首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
蒋立群  孙蓉琳  梁杏 《地球科学》2021,46(11):4150-4160
为探讨含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响,基于非均质含水层砂箱实验,分别用传统等效均质模型、克立金插值和水力层析刻画含水层渗透系数场,并探讨了先验信息对水力层析结果的影响.将不同方法估算的渗透系数场用以预测地下水流和溶质运移过程,以此判断不同方法估算结果的优劣,分析含水层非均质性对地下水流和溶质运移的影响.结果表明:与克立金插值法相比,水力层析法可以更好地刻画含水层非均质性,较准确地预测地下水流和溶质运移过程;钻孔岩心渗透系数样本值作为先验信息可以提高水力层析法估算结果的精度;传统等效均质模型无法准确预测地下水流和溶质运移过程.含水层非均质性的增强将导致溶质污染羽分布形态和运移路径的空间变异性增强,并且优势通道直接决定溶质的分布及运移路径.   相似文献   

2.
How can the epikarst zone influence the karst aquifer hydraulic behaviour?   总被引:3,自引:0,他引:3  
The role of an epikarst zone in the karst aquifer hydraulic behaviour was brought into focus in our studies referring to the catchment area of the Hubelj spring (SW Slovenia). This study points out the significance of effects of the fast preferential flow—epiflow, which is the main factor controlling solute/contaminant transport towards the aquifer saturated zone. The so-called epikarstic hypothesis is verified on the basis of the most significant research results that are supported by the most important findings from the literature.  相似文献   

3.
岩溶区地下水数值模拟研究进展   总被引:2,自引:2,他引:0  
岩溶含水介质的不均一性导致岩溶地下水流动、溶质运移和热量迁移的数学模拟研究成为地下水模拟的难点。本文综述了岩溶区地下水流模拟的几种方法,重点阐述了等效多孔介质法、双重连续介质法和三重介质法的定义、发展过程和适用范围,并回顾了这几种方法的研究成果。从等效多孔介质法到三重介质法,模拟精度不断提高,适用范围也逐渐由大区域实际问题向小区域理论研究过渡。介绍了溶质运移模拟和热迁移模拟的研究方法及实例。溶质运移模拟以对流弥散方程为基础,其中尺度效应是溶质运移模拟的重点研究问题;热量迁移模拟应考虑地下热水密度变化对地下热水运动的影响。溶质运移模拟和热量迁移模拟往往是将迁移模型和已经调试成功的地下水流动模型相耦合,从而达到模拟溶质及热量迁移的目的。由于溶质运移和热量迁移的复杂性,现阶段水流模型多数处于等效多孔介质模型阶段。综合理论及实际应用,指出精确刻画裂隙及管道和注重基础数学算法是岩溶水数值模拟进步的关键。   相似文献   

4.
岩溶塌陷发育机理模式研究   总被引:6,自引:5,他引:1  
姜伏伟 《中国岩溶》2017,36(6):759-763
岩溶塌陷是我国岩溶区常见的地质灾害。目前,关于岩溶塌陷发育机理模式主要以力学分析为主。文章以岩溶塌陷过程为基础,探讨分析岩溶塌陷发育机理模式。依据地下水埋藏条件,土体分为包气带非饱和土体、潜水层饱和土体及承压水层承压性土体。根据“水-+土”相互作用,在包气带、潜水层和承压水层分别建立崩解作用、潜蚀作用和水力裂隙作用三种岩溶塌陷发育机理模式。   相似文献   

5.
The hydraulic behaviour of the karst aquifer in the Hubelj spring catchment area (SW Slovenia) was studied by using an indirect research method based on natural tracers. The variations of natural tracers (in precipitation and in groundwater) during the storm event made possible the separation of the Hubelj spring storm hydrograph by the three-component separation technique. The results produced information on the aquifer recharge, storage and discharge processes, as well as on the mechanisms that affected them. They verified the so-called epikarst hypothesis presuming that an important part of a karst aquifer recharge reaches rapidly and intensively from the epikarst zone. It was demonstrated that epikarst water could occupy up to 50% of the spring discharge during precipitation events. This phenomenon could have important consequences on protection and management of the problems of karst aquifers, including engineering problems in karst areas. With this respect the results could give way to new engineering ideas.  相似文献   

6.
Combining groundwater flow models with solute transport models represents a common challenge in groundwater resources assessments and contaminant transport modeling. Groundwater flow models are usually constructed at somewhat larger scales (involving a coarser discretization) to include natural boundary conditions. They are commonly calibrated using observed groundwater levels and flows (if available). The groundwater solute transport models may be constructed at a smaller scale with finer discretization than the flow models in order to accurately delineate the solute source and the modeled target, to capture any heterogeneity that may affect contaminant migration, and to minimize numerical dispersion while still maintaining a reasonable computing time. The solution that is explored here is based on defining a finer grid subdomain within a larger coarser domain. The local-grid refinement (LGR) implemented in the Modular 3D finite-difference ground-water flow model (MODFLOW) code has such a provision to simulate groundwater flow in two nested grids: a higher-resolution sub-grid within a coarse grid. Under the premise that the interface between both models was well defined, a comprehensive sensitivity and uncertainty analysis was performed whereby the effect of a parameter perturbation in a coarser-grid model on transport predictions using a higher-resolution grid was quantified. This approach was tested for a groundwater flow and solute transport analysis in support of a safety evaluation of the future Belgian near-surface radioactive waste disposal facility. Our reference coarse-grid groundwater flow model was coupled with a smaller fine sub-grid model in two different ways. While the reference flow model was calibrated using observed groundwater levels at a scale commensurate with that of the coarse-grid model, the fine sub-grid model was used to run a solute transport simulation quantifying concentrations in a hypothetical well nearby the disposal facility. When LGR coupling was compared to a one-way coupling, LGR was found to provide a smoother flow solution resulting in a more CPU-efficient transport solution. Parameter sensitivities performed with the groundwater flow model resulted in sensitivities at the head observation locations. These sensitivities identified the recharge as the most sensitive parameter, with the hydraulic conductivity of the upper aquifer as the second most sensitive parameter in regard to calculated groundwater heads. Based on one-percent sensitivity maps, the spatial distribution of the observations with the highest sensitivities is slightly different for the upper aquifer hydraulic conductivity than for recharge. Sensitivity analyses were further performed to assess the prediction scaled sensitivities for hypothetical contaminant concentrations using the combined groundwater flow and solute transport models. Including all pertinent parameters into the sensitivity analysis identified the hydraulic conductivity of the upper aquifer as the most sensitive parameter with regard to the prediction of contaminant concentrations.  相似文献   

7.
Groundwater aquifer vulnerability has been assessed by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination using GIS-based DRASTIC model along with solute transport modeling. This work demonstrates the potential of GIS to derive a vulnerability map by overlying various spatially referenced digital data layers (i.e., depth to water, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity) that portrays cumulative aquifer sensitivity ratings in Kishangarh, Rajasthan. It provides a relative indication of groundwater aquifer vulnerability to contamination. The soil moisture flow and solute transport regimes of the vadose zone associated with specific hydrogeological conditions play a crucial role in pollution risk assessment of the underlying groundwater resources. An effort has been made to map the vulnerability of shallow groundwater to surface pollutants of thestudy area, using soil moisture flow and contaminant transport modeling. The classical advection-dispersion equation coupled with Richard’s equation is numerically simulated at different point locations for assessing the intrinsic vulnerability of the valley. The role of soil type, slope, and the land-use cover is considered for estimating the transient flux at the top boundary from daily precipitation and evapotranspiration data of the study area. The time required by the solute peak to travel from the surface to the groundwater table at the bottom of the soil profile is considered as an indicator of avulnerability index. Results show a high vulnerability in the southern region, whereas low vulnerability is observed in the northeast and northern parts. The results have recognized four aquifer vulnerability zones based on DRASTIC vulnerability index (DVI), which ranged from 45 to 178. It has been deduced that approximately 18, 25, 34, and 23% of the area lies in negligible, low, medium and high vulnerability zones, respectively. The study may assist in decision making related to theplanning of industrial locations and the sustainable water resources development of the selected semi-arid area.  相似文献   

8.
Tracer concentration data from field experiments conducted in several carbonate aquifers (Malaga province, southern Spain) were analyzed following a dual approach based on the graphical evaluation method (GEM) and solute transport modeling to decipher flow mechanisms in karst systems at regional scale. The results show that conduit system geometry and flow conditions are the principal factors influencing tracer migration through the examined karst flow routes. Solute transport is mainly controlled by longitudinal advection and dispersion throughout the conduit length, but also by flow partitioning between mobile and immobile fluid phases, while the matrix diffusion process appears to be less relevant. The simulation of tracer breakthrough curves (BTCs) suggests that diffuse and concentrated flow through the unsaturated zone can have equivalent transport properties under extreme recharge, with high flow velocities and efficient mixing due to the high hydraulic gradients generated. Tracer mobilization within the saturated zone under low flow conditions mainly depends on the hydrodynamics (rather than on the karst conduit development), which promote a lower longitudinal advection and retardation in the tracer migration, resulting in a marked tailing effect of BTCs. The analytical advection-dispersion equation better approximates the effective flow velocity and longitudinal dispersion estimations provided by the GEM, while the non-equilibrium transport model achieves a better adjustment of most asymmetric and long-tailed BTCs. The assessment of karst underground flow properties from tracing tests at regional scale can aid design of groundwater management and protection strategies, particularly in large hydrogeological systems (i.e. transboundary carbonate aquifers) and/or in poorly investigated ones.  相似文献   

9.
Industrially sourced dense non-aqueous phase liquids (DNAPLs) contaminated an alluvial aquifer in France decades ago. The location(s) and nature of the pollution source zone(s) were unknown, and the dissolved concentrations of volatile organic compounds in the monitoring wells varied greatly with time. The aquifer was in hydraulic equilibrium with an artificial canal whose water level was highly variable (up to 5 m). These variations propagated into the aquifer, causing changes in the groundwater flow direction; a transient numerical model of flow and solute transport showed that they correlate with the concentration variations because the changes in the flow direction resulted in the contaminant plume shifting. The transient hydrogeological numerical model was built, taking into account solvent biodegradation with first-order chain, since biodegradation has a significant influence on the pollutant concentration evolution. The model parameterization confirms the position of the source zones among the potential troughs in the bedrock where DNAPLs could have accumulated. The groundwater model was successfully calibrated to reproduce the observed concentration variations over several years and allowed a rapid validation of the hypotheses on the functioning of the polluted system.  相似文献   

10.
11.
In this study a multi-tracer test with fluorescent tracers was combined with time series analyses of natural tracers to characterize the dynamics of the solute transport through different recharge pathways and to study hydraulic behaviour of a binary karst system under low-flow conditions. Fluorescent tracer testing included the introduction of uranine, amidorhodamine G, or naphthionate at three injection points. Sampling and monitoring took place at two karst springs (Malenščica, Unica) and at two underground rivers (Pivka, Rak) recharging the Unica River at the Polje of Planina, SW Slovenia. Other monitored parameters included precipitation, spring or underground river discharge, water temperature, and electrical conductivity. Water samples were collected and analyzed for total organic carbon, Mg2+, SO4 2−, and NO3 in the laboratory. In the study area, results of the tracer test suggest that contaminant transport in karst may be retarded for several weeks during low-flow conditions followed by increases in contaminant concentrations after subsequent rainfall events. Based on interpretation of tracer concentration breakthrough curves, low apparent dominant flow velocities (i.e., between 5.8 and 22.8 m/h through the well developed karst conduits, and 3.6 m/h through the prevailing vadose zone with a dominant influence of a diffuse recharge) were obtained. Together with analyses of hydro-chemographs the artificial tracing identified different origins of water recharging the studied aquifer. During prolonged low-water conditions the Malenščica spring is mainly recharged from the karst aquifer and the Unica spring by the sinking Pivka River. After more intensive rainfall events allogenic recharge from Cerknica prevails in the Malenščica spring, while the Unica spring drains mainly the allogenic water from the Pivka Valley. These findings of alternating hydraulic connections and drainage areas due to respective hydrological conditions are important and should be considered when monitoring water quality, implementing groundwater protection measures, and optimizing future water exploitation.  相似文献   

12.
Nitrate concentrations in multi-aquifer systems are heavily affected by the presence of wellbores (active or abandoned) that are screened in several aquifers. The spatial variability of hydraulic conductivity in the confining layers has also an important impact on the concentrations. A synthetic three-dimensional flow and transport exercise was carried in a multi-aquifer system consisting of two aquifers separated by an aquitard in which 100 vertical wellbores had been drilled. To model the wellbores and the flow and transport connection between aquifers that they may induce, we assign a high vertical hydraulic conductivity and a low effective porosity to the cell blocks including the wells. With these parameters, a solute will travel quickly from one aquifer to the other without being stored in the well itself. The wellbores will act as preferential pathways, and the solute will move quickly between aquifers according to the hydrodynamic conditions. Not considering these preferential pathways could induce erroneous interpretations of the solute distribution in an aquifer. We also noted that when there are vertical wellbores that connect aquifers in a multi-aquifer system, low conductivity in the aquitard enhances the flow of solute through the wellbores. Time-varying pumping rates induce important fluctuations in nitrate concentrations; therefore, any estimate of the water quality of the aquifer will depend on the moment when the data has been recorded. Consequently, concentration maps obtained by interpolation of point samples are seldom a good indicator of the chemical status of groundwater bodies; alternatively, we recommend complementing the usual interpolated maps with numerical models to gain a true understanding of the spatial distribution of the solute concentration.  相似文献   

13.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

14.
A spatial relationship between high capacity municipal production wells (>5,000 m3/day), completed in a deep bedrock aquifer, and a buried bedrock valley was recognized in the city of Guelph, southwestern Ontario, Canada. Most production wells are completed in a discrete zone, ~60 m below ground surface, within flat-lying dolostones of the Silurian Amabel Formation. Thick overburden and limited subsurface data make characterization of the karstic aquifer difficult. This study integrates hydrogeologic data with models of karst formation, deriving a conceptual model of porosity development as it relates to valley incision. Bedrock valley incision likely occurred prior to the early Wisconsinan age (>60–75 ka). Incision created steep hydraulic gradients within the flat-lying bedrock, and provided the driving force required to integrate regional groundwater flow into karst conduits that drained at the base of the valley. Dissolution in production zone dolostones was favoured over dissolution in shallower bedrock due to abundant bedding plane partings and fossiliferous facies with high intercrystalline porosity. Burial of the valley during subsequent ice advances reduced the valley’s hydraulic influence and the efficacy of the flow system to cause dissolution. The high capacity municipal wells near the buried bedrock valley tap into the now dormant karst aquifer system.  相似文献   

15.
以云南某矿区为研究对象,在详细调查区域水文地质条件和已有资料的基础上,结合调查区监测井,利用GMS软件建立研究区域地下水水流场模型和溶质运移模型。模型计算了在合理误差范围内的水流场模型并预测了硫酸盐在持续泄漏730d、180d后切断泄漏源,硫酸盐的迁移过程。研究结果表明:随着持续泄漏时间的增加,调查区域北部边界附近受到污染的浓度越高、污染范围越广,超标的污染物在北部边界区域进入岩溶含水层,遇到岩溶带会加速污染物向下游运移,破坏下游水质、危及下游村庄饮用水安全。  相似文献   

16.
通过对昆明地热田深层基岩地下热水系统的地质、水文地质条件和开采现状的分析,建立了考虑温压变化和越流条件的岩溶热储层中地下热水的水流和溶质(污染物)运移的准三维非稳定流数学模型。对开采条件下地热田Ⅱ 块段地下热水系统中水位及F- 、Cl- 、NH+4 、SO2-4 浓度的模拟结果表明,所建立的模型合理、可靠,具有较高的仿真性。模型可预测不同条件下地热田地下热水的流场和溶质浓度的动态变化趋势,为防治地下热水环境的进一步恶化提供参考。   相似文献   

17.
The combined influence of dip angle and adsorption heterogeneity on solute transport mechanisms in heterogeneous media can be understood by performing simulations of steady-state flow and transient transport in a heterogeneous aquifer with dipping anisotropy. Reactive and non-reactive contaminant transport in various types of heterogeneous aquifer is studied by simulations. The hydraulic conductivity (K) of the heterogeneous aquifer is generated by HYDRO_GEN with a Gaussian correlation spectrum. By considering the heterogeneity of the adsorption distribution coefficient (K d), a perfect negative correlation between lnK and lnK d is obtained by using the spherical grains model. The generated K and K d are used as input to groundwater flow and transport models to investigate the effects of dipping sedimentary heterogeneity on contaminant plume evolution. Simulation results showed that the magnitude of the dip angle strongly controls the plume evolution in the studied anisotropic and heterogeneous aquifer. The retarded average pore-water velocity (v/R) of the adsorption model significantly controls the horizontal spreading of the plume. The bottom plume is intensively retarded in the zones between the dipping lenses of lower hydraulic conductivity and the no-flow bottom boundary. The implications of these findings are very important for the management of contaminated heterogeneous aquifers.  相似文献   

18.
Hydrological modeling in the karst area,Rižana spring catchment,Slovenia   总被引:1,自引:1,他引:0  
Karst aquifers are known for their heterogeneity and irregular complex flow patterns which make them more difficult to model and demand specific modeling approaches. This paper presents one such approach which is based on a conceptual model. The model was applied in a karst area of the catchment of Rižana spring (200 km2). It is based on the MIKE SHE code and incorporates the main hydrological processes and geological features of the karst aquifer (diffuse and concentrated infiltration, allogenic recharge, quick and slow groundwater flow, shifting groundwater divides and groundwater outflow from the catchment area). Modeling of evapotranspiration and flow in the upper part of the unsaturated zone is more detailed. For the modeling of groundwater flow in the karst aquifer, a conceptual model was applied which uses drainage function for the simulation of groundwater flow through large conduits (karst channels and large fissures). The model was calibrated and validated against the observed Rižana spring discharge which represents a measured response of the aquifer. The results of validation show that the model is able to adequately simulate temporal evolution of the spring discharge, measured by Nash–Sutcliffe coefficient (0.82) as well as overall water balance.  相似文献   

19.
The characterization of river–aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.  相似文献   

20.
Numerical simulation of sea water intrusion near Beihai, China   总被引:6,自引:0,他引:6  
 A leaky aquifer system occurs in the coastal plain near Beihai, China. Seawater intrusion into the confined aquifer took place along the northern coast. Chloride concentrations at some observation wells increased steadily from 1988 and were at their peak in 1993. A quasi-three-dimensional element model has been developed to simulate the spatial and temporal evolution of hydraulic heads and chloride concentrations of the groundwater near the northern coast. The simulation model was based on the transition zone approach, which requires simultaneous solution of the governing water flow and solute transport equations. An irregular grid of a quadrangle was used to discretize the flow domain. Various aquifer parameters were verified with the numerical model in order to obtain satisfactory matches between computed values and observed data from an investigation. Three pumpage schemes were designed to use the calibrated model for prediction of future changes in water levels and chloride concentrations in groundwater in the study area. Results show that seawater intrusion would worsen in the confined aquifer if the current rates of groundwater pumpage continue. The alternative, to eliminate pumpage in the intruded area and to moderate pumpage rates from water supply wells far from the seashore, may limit seawater intrusion significantly and is considered attractive in the area. Received: 27 September 1999 · Accepted: 27 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号