首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yao  Jiaming  Lan  Hengxing  Li  Langping  Cao  Yiming  Wu  Yuming  Zhang  Yixing  Zhou  Chaodong 《Landslides》2022,19(3):703-718

The Sichuan-Tibet railway goes across the Upper Jinsha River, along which a large number of large historical landslides have occurred and dammed the river. Therefore, it is of great significance to investigate large potential landslides along the Jinsha River. In this paper, we inspect the deformation characteristics of a rapid landsliding area along the Jinsha River by using multi-temporal remote sensing, and analyzed its future development and risk to the Sichuan-Tibet railway. Surface deformations and damage features between January 2016 and October 2020 were obtained using multi-temporal InSAR and multi-temporal correlations of optical images, respectively. Deformation and failure signs obtained from the field investigation were highly consistent. Results showed that cumulative deformation of the landsliding area is more than 50 cm, and the landsliding area is undergoing an accelerated deformation stage. The external rainfall condition, water level, and water flow rate are important factors controlling the deformation. The increase of rainfall, the rise of water level, and faster flow rate will accelerate the deformation of slope. The geological conditions of the slope itself affect the deformation of landslide. Due to the enrichment of gently dipping gneiss and groundwater, the slope is more likely to slide along the slope. The Jinsha River continuously scours the concave bank of the slope, causing local collapses and forming local free surfaces. Numerical simulation results show that once the landsliding area fails, the landslide body may form a 4-km-long dammed lake, and the water level could rise about 200 m; the historic data shows that landslide dam may burst in 2–8 days after sliding. Therefore, strategies of landslide hazard mitigation in the study area should be particularly made for the coming rainy seasons to mitigate risks from the landsliding area.

  相似文献   

2.
Landslide risk assessment is based on spatially integrating landslide hazard with exposed elements-at-risk to determine their vulnerability and to express the expected direct and indirect losses. There are three components that are relevant for expressing landslide hazard: spatial, temporal, and magnitude probabilities. At a medium-scale analysis, this is often done by first deriving a landslide susceptibility map, and to determine the three types of probabilities on the basis of landslide inventories linked to particular triggering events. The determination of spatial, temporal, and magnitude probabilities depend mainly on the availability of sufficiently complete historical records of past landslides, which in general are rare in most countries (e.g., India, etc.). In this paper, we presented an approach to use available historical information on landslide inventories for landslide hazard and risk analysis on a medium scale (1:25,000) in a perennially typical data-scarce environment in Darjeeling Himalayas (India). We demonstrate how the incompleteness in the resulting landslide database influences the various components in the calculation of specific risk of elements-at-risk (e.g., buildings, population, roads, etc.). We incorporate the uncertainties involved in the risk estimation and illustrate the range of expected losses in the form of maximum and minimum loss curves. The study demonstrates that even in data-scarce environments, quantitative landslide risk assessment is a viable option, as long as the uncertainties involved are expressed.  相似文献   

3.
A Luoi is a Vietnamese–Laotian border district situated in the western part of Thua Thien Hue province, central Vietnam, where landslides occur frequently and seriously affect local living conditions. This study focuses on the spatial analysis of landslide susceptibility in this 263-km2 area. To analyze landslide manifestation in the study area, causative factor maps are derived of slope angle, weathering, land use, geomorphology, fault density, geology, drainage distance, elevation, and precipitation. The analytical hierarchical process approach is used to combine these maps for landslide susceptibility mapping. A landslide susceptibility zonation map with four landslide susceptibility classes, i.e. low, moderate, high, and very high susceptibility for landsliding, is derived based on the correspondence with an inventory of observed landslides. The final map indicates that about 37% of the area is very highly susceptible for landsliding and about 22% is highly susceptible, which means that more than half of the area should be considered prone to landsliding.  相似文献   

4.
Tanyaş  Hakan  Görüm  Tolga  Fadel  Islam  Yıldırım  Cengiz  Lombardo  Luigi 《Landslides》2022,19(6):1405-1420

On November 14, 2016, the northeastern South Island of New Zealand was hit by the magnitude Mw 7.8 Kaikōura earthquake, which is characterized by the most complex rupturing mechanism ever recorded. The widespread landslides triggered by the earthquake make this event a great case study to revisit our current knowledge of earthquake-triggered landslides in terms of factors controlling the spatial distribution of landslides and the rapid assessment of geographic areas affected by widespread landsliding. Although the spatial and size distributions of landslides have already been investigated in the literature, a polygon-based co-seismic landslide inventory with landslide size information is still not available as of June 2021. To address this issue and leverage this large landslide event, we mapped 14,233 landslides over a total area of approximately 14,000 km2. We also identified 101 landslide dams and shared them all via an open-access repository. We examined the spatial distribution of co-seismic landslides in relation to lithologic units and seismic and morphometric characteristics. We analyzed the size statistics of these landslides in a comparative manner, by using the five largest co-seismic landslide inventories ever mapped (i.e., Chi-Chi, Denali, Wenchuan, Haiti, and Gorkha). We compared our inventory with respect to these five ones to answer the question of whether the landslides triggered by the 2016 Kaikōura earthquake are less numerous and/or share size characteristics similar to those of other strong co-seismic landslide events. Our findings show that the spatial distribution of the Kaikōura landslide event is not significantly different from those belonging to other extreme landslide events, but the average landslide size generated by the Kaikōura earthquake is relatively larger compared to some other large earthquakes (i.e., Wenchuan and Gorkha).

  相似文献   

5.
The increased socio-economic significance of landslides has resulted in the application of statistical methods to assess their hazard, particularly at medium scales. These models evaluate where, when and what size landslides are expected. The method presented in this study evaluates the landslide hazard on the basis of homogenous susceptible units (HSU). HSU are derived from a landslide susceptibility map that is a combination of landslide occurrences and geo-environmental factors, using an automated segmentation procedure. To divide the landslide susceptibility map into HSU, we apply a region-growing segmentation algorithm that results in segments with statistically independent spatial probability values. Independence is tested using Moran’s I and a weighted variance method. For each HSU, we obtain the landslide frequency from the multi-temporal data. Temporal and size probabilities are calculated using a Poisson model and an inverse-gamma model, respectively. The methodology is tested in a landslide-prone national highway corridor in the northern Himalayas, India. Our study demonstrates that HSU can replace the commonly used terrain mapping units for combining three probabilities for landslide hazard assessment. A quantitative estimate of landslide hazard is obtained as a joint probability of landslide size, of landslide temporal occurrence for each HSU for different time periods and for different sizes.  相似文献   

6.
This is the first landslide inventory map in the island of Lefkada integrating satellite imagery and reports from field surveys. In particular, satellite imagery acquired before and after the 2003 earthquake were collected and interpreted with the results of the field survey that took place 1 week after this strong (Mw?=?6.3) event. The developed inventory map indicates that the density of landslides decreases from west to east. Furthermore, the spatial distribution of landslides was statistically analyzed in relation to the geology and topography for investigating their influence to landsliding. This was accomplished by overlaying these causal factors as thematic layers with landslide distribution data. Afterwards, weight values of each factor were calculated using the landslide index method and a landslide susceptibility map was developed. The susceptibility map indicates that the highest susceptibility class accounts for 38 % of the total landslide activity, while the three highest classes that cover the 10 % of the surface area, accounting for almost the 85 % of the active landslides. Our model was validated by applying the approaches of success and prediction rate to the dataset of landslides that was previously divided into two groups based on temporal criteria, estimation and validation group. The outcome of the validation dataset was that the highest susceptibility class concentrates 18 % of the total landslide activity. However, taking into account the frequency of landslides within the three highest susceptibility classes, more than 85 %, the model is characterized as reliable for a regional assessment of earthquake-induced landslides hazard.  相似文献   

7.
三峡库区滑坡规模与发育特征研究   总被引:2,自引:0,他引:2  
彭令  徐素宁  彭军还 《现代地质》2014,28(5):1077-1086
研究滑坡规模及发育特征对开展滑坡风险评价和解析地貌演化过程具有重要意义。以三峡库区为研究区,通过GIS技术和数理统计分析滑坡面积、体积、厚度、发育密度等特征参数及发育规律,以及采用变维分形理论研究滑坡规模与地质环境因素的分形特征。研究结果表明:土、岩质滑坡空间发育模式具有区域性和集群式特点,且不同类型滑坡在空间分布上具有集聚性和规模不均匀性。滑坡发育规模和时序变形速率均存在幂律规则,表明滑坡系统具有自组织临界性。发现滑坡规模具有变维分形特征,同时揭示出滑坡规模与地质环境因素之间的敏感性关系。研究结果对认识三峡库区滑坡发育规律及实现滑坡风险评价具有重要作用。  相似文献   

8.
The study area located in southern Kyrgyzstan is affected by high and ongoing landslide activity. To characterize this activity, a multi-temporal landslide inventory containing over 2800 landslide polygons was generated from multiple data sources. The latter include the results of automated landslide detection from multi-temporal satellite imagery. The polygonal representation of the landslides allows for characterization of the landslide geometry and determination of further landslide attributes in a way that accounts for the diversity of conditions within the landslide, e.g., at the landslide main scarp opposed to its toe. To perform such analyses, a methodology for efficient geographic information system (GIS)-based attribute derivation was developed, which includes both standard and customized GIS tools. We derived a number of landslide attributes, including area, length, compactness, slope, aspect, distance to stream and geology. The distributions of these attributes were analyzed to obtain a better understanding of landslide properties in the study area as a preliminary step for probabilistic landslide hazard assessment. The obtained spatial and temporal attribute variations were linked to differences in the environmental characteristics within the study area, in which the geological setting proved to be the most important differentiating factor. Moreover, a significant influence of the different data sources on the distribution of the landslide attribute values was found, indicating the importance of a critical evaluation of the landslide data to be used in landslide hazard assessments.  相似文献   

9.
This paper is a contribution to an important aspect of the systematic and quantitative assessment of landslide hazard and risk. The focus is on site-specific and detailed assessment for rainfall-triggered landslides and, in particular, on the estimation and interpretation of the temporal probability of landsliding. Historical rainfall data over a 109-year period were analysed with particular reference to a site along the Unanderra and Moss Vale Railway Line in the State of New South Wales, Australia. It is shown that the recurrence interval of landsliding and hence annual probability of occurrence is subject to significant uncertainty and that it cannot be regarded as a constant. Accordingly landslide hazard varies spatially as well as being a function of time. For the example case study considered in this paper the annual probability of landslide occurrence was estimated to be in the range 0.026–0.172. However, the mean annual probability of landslide reactivation was estimated to be in the range 0.037–0.078. Utilisation of methods for probability assessment proposed in this paper will contribute to more realistic assessment of hazard and risk and, therefore, to more efficient risk management.  相似文献   

10.
11.
This paper addresses the temporal variation of rainfall-triggered landslide hazard within the broader context of natural risk evolution. Analysis of a sequence of aerial photos covering a period of 60 years allowed the establishment of a record of landsliding for a site in the Wellington region, New Zealand. The data show one very dominant peak in the magnitude of landslide occurrence in the late 1970s, followed by a continuous decrease. Landslide hazard can be expressed by the frequency and magnitude of the landslide events, with the total surface area affected used as a surrogate for magnitude. However, the distinct decline of landslide magnitude through time from the 1980s onwards indicates that landslide hazard may change with time. This possibility is further explored by correlating potential landslide triggering storms with the magnitude of the landslide event, using the ‘Antecedent Soil Water Status’ model in combination with daily rainfall. The relation between magnitudes of rainfall and magnitudes of landslide events is found to be weak, suggesting that a given ‘Critical Water Content’ (antecedent soil water status and rainfall on the day) does not produce similar magnitudes of landsliding. Furthermore, the study shows that reactivation of previous landslides before the peak landslide occurrence of the late 1970s is low, while the situation is reversed after this peak and reactivation in the subsequent years plays a larger role. It is concluded that the pattern of landsliding cannot be explained by the pattern of rainfall and other factors are controlling the variation of landslide hazard in time. A possible explanation is a change of the geomorphological system with time, instigated by a massive period of landsliding (the late 1970s peak). Subsequent sediment exhaustion of source areas resulting from this period appears to alter the system’s subsequent reaction to an external trigger such as rainfall. The study demonstrates that landslide hazard analysis in general should not rely on the integral of the frequency–magnitude relationship only, but should include potential non-linear changes of system settings to increase the understanding of future system behaviour, and therefore hazard and risk.
Gabi HufschmidtEmail:
  相似文献   

12.
在快速城镇化背景下,人类活动已成为影响滑坡分布的重要因素。文章以重庆武隆区为例,基于1991—2015年330处历史滑坡数据,运用重力模型和标准差椭圆模型,揭示了武隆区滑坡灾害的时空演变格局;利用地理探测器分析了2001—2005、2006—2010和2011—2015三个时段滑坡分布的驱动因子,解释了滑坡驱动因子演变的机制。结果表明:(1)在时间分布上,武隆滑坡累计曲线呈现出“缓-陡-缓”的特征,2008年之前,滑坡发生速率随降雨量的增加而增长,而后在降雨量保持稳定的情况下,滑坡发生速率明显减缓;(2)在空间分布上,武隆滑坡集聚于西、中、东3个高发区,呈现出由西北—东南方向转向东北—西南方向的变化过程,并表现出方向性减弱和离散化的趋势;(3)在驱动因子上,降雨、地质因子和地形地貌等因子的解释力呈下降趋势,而人类活动因子的解释力不断增强,已逐渐成为影响滑坡分布的关键影响因素之一。研究成果可为三峡库区滑坡灾害防灾减灾工作部署提供依据。  相似文献   

13.
Landslide risk assessment (LRA) is a key component of landslide studies. The landslide risk can be defined as the potential for adverse consequences or loss to human population and property due to the occurrence of landslides. The LRA can be regional or site-specific in nature and is an important information for planning various developmental activities in the area. LRA is considered as a function of landslide potential (LP) and resource damage potential (RDP). The LP and RDP are typically characterized by the landslide susceptibility zonation map and the resource map (i.e., land use land cover map) of the area, respectively. Development of approaches for LRA has always been a challenge. In the present study, two approaches for LRA, one based on the concept of danger pixels and the other based on fuzzy set theory, have been developed and implemented to generate LRA maps of Darjeeling Himalayas, India. The LRA map based on the first approach indicates that 1,015 pixels of habitation and 921 pixels of road section are under risk due to landslides. The LRA map derived from fuzzy set theory based approach shows that a part of habitat area (2,496 pixels) is under very high risk due to landslides. Also, another part of habitat area and a portion of road network (7,204 pixels) are under high risk due to landslides. Thus, LRA map based on the concept of danger pixels gives the pixels under different resource categories at risk due to landslides whereas the LRA map based on the concept of fuzzy set theory further refines this result by defining the degree of severity of risk to these categories by putting these into high and low risk zones. Hence, the landslide risk assessment study carried out using two approaches in this paper can be considered in cohesion for assessing the risks due to landslides in a region.  相似文献   

14.
三峡库区崩滑地质灾害频发,堆积层滑坡是最常见的滑坡类型。在分析三峡库区145处库岸堆积层滑坡资料基础上,选取地形地貌、地质岩性和斜坡构造作为控制因素、降水和库水波动作为主要诱发因素,探究堆积层滑坡在上述关键影响因子下的分布发育规律及变形破坏响应特征,阐明内在机理,结果表明:(1)受区域地质构造和基岩地层岩性显著控制,滑坡发育频次和规模沿长江存在显著空间差异性;(2)砂页岩夹煤层岩组(SC)和泥灰岩与砂泥岩互层岩组(MSM)对库区堆积层滑坡危害最大,软岩、“软-硬”互层二元结构和水-岩(土)相互作用是主导滑坡发育的主要影响因素;(3)大多数滑坡涉水,主要发育在10°~30°斜坡上,前缘高程集中在100~175 m,受库水波动影响严重,岸别和斜坡结构对堆积层滑坡发育没有明显控制作用;(4)库区滑坡主要由降雨-库水下降联合诱发滑体前缘滑移-拉裂,引发牵引式滑坡,降雨与库水波动各自对滑体的影响格局和程度存在明显差异。以期研究成果为有针对性的库区滑坡总体防治提供一定的科学指导。  相似文献   

15.
The devastating Gorkha earthquake (M w 7.8) on April 25, 2015 and its aftershocks triggered numerous landslides across the Lesser and Higher Himalayas of central Nepal. This study aims to characterize these landslides, based on the local topography and geology, and to develop data for landslide hazard zoning. This study focused on a mountainous catchment of the Trishuli River, where a digital elevation model was used to examine hilllslope and river profiles, aerial photos were used to identify 155 coherent landslides, and satellite images were used to map 912 earthquake-induced landslides. The topography of this area is mainly characterized by incised V-shaped inner gorges and steep (> 35°) SW-facing scarp slopes. Although most of the coherent landslides were not reactivated by the earthquakes, the Gogane landslide was affected by the earthquake and partly failed. A majority of the earthquake-induced landslides (91%) were new landslides, while the others were enlarged old landslides. The earthquake-induced landslides occurred mainly on the steep slopes of V-shaped inner gorges and scarp slopes, in gneiss and quartzite strata of the Lesser Himalayas, and they were primarily associated with fractured rock masses. This analysis provides a framework for zoning areas vulnerable to earthquake-induced landslides.  相似文献   

16.
The 2005 northern Pakistan earthquake (magnitude 7.6) of 8 October 2005 occurred in the northwestern part of the Himalayas. We interpreted landslides triggered by the earthquake using black-and-white 2.5-m-resolution System Pour l’Observation de la Terre 5 (SPOT 5) stereo images. As a result, the counts of 2,424 landslides were identified in the study area of 55 by 51 km. About 79% or 1,925 of the landslides were small (less than 0.5 ha in area), whereas 207 of the landslides (about 9%) were large (1 ha and more in area). Judging from our field survey, most of the small landslides are shallow rock falls and slides. However, the resolution and whitish image in the photos prevented interpreting the movement type and geomorphologic features of the landslide sites in detail. It is known that this earthquake took place along preexisting active reverse faults. The landslide distribution was mapped and superimposed on the crustal deformation detected by the environmental satellite/synthetic aperture radar (SAR) data, active faults map, geological map, and shuttle radar topography mission data. The landslide distribution showed the following characteristics: (1) Most of the landslides occurred on the hanging-wall side of the Balakot–Garhi fault; (2) greater than one third of the landslides occurred within 1 km from the active fault; (3) the greatest number of landslides (1,147 counts), landslide density (3.2 counts/km2), and landslide area ratio (2.3 ha/km2) was found within Miocene sandstone and siltstone, Precambrian schist and quartzite, and Eocene and Paleocene limestone and shale, respectively; (4) there was a slight trend that large landslides occurred on vertically convex slopes rather than on concave slopes; furthermore, large landslides occurred on steeper (30° and more) slopes than on gentler slopes; (5) many large landslides occurred on slopes facing S and SW directions, which is consistent with SAR-detected horizontal dominant direction of crustal deformation on the hanging wall.  相似文献   

17.
Bian  Shiqiang  Chen  Guan  Zeng  Runqiang  Meng  Xingmin  Jin  Jiacheng  Lin  Linxin  Zhang  Yi  Shi  Wei 《Landslides》2022,19(5):1179-1197

The Heifangtai terrace, in Northwest China, is a typical area where loess landslides have been induced by agricultural irrigation, and many of the landslides are prone to reactivation. However, the spatiotemporal evolution and hydrological-triggering mechanisms of loess landslide reactivation are not well understood. In this research, multiple remote sensing (SBAS-InSAR, TLS, and optical remote sensing), integrated with time-lapse ERT (tl-ERT) imaging, was used to monitor the post-failure evolution of the Luojiapo landslide in Heifangtai during the period of May 2015 to Nov. 2020. Pronounced temporal and spatial differences in the deformation and hydrological evolution of landslides after sliding were observed. The largest displacement rates occurred in the landslide source area, and the lateral extension of the landslide source area caused by spatial differences in reactivation is an important feature of landslide evolution. In the landslide area, the groundwater table (GWT) decreased at first ascribed to the spring hole caused by the exposure of the GWT after sliding and then increased due to the subsequent continuous irrigation, and the lag time of the GWT response to irrigation decreased significantly. Spatial differences in GWT evolution are one of the main causes of spatial differences in landslide reactivation, and reactivation was more likely to occur where the GWT fluctuated at a high level. The GWT also fell with local reactivation. Our findings highlight the potential for obtaining internal and external spatiotemporal information of loess landslide evolution using multiple remote sensing integrated with tl-ERT. Our results also help to understand the reactivation process of irrigated loess landslides and provide a reference for the monitoring and early warning of such landslides.

  相似文献   

18.
滑坡预测预报的基础及我国主要滑坡岩组特征的确定   总被引:2,自引:1,他引:2  
滑坡已看成为一种地质灾害,它具有降低环境质量和破坏地表生态平衡的势头。由于人类工程活动而使滑坡灾害发生频繁,一些国家的许多学者已在从事滑坡规律及其空、时预测预报的研究,目的在于理想地去阻止或减缓其灾害作用,本文试图就上面问题作一努力。文中强调:工程地质类比法是滑坡预测预报的基础。其原理在于类似的工程地质环境会引起类同的滑坡。为了表示滑坡预测分区的数字制图,藉助于数据统计、概率及信息理论,类比法可从定性过渡到定量分析。据此基础而编制了滑坡过程工程地质预测简表。设1975年研究的滑坡岩性资料代表从全国范围内抽取的样本,则应用地质变量选取方法可得到我国主要滑坡岩组类型,其结果列于表4。  相似文献   

19.
Landslide zoning in a part of the Garhwal Himalayas   总被引:21,自引:1,他引:20  
 The Himalayas are undergoing constant rupturing in the thrust belt zone in the Garhwal Himalayas, due to which earthquake and mass movement activity is triggered. These processes of mass movement and landslides have been constantly modifying the landscape. Landslides are one of the indicators of the geomorphological modifications taking place in this active and fragile terrain. This work is aimed at providing another example of landslide susceptibility mapping based on geological and geomorphological attributes. The data collected from aerial photographs, topographic sheets and the image suggests that there is a correlation between the distribution of landslides and some of the geological and geomorphological factors, for example, the distance from an active fault, relative relief and slope. Parameters like factor of safety, altitude, relief, slope and the distance from the fault lineament have been included in the study. A rating system has been applied to the factors for arriving at a quantitative estimate of landslide susceptibility for each physiographic unit. Since terrain classification forms the foundation of this work, the entire study can be grouped into two sequential activities: (1) the terrain classification and (2) landslide susceptibility mapping. The result is the landslide susceptibility zoning map presented. The landslides have not been classified with respect to time and may represent the final result of the on-going geological, geomorphological and seismic activity since the Holocene period or late Pleistocene time when the glaciers retreated. The area chosen for the study lies between Badri gad and Barni gad in Yamuna valley region of the Garhwal Himalaya where a very large scale investment is in the pipe line for Hydroelectric power generation. Received: 12 August 1993 · Accepted: 13 January 1998  相似文献   

20.
Landslides are a major category of natural disasters, causing loss of lives, livelihoods and property. The critical roles played by triggering (such as extreme rainfall and earthquakes), and intrinsic factors (such as slope steepness, soil properties and lithology) have previously successfully been recognized and quantified using a variety of qualitative, quantitative and hybrid methods in a wide range of study sites. However, available data typically do not allow to investigate the effect that earlier landslides have on intrinsic factors and hence on follow-up landslides. Therefore, existing methods cannot account for the potentially complex susceptibility changes caused by landslide events. In this study, we used a substantially different alternative approach to shed light on the potential effect of earlier landslides using a multi-temporal dataset of landslide occurrence containing 17 time slices. Spatial overlap and the time interval between landslides play key roles in our work. We quantified the degree to which landslides preferentially occur in locations where landslides occurred previously, how long such an effect is noticeable, and how landslides are spatially associated over time. We also investigated whether overlap with previous landslides causes differences in landslide geometric properties. We found that overlap among landslides demonstrates a clear legacy effect (path dependency) that has influence on the landslide affected area. Landslides appear to cause greater susceptibility for follow-up landslides over a period of about 10  years. Follow-up landslides are on average larger and rounder than landslides that do not follow earlier slides. The effect of earlier landslides on follow-up landslides has implications for understanding of the landslides evolution and the assessment of landslide susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号