首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for ‘seed’ black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.  相似文献   

2.
The formation, merging and accretion history of massive black holes (MBHs) along the hierarchical build-up of cosmic structures leaves a unique imprint on the background of gravitational waves (GWs) at mHz frequencies. We study here, by means of dedicated simulations of black hole build-up, the possibility of constraining different models of black hole cosmic evolution using future GW space-borne missions, such as LISA . We consider two main scenarios for black hole formation, namely, one where seeds are light (  ≃102 M  , remnant of Population III stars) and one where seeds are heavy (  ≳104 M  , direct collapse). In all the models we have investigated, MBH binary coalescences do not produce a stochastic GW background, but rather, a set of individual resolved events. Detection of several hundreds merging events in a 3-yr LISA mission will be the sign of a heavy seed scenario with efficient formation of black hole seeds in a large fraction of high-redshift haloes. At the other extreme, a low event rate, about a few tens in 3 yr, is peculiar of scenarios where either the seeds are light, and many coalescences do not fall into the LISA band, or seeds are massive, but rare. In this case a decisive diagnostic is provided by the shape of the mass distribution of detected events. Light binaries  ( m < 104 M)  are predicted in a fairly large number in Population III remnant models, but are totally absent in direct collapse models. Finally, a further, helpful diagnostic of black hole formation models lies in the distribution of the mass ratios in binary coalescences. While heavy seed models predict that most of the detected events involve equal-mass binaries, in the case of light seeds, mass ratios are equally distributed in the range 0.1–1.  相似文献   

3.
The mass density of massive black holes observed locally is consistent with the hard X-ray background provided that most of the radiation produced during their growth was absorbed by surrounding gas. A simple model is proposed here for the formation of galaxy bulges and central black holes in which young spheroidal galaxies have a significant distributed component of cold dusty clouds, which accounts for the absorption. The central accreting black hole is assumed to emit both a quasar-like spectrum, which is absorbed by the surrounding gas, and a slow wind. The power in both is less than the Eddington limit for the black hole. The wind, however, exerts the most force on the gas and, as earlier suggested by Silk & Rees, when the black hole reaches a critical mass it is powerful enough to eject the cold gas from the galaxy, so terminating the growth of both black hole and galaxy. In the present model this point occurs when the Thomson depth in the surrounding gas has dropped to about unity and results in the mass of the black hole being proportional to the mass of the spheroid, with the normalization agreeing with that found for local galaxies by Magorrian et al. for reasonable wind parameters. The model predicts a new population of hard X-ray and submm sources at redshifts above 1, which are powered by black holes in their main growth phase.  相似文献   

4.
We make a case for the existence for ultra-massive black holes (UMBHs) in the Universe, but argue that there exists a likely upper limit to black hole (BH) masses of the order of   M ∼ 1010 M  . We show that there are three strong lines of argument that predicate the existence of UMBHs: (i) expected as a natural extension of the observed BH mass bulge luminosity relation, when extrapolated to the bulge luminosities of bright central galaxies in clusters; (ii) new predictions for the mass function of seed BHs at high redshifts predict that growth via accretion or merger-induced accretion inevitably leads to the existence of rare UMBHs at late times; (iii) the local mass function of BHs computed from the observed X-ray luminosity functions of active galactic nuclei predict the existence of a high-mass tail in the BH mass function at   z = 0  . Consistency between the optical and X-ray census of the local BH mass function requires an upper limit to BH masses. This consistent picture also predicts that the slope of the   M bh–σ  relation will evolve with redshift at the high-mass end. Models of self-regulation that explain the co-evolution of the stellar component and nuclear BHs naturally provide such an upper limit. The combination of multiwavelength constraints predicts the existence of UMBHs and simultaneously provides an upper limit to their masses. The typical hosts for these local UMBHs are likely the bright, central cluster galaxies in the nearby Universe.  相似文献   

5.
Transformation of discs into spheroids via mergers is a well-accepted element of galaxy formation models. However, recent simulations have shown that the bulge formation is suppressed in increasingly gas-rich mergers. We investigate the global implications of these results in a cosmological framework, using independent approaches: empirical halo-occupation models (where galaxies are populated in haloes according to observations) and semi-analytic models. In both, ignoring the effects of gas in mergers leads to the overproduction of spheroids: low- and intermediate-mass galaxies are predicted to be bulge-dominated (   B / T ∼ 0.5  at  <1010 M  , with almost no 'bulgeless' systems), even if they have avoided major mergers. Including the different physical behaviour of gas in mergers immediately leads to a dramatic change: bulge formation is suppressed in low-mass galaxies, observed to be gas-rich (giving   B / T ∼ 0.1  at  <1010 M  , with a number of bulgeless galaxies in good agreement with observations). Simulations and analytic models which neglect the similarity-breaking behaviour of gas have difficulty reproducing the strong observed morphology–mass relation. However, the observed dependence of gas fractions on mass, combined with suppression of bulge formation in gas-rich mergers, naturally leads to the observed trends. Discrepancies between observations and models that ignore the role of gas increase with redshift; in models that treat gas properly, galaxies are predicted to be less bulge-dominated at high redshifts, in agreement with the observations. We discuss implications for the global bulge mass density and future observational tests.  相似文献   

6.
We study the chemical and spectrophotometric evolution of galactic discs with detailed models calibrated on the Milky Way and using simple scaling relations, based on currently popular semi-analytic models of galaxy formation. We compare our results with a large body of observational data on present-day galactic discs, including disc sizes and central surface brightness, Tully–Fisher relations in various wavelength bands, colour–colour and colour–magnitude relations, gas fractions versus magnitudes and colours and abundances versus local and integrated properties, as well as spectra for different galactic rotational velocities. Despite the extremely simple nature of our models, we find satisfactory agreement with all those observables, provided that the time-scale for star formation in low-mass discs is longer than for more massive ones. This assumption is apparently in contradiction with the standard picture of hierarchical cosmology. We find, however, that it is extremely successful in reproducing major features of present-day discs, like the change in the slope of the Tully–Fisher relation with wavelength, the fact that more massive galaxies are on average 'redder' than low-mass ones (a generic problem of standard hierarchical models) and the metallicity–luminosity relation for spirals. It is concluded that, on a purely empirical basis, this new picture is at least as successful as the standard one. Observations at high redshifts could help to distinguish between the two possibilities.  相似文献   

7.
We analyse a sample of 32 galaxies for which a dynamical estimate of the mass of the hot stellar component, M bulge, is available. For each of these galaxies, we calculate the mass of the central black hole, M , using the tight empirical correlation between M and bulge stellar velocity dispersion. The frequency function     is reasonably well described as a Gaussian with     and standard deviation ∼0.45; the implied mean ratio of black hole mass to bulge mass is a factor of ∼5 smaller than generally quoted in the literature. We present marginal evidence for a lower, average black hole mass fraction in more massive galaxies. The total mass density in black holes in the local Universe is estimated to be ∼     consistent with that inferred from high-redshift     active galactic nuclei.  相似文献   

8.
We study the star formation history of normal spirals by using a large and homogeneous data sample of local galaxies. For our analysis we utilize detailed models of chemical and spectrophotometric galactic evolution, calibrated on the Milky Way disc. We find that star formation efficiency is independent of galactic mass, while massive discs have, on average, lower gas fractions and are redder than their low-mass counterparts; put together, these findings convincingly suggest that massive spirals are older than low-mass ones. We evaluate the effective ages of the galaxies of our sample and we find that massive spirals must be several Gyr older than low-mass ones. We also show that these galaxies (having rotational velocities in the 80–400 km s−1 range) cannot have suffered extensive mass losses, i.e. they cannot have lost during their lifetime an amount of mass much larger than their current content of gas+stars.  相似文献   

9.
We consider a model for quasar formation in which massive black holes are formed and fuelled largely by the accretion of hot gas during the process of galaxy formation. In standard hierarchical collapse models, objects about the size of normal galaxies and larger form a dense hot atmosphere when they collapse. We show that if such an atmosphere forms a nearly 'maximal' cooling flow, then a central black hole can accrete at close to its Eddington limit. This leads to exponential growth of a seed black hole, resulting in a quasar in some cases. In this model, the first quasars form soon after the first collapses to produce hot gas. The hot gas is depleted as time progresses, mostly by cooling, so that the accretion rate eventually falls below the threshold for advection-dominated accretion, at which stage radiative efficiency plummets and any quasar turns off. A simple implementation of this model, incorporated into a semi-analytical model for galaxy formation, overproduces quasars when compared with observed luminosity functions, but is consistent with models of the X-ray background, which indicate that most accretion is obscured. It produces few quasars at high redshift owing to the lack of time needed to grow massive black holes. Quasar fuelling by hot gas provides a minimum level, sufficient to power most quasars at redshifts between one and two, to which other sources of fuel can be added. The results are sensitive to feedback effects, such as might result from radio jets and other outflows.  相似文献   

10.
An empirically motivated model is presented for accretion-dominated growth of supermassive black holes (SMBH) in galaxies, and the implications are studied for the evolution of the quasar population in the Universe. We investigate the core aspects of the quasar population, including space density evolution, evolution of the characteristic luminosity, plausible minimum masses of quasars, the mass function of SMBH and their formation epoch distribution. Our model suggests that the characteristic luminosity in the quasar luminosity function arises primarily as a consequence of a characteristic mass scale above which there is a systematic separation between the black hole and the halo merging rates. At lower mass scales, black hole merging closely tracks the merging of dark haloes. When combined with a declining efficiency of black hole formation with redshift, the model can reproduce the quasar luminosity function over a wide range of redshifts. The observed space density evolution of quasars is well described by formation rates of SMBH above  ∼108  M  . The inferred mass density of SMBH agrees with that found independently from estimates of the SMBH mass function derived empirically from the quasar luminosity function.  相似文献   

11.
We analyse the observed distribution of Eddington ratios  ( L / L Edd)  as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [   M */star formation rate (SFR) ∼  a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (   M */SFR ≫  a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.  相似文献   

12.
Using recently published estimates — based on high spatial resolution spectroscopy — of the mass M BH of nuclear black holes for a sample of nearby galaxies, we explore the dependence of galaxy nucleus emissivity at various wavelengths on M BH. We confirm an almost linear scaling of the black hole mass with the baryonic mass of the host spheroidal galaxy. A remarkably tight relationship is also found with both nuclear and total radio centimetric flux, with a very steep dependence of the radio flux on M BH ( P  ∝  M 2.5BH). The high-frequency radio power is thus a very good tracer of a supermassive black hole, and a good estimator of its mass. This, together with the lack of significant correlations with the low-energy X-ray and far-IR flux, supports the view that advection-dominated accretion is ruling the energy output in the low accretion rate regime. Using the tight dependence of total radio power on M BH and the rich statistics of radio emission of galaxies, we derive an estimate of the mass function of remnants in the nearby Universe. This is compared with current models of quasar and active galactic nucleus (AGN) activity and of the origin of the hard X-ray background (HXRB). As for the former, continuous long-lived AGN activity is excluded by the present data with high significance, whereas the assumption of a short-lived, possibly recurrent, activity pattern gives remarkable agreement. The presently estimated black hole mass function also implies that the HXRB has been produced by a numerous population (∼ 10−2 Mpc−3) of moderately massive ( M BH ∼ 107 M⊙) black holes.  相似文献   

13.
王益萍 《天文学报》2000,41(4):410-423
在“等级式成团”(hierarchical clustering)宇宙学演化框架下,早型星系(E/SO)的形成和演化不是如经典的“整体塌缩”(monolithic collapse)演化模式所描述的是由高红移处的短时间剧烈恒星形成过程一次性完成的;相反,它们可能是在大尺度结构形成过程中由盘星系间的相互合并演化而来,特别是对于质量相当的盘星系间的剧烈合并过程。目前的数值模拟和高分辨成像观测都已证实了这种可能性,而且红移巡天的结果也更多地支持这种演化模式。在此提出一个星系合并过程中核区星暴和中心黑洞共生演化的模型,来解释由空间望远镜(HST)和地面CCD高分辨测光所得的早型星系“黑洞/核球”统计线性相关,也即中心黑洞质量约为其核球体质量的0.6%;同时,该演化模型还可以进一步合理地解释在类星体的近红外成像观测中统计得出的相似的线性相关性,即类星体中心亮度与其母星系质量成正比。并给出此模型计算的极限情况和模型的解析估计。  相似文献   

14.
On the formation and evolution of black hole binaries   总被引:1,自引:0,他引:1  
We present the results of a systematic study of the formation and evolution of binaries containing black holes and normal-star companions with a wide range of masses. We first reexamine the standard formation scenario for close black hole binaries, where the progenitor system, a binary with at least one massive component, experienced a common-envelope phase and where the spiral-in of the companion in the envelope of the massive star caused the ejection of the envelope. We estimate the formation rates for different companion masses and different assumptions about the common-envelope structure and other model parameters. We find that black hole binaries with intermediate- and high-mass secondaries can form for a wide range of assumptions, while black hole binaries with low-mass secondaries can only form with apparently unrealistic assumptions (in agreement with previous studies).
We then present detailed binary evolution sequences for black hole binaries with secondaries of 2 to 17 M and demonstrate that in these systems the black hole can accrete appreciably even if accretion is Eddington-limited (up to 7 M for an initial black hole mass of 10 M) and that the black holes can be spun up significantly in the process. We discuss the implications of these calculations for well-studied black hole binaries (in particular GRS 1915+105) and ultraluminous X-ray sources of which GRS 1915+105 appears to represent a typical Galactic counterpart. We also present a detailed evolutionary model for Cygnus X-1, a massive black hole binary, which suggests that at present the system is most likely in a wind mass-transfer phase following an earlier Roche-lobe overflow phase. Finally, we discuss how some of the assumptions in the standard model could be relaxed to allow the formation of low-mass, short-period black hole binaries, which appear to be very abundant in nature.  相似文献   

15.
We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a 'radio mode' feedback from active galactic nuclei (AGN) at the centre of X-ray emitting atmospheres in galaxy groups and clusters. Thanks to this mechanism, the model can simultaneously explain: (i) the low observed mass dropout rate in cooling flows; (ii) the exponential cut-off in the bright end of the galaxy luminosity function and (iii) the bulge-dominated morphologies and old stellar ages of the most massive galaxies in clusters. This paper is the first of a series in which we investigate how well this model can also reproduce the physical properties of BHs and AGN. Here we analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.  相似文献   

16.
Older and more recent pieces of observational evidence suggest a strong connection between QSOs and galaxies; in particular, the recently discovered correlation between black hole and galactic bulge masses suggests that QSO activity is directly connected to the formation of galactic bulges. The cosmological problem of QSO formation is analysed in the framework of an analytical model for galaxy formation; for the first time a joint comparison with galaxy and QSO observables is performed. In this model it is assumed that the same physical variable that determines galaxy morphology is able to modulate the mass of the black hole responsible for QSO activity. Both halo spin and the occurrence of a major merger are considered as candidates for this role. The predictions of the model are compared with available data for the type-dependent galaxy mass functions, the star formation history of elliptical galaxies, the QSO luminosity function and its evolution (including the obscured objects contributing to the hard-X-ray background), the mass function of dormant black holes and the distribution of black hole-to-bulge mass ratios. A good agreement with observations is obtained if the halo spin modulates the efficiency of black hole formation, and if the galactic haloes at z =0 have shone in an inverted order with respect to the hierarchical one (i.e., stars and black holes in bigger galactic haloes have formed before those in smaller ones). This inversion of hierarchical order for galaxy formation, which reconciles galaxy formation with QSO evolution, is consistent with many pieces of observational evidence.  相似文献   

17.
We present the results of a study which uses the 3C RR sample of radio-loud active galactic nuclei to investigate the evolution of the black hole:spheroid mass ratio in the most massive early-type galaxies from  0 < z < 2  . Radio-loud unification is exploited to obtain virial (linewidth) black hole mass estimates from the 3C RR quasars, and stellar mass estimates from the 3C RR radio galaxies, thereby providing black hole and stellar mass estimates for a single population of early-type galaxies. At low redshift  ( z ≲ 1)  , the 3C RR sample is consistent with a black hole:spheroid mass ratio of   M bh/ M sph≃ 0.002  , in good agreement with that observed locally for quiescent galaxies of similar stellar mass  ( M sph≃ 5 × 1011 M)  . However, over the redshift interval  0 < z < 2  the 3C RR black hole:spheroid mass ratio is found to evolve as   M bh/ M sph∝ (1 + z )2.07±0.76  , reaching   M bh/ M sph≃ 0.008  by redshift   z ≃ 2  . This evolution is found to be inconsistent with the local black hole:spheroid mass ratio remaining constant at a moderately significant level (98 per cent). If confirmed, the detection of evolution in the 3C RR black hole:spheroid mass ratio further strengthens the evidence that, at least for massive early-type galaxies, the growth of the central supermassive black hole may be completed before that of the host spheroid.  相似文献   

18.
We make use of the first high-resolution hydrodynamic simulations of structure formation which self-consistently follows the build-up of supermassive black holes (BHs) introduced in Di Matteo et al. to investigate the relation between BHs, host halo and large-scale environment. There are well-defined relations between halo and BH masses and between the activities of galactic nuclei and halo masses at low redshifts. A large fraction of BHs forms anti-hierarchically, with a higher ratio of BH to halo mass at high than at low redshifts. At   z = 1  , we predict group environments (regions of enhanced local density) to contain the highest mass and most active (albeit with a large scatter) BHs while the rest of the BH population to be spread over all densities from groups to filaments and voids. Density dependencies are more pronounced at high rather than low redshift. These results are consistent with the idea that gas rich mergers are likely the main regulator of quasar activity. We find star formation to be a somewhat stronger and tighter function of local density than BH activity, indicating some difference in the triggering of the latter versus the former. There exist a large number of low-mass BHs, growing slowly predominantly through accretion, which extends all the way into the most underdense regions, that is, in voids.  相似文献   

19.
We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on ΛCDM proposed by Baugh et al. Our black hole model has one free parameter, which we set by matching the observed zero-point of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of the optical luminosity function of quasars. We study the demographics of the black hole population and address the issue of how black holes acquire their mass. We find that the direct accretion of cold gas during starbursts is an important growth mechanism for lower mass black holes and at high redshift. On the other hand, the re-assembly of pre-existing black hole mass into larger units via merging dominates the growth of more massive black holes at low redshift. This prediction could be tested by future gravitational wave experiments. As redshift decreases, progressively less massive black holes have the highest fractional growth rates, in line with recent claims of 'downsizing' in quasar activity.  相似文献   

20.
We use semi-analytic modelling on top of the Millennium simulation to study the joint formation of galaxies and their embedded supermassive black holes. Our goal is to test scenarios in which black hole accretion and quasar activity are triggered by galaxy mergers, and to constrain different models for the light curves associated with individual quasar events. In the present work, we focus on studying the spatial distribution of simulated quasars. At all luminosities, we find that the simulated quasar two-point correlation function is fit well by a single power law in the range  0.5 ≲ r ≲ 20  h −1 Mpc  , but its normalization is a strong function of redshift. When we select only quasars with luminosities within the range typically accessible by today's quasar surveys, their clustering strength depends only weakly on luminosity, in agreement with observations. This holds independently of the assumed light-curve model, since bright quasars are black holes accreting close to the Eddington limit, and are hosted by dark matter haloes with a narrow mass range of a few  1012  h −1 M  . Therefore, the clustering of bright quasars cannot be used to disentangle light-curve models, but such a discrimination would become possible if the observational samples can be pushed to significantly fainter limits. Overall, our clustering results for the simulated quasar population agree rather well with observations, lending support to the conjecture that galaxy mergers could be the main physical process responsible for triggering black hole accretion and quasar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号