest of Iran, lying at the northwestern end of the Urumieh–Dokhtar volcano-plutonic belt and being part of the Qaradagh–South Armenia domain. The main intrusive rocks outcropped in the area have compositions ranging from monzonite–quartz monzonite, through granodiorite, to diorite–hornblende diorite, accompanied by several dikes of diorite–quartz diorite and hornblende diorite compositions, which were geochemically studied in order to provide further data and evidence for the geodynamic setting of the region. The SiO2, Al2O3 and MgO contents of these rocks are about 58.32–68.12%, 14.13–18.65% and 0.68–4.27%, respectively. They are characterized by the K2O/Na2O ratio of 0.26–0.58, Fe2O3 + MnO + MgO + TiO2 content about 4.27–13.13%, low Y (8–17 ppm) and HREE (e.g., 1–2 ppm Yb) and high Sr contents (750–1330 ppm), as well as high ratios of Ba/La (13.51–50.96), (La/Yb)N (7–22), Sr/Y (57.56–166.25), Rb/La (1.13–2.96) and La/Yb (10–33.63), which may testify to the adakitic nature of these intrusions. Their chemical composition corresponds to high-silica adakites, displaying enrichments of LREEs and LILEs and preferential depletion of HFSEs, (e.g., Ti, Ta and Nb). The REE differentiation pattern and the low HREE and Y contents might be resulted from the presence of garnet and amphibole in the solid residue of the source rock, while the high Sr content and the negative anomalies of Ti, Ta and Nb may indicate the absence of plagioclase and presence of Fe and Ti oxides in it. As a general scenario, it may be concluded that the adakitic rocks in the Khoynarood were most likely resulted from detachment of the subducting Neo-Tethyan eclogitic slab after subduction cessation between Arabian and Central Iranian plates during the upper Cretaceous–early Cenozoic and partial melting of the detached slab, followed by interactions with metasomatized mantle wedge peridotite and contamination with continental crust.  相似文献   

16.
《Lithos》2007,93(1-2):126-148
Fenite aureoles around carbonatite dykes, and alteration associated with Fe–REE–Nb ore bodies at Bayan Obo, Inner Mongolia, China, show alkali silicate assemblages containing aegirine–augite, (magnesio-)riebeckite, (magnesio-)arfvedsonite, and phlogopite, accompanied by varying amounts of apatite, albite and quartz. In both fenites and orebodies simple thermodynamic constraints indicate mineral parageneses are consistent with rock buffered cooling accompanied by the infiltration of a range of externally buffered hydrothermal fluids. Statistical analysis of amphibole chemistry indicates that even in apparently texturally well constrained paragenetic stages wide variations in chemistry occur in both the ore bodies and fenites. Much of this variation is attributable to the Mg and F content of amphibole, and is therefore interpreted as a result of variation in externally controlled variables (P, T, initial fluid composition) rather than internally controlled variables such as protolith composition. Similarities in chemistry exist between fenite and some ore body amphiboles. Thermodynamic analysis of the composition of biotite and apatite allows constraints to be placed on the F-content of hydrothermal fluids, and indicates relatively consistent compositions in fenites and orebodies (log aHF/aH2O =  3.8 to − 3.6 at 300 °C and 1 kbar). Amphibole and biotite associated with niobate mineralization are both enriched in fluorine relative to the rest of the paragenesis, and biotite compositions indicate significantly higher HF activities in the hydrothermal fluid (log aHF/aH2O =  2.6 at 300 °C and 1 kbar). The data presented here reinforce previous interpretations of the complex, multistage nature of mineralisation at Bayan Obo, but are still consistent with a direct involvement of carbonatite derived fluids during ore genesis.  相似文献   

17.
Leander Franz  Rolf L. Romer 《Lithos》2010,114(1-2):30-53
Petrologic, geochemical and isotopic investigations on two ultramafic xenoliths with metasomatic veins from the TUBAF Seamount in the Bismarck Archipelago NE of Papua New Guinea reveal different styles of metasomatic overprinting. The first xenolith, a clinopyroxene–poor spinel lherzolite, was part of the depleted upper mantle. It contains an orthopyroxene-rich vein that formed by hydrous metasomatism at ~ 980 °C and ~ 1.5 GPa. The second xenolith is a clinopyroxene-dominated spinel olivine websterite that formed as a magmatic cumulate at the transition of the upper mantle to the oceanic crust. The websterite contains a vein with orthopyroxenes and clinopyroxenes, which give evidence for high-temperature crystallization at ~ 1300 °C and < 0.36 GPa. Both xenoliths were transported to the seafloor by a Quaternary trachybasalt in a fore-arc position. The vein minerals show a strong affinity to a supra-subduction zone or island arc setting. The REE pattern of the vein in the clinopyroxene–poor lherzolite strongly resembles the one from the host trachybasalt, with a high enrichment of the LREE and a strong to moderate enrichment of the MREE and HREE. Although broadly similar in shape, the REE pattern of the vein in the websterite shows a much weaker enrichment. The same applies to the trace-element patterns, although there are significant differences in the Eu, Zr, Hf and Nb concentrations. The isotope signatures of both veins suggest a derivation from a subducted slab that had been hydrothermally altered by seawater (high 87Sr/86Sr values).The contrasting crystallization temperatures of the vein minerals as well as their overall geochemical differences indicate that the metasomatic agents responsible for the vein in the websterite were mobilized from a previously depleted source at a much deeper mantle level than those forming the vein of the clinopyroxene–poor lherzolite. The metasomatic agents may also have been mobilized at different times and from different plates, i.e., the deeply subducted Solomon Sea Microplate (for the veins in the websterite) and the shallow dehydrating Pacific Plate (for the veins in the clinopyroxene–poor lherzolite).Metasomatic agents responsible for similar petrologic phenomena, i.e., modal or cryptic metasomatism, may have distinctly different origins and show contrasting histories. A strongly depleted lherzolite may totally lose its initial geochemical signature by the influence of an enriched metasomatic agent, whereas a primarily enriched ultramafic rock, e.g., a websterite, may strongly obscure the trace-element pattern of a less enriched metasomatic vein. Furthermore, the geochemistry of the ultramafic xenoliths may reflect polyphase cryptic and modal metasomatism related to veining and later transport by the hosting melt to the seafloor.  相似文献   

18.
Compositional variation (results of electron microprobe analyses and mass-spectrometry analyses) of columbite-group minerals (CGM) from fully differentiated albite–spodumene pegmatites at Kolmozero in the Kola Peninsula is evaluated. Concentric zoning, typical of rare-metal pegmatites, was not observed in the Kolmozero pegmatites. Columbite-group minerals occur in all main parageneses of the pegmatites and form four generations, reflecting the sequence of pegmatite formation. These minerals demonstrate wide variations in the content of major and trace elements. The composition of CGM ranges from columbite-(Fe) to tantalite-(Mn). Fractionation trends were observed in Mn/(Mn + Fe) versus Ta/(Ta + Nb) diagrams and trace-element abundances plotted versus XTa and XMn. The early CGM paragenesis is characterized by homogeneous, oscillatory and progressive oscillatory zoning and corresponds to a primary magmatic type. Late-generation CGM show patchy irregular internal textures replacing earlier regular patterns of zoning. The irregular zoning points to metasomatic replacement processes. For the first time, it is shown that distributions of rare earth elements (REE) in CGM reflect the evolution of a pegmatite-forming system. At Kolmozero, the main trend of REE variation from early to late generations of CGM involves decreasing total REE contents due to a decrease in heavy REE and Y, decreasing negative Eu anomaly and decreasing magnitude of M-shape tetrad effect between Gd and Ho. These changes are accompanied by gradual flattening of the “bird-like” patterns of chondrite-normalized REE distribution. All these features are typical for late differentiates of granitic volatile-rich magma. Late metasomatic tantalite-(Mn) is characterized by sharp changes in its REE distribution pattern: decreasing total REE contents, changing shape of the REE distribution pattern, the absence of Eu anomaly and tetrad effects, and the appearance of a negative Ce anomaly. The textural characteristics and mineral chemistry of CGM indicate that the pegmatite-forming system underwent several stages of evolution. The earliest magmatic stage can be divided into two sub-stages, involving direct crystallization and collective recrystallization, respectively, and was succeeded by a late hydrothermal–metasomatic post-magmatic stage. Variations in chemical composition among the different generations of CGM are explained by the interplay of several processes: fractional crystallization; competitive crystallization of main rock-forming (feldspar, muscovite, spodumene) and accessory (triphylyte–lithiophilite, spessartine, fluorapatite, zircon, microlite) minerals; and evolution of the mineral-forming environment from a melt to a hydrothermal–metasomatic fluid.  相似文献   

19.
《Comptes Rendus Geoscience》2008,340(2-3):127-138
High-pressure mafic granulites containing granoblastic garnet, quartz, and minor hornblende have been found from the Song Ma Suture zone in northern Vietnam, regarded as a microcontinental boundary between the South China and Indochina blocks. Fine-grained symplectite formed during the decompression stage is developed in the granulite and is divided into orthopyroxene + plagioclase and orthopyroxene + clinopyroxene + plagioclase ± hornblende. The former replaces garnet and the latter is regarded as a breakdown of sodic clinopyroxene. Detailed observation and careful data selection revealed that the high-Mg and low-Ca garnet should be in equilibrium with the precursor sodic clinopyroxene, and the pair indicates high-temperature and -pressure conditions (910–930 °C at 1.9–2.0 GPa). Although we could not obtain quantitative age data from the high-pressure granulite, the U–Th–Pb age (233 ± 5 Ma) of pelitic gneiss strongly suggests a Middle to Early Triassic metamorphic event. If the age indicates the timing of the high-pressure granulite-facies metamorphism, it might be related to a continental collision setting by following crustal subduction. According to the metamorphic signatures, north to central Vietnam may be regarded as an orogenic belt formed by the micro-continental collision between the South China and Indochina cratons.  相似文献   

20.
The petrography, mineral chemistry and geochemical features of the Sabongari alkaline complex are presented and discussed in this paper with the aim of constraining its petrogenesis and comparing it with other alkaline complexes of the Cameroon Line. The complex is mainly made up of felsic rocks: (i) granites predominate and include pyroxene–amphibole (the most abundant), amphibole–biotite, biotite and pyroxene types; (ii) syenites are subordinate and comprise amphibole–pyroxene and amphibole–biotite quartz syenites; (iii) pyroxene–amphibole–biotite trachyte and (iv) relatively abundant rhyolite. The minor basic and intermediate terms associated with felsic rocks consist of basanites, microdiorite and monzodioites. Two groups of pyroxene bearing rocks are distinguished: a basanite–trachyte–granite (Group 1) bimodal series (SiO2 gap: 44 and 63 wt.%) and a basanite–microdiorite–monzodiorite–syenite–granite (Group 2) less pronounced bimodal series (reduced SiO2 gap: 56–67 wt.%). Both are metaluminous to peralkaline whereas felsic rocks bare of pyroxene (Group 3) are metaluminous to peraluminous. The Group 1 basanite is SiO2-undersaturated (modal analcite in the groundmass and 11.04 wt.% normative nepheline); its Ni (240 ppm) and Cr (450 ppm) contents, near mantle values, indicate its most primitive character. The Group 2 basanite is rather slightly SiO2-saturated (1.56 wt.% normative hypersthene), a marker of its high crustal contamination (low Nb/Y-high Rb/Y). The La/Yb and Gd/Yb values of both basanites (1: 19.47 and 2.92; 2: 9.09 and 2.23) suggest their common parental magma composition, and their crystallization through two episodes of partial melting (2% and 3% respectively) of a lherzolite mantle source with <4% residual garnet. The effects of crustal contamination were selectively felt in the values of HFSE/LREE, LREE/LILE and LREE/HFSE ratios, known as indicators. Similar features have been recently obtained in the felsic lavas of the Cameroon Volcanic Line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号