首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
The Fornax cluster galaxies NGC 1399 and NGC 1404 are ideal for studying the effects of a cluster environment on globular cluster systems. Here we present new optical imaging of these two galaxies from both the Hubble Space Telescope 's Wide Field and Planetary Camera 2 and the Cerro Tololo Inter-American Observatory 1.5-m telescope. The combination of both data sets provides a unique insight on the spatial and colour distribution of globular clusters. From B − I colours, we find that both galaxies have a broad globular cluster metallicity distribution that is inconsistent with a single population. Two Gaussians provide a reasonable representation of the metallicity distribution in each galaxy. The metal-rich subpopulation is more centrally concentrated than the metal-poor one. We show that the radial metallicity gradient can be explained by the changing relative mix of the two globular cluster subpopulations. We derive globular cluster surface density profiles, and find that they are flatter (i.e., more extended) than the underlying starlight. The total number of globular clusters and specific frequency are calculated to be N =5700±500, SN =11.5±1.0 for NGC 1399, and N =725±145, SN =2.0±0.5 for NGC 1404. Our results are compared with the expectations of globular cluster formation scenarios.  相似文献   

2.
We have obtained spectroscopic redshifts of colour-selected point sources in four wide area VLT-FLAMES (Very Large Telescope-Fibre Large Array Multi Element Spectrograph) fields around the Fornax cluster giant elliptical galaxy NGC 1399, identifying as cluster members 27 previously unknown faint     compact stellar systems (CSS), and improving redshift accuracy for 23 previously catalogued CSS.
By amalgamating our results with CSS from previous 2dF observations and excluding CSS dynamically associated with prominent (non-dwarf) galaxies surrounding NGC 1399, we have isolated 80 'unbound' systems that are either part of NGC  1399's globular cluster (GC) system or intracluster GCs. For these unbound systems, we find (i) they are mostly located off the main stellar locus in colour–colour space; (ii) their projected distribution about NGC  1399 is anisotropic, following the Fornax cluster galaxy distribution, and there is weak evidence for group rotation about NGC  1399; (iii) their completeness-adjusted radial surface density profile has a slope similar to that of NGC  1399's inner GC system; (iv) their mean heliocentric recessional velocity is between that of NGC  1399's inner GCs and that of the surrounding dwarf galaxies, but their velocity dispersion is significantly lower; (v) bright CSS  ( M V < −11)  are slightly redder than the fainter systems, suggesting they have higher metallicity; (vi) CSS show no significant trend in   g '− i '  colour index with radial distance from NGC  1399.  相似文献   

3.
This paper explores if, and to what an extent, the stellar populations of early-type galaxies can be traced through the colour distribution of their globular cluster (GC) systems. The analysis, based on a galaxy sample from the Virgo Advanced Camera for Surveys data, is an extension of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that (a) integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; (b) the inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; (c) most GC systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; (d) the stellar mass–metallicity relation is relatively shallow but shows a slope change at   M *≈ 1010 M  . Galaxies with smaller stellar masses show predominantly unimodal GC colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched interstellar matter.  相似文献   

4.
We present BVI photometry of 190 galaxies in the central 4 ×3 deg2 region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities.
In this paper, we investigate the surface brightness–magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness–magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec−2, it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness–magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation.
  B − V   and   V − I   colours are determined for a sample of 113 cluster galaxies and the colour–magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour–magnitude relation. Their mean   V − I   colours (∼1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour–magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.  相似文献   

5.
We studied and compared the radial profiles of globular clusters and of the stellar bulge component in three galaxies of the Fornax cluster observed with the WFPC2 of the Hubble Space Telescope ( HST ). The stars are more concentrated toward the galactic centres than globular clusters, in agreement with what has already been observed in many other galaxies: if the observed difference is the result of evolution of the globular cluster systems starting from initial profiles similar to those of the halo–bulge stellar components, a relevant fraction of their initial mass (74, 47 and 52 per cent for NGC 1379, 1399 and 1404, respectively) should have disappeared in the inner regions. This mass has probably contributed to the nuclear field population, local dynamics and high-energy phenomena in the primeval life of the galaxy. An indication in favour of the evolutionary interpretation of the difference between the globular cluster system and stellar bulge radial profiles is given by the positive correlation we found between the value of the mass lost from the globular cluster system and the central galactic black hole mass in the set of seven galaxies for which these data are available.  相似文献   

6.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

7.
We present wide-area UBRI photometry for globular clusters around the Leo group galaxy NGC 3379. Globular cluster candidates are selected from their B -band magnitudes and their  ( U − B ) o   versus  ( B − I ) o   colours. A colour–colour selection region was defined from photometry of the Milky Way and M31 globular cluster systems. We detect 133 globular cluster candidates, which supports previous claims of a low specific frequency for NGC 3379.
The Milky Way and M31 reveal blue and red subpopulations, with  ( U − B ) o   and  ( B − I ) o   colours indicating mean metallicities similar to those expected based on previous spectroscopic work. The stellar population models of Maraston and Brocato et al. are consistent with both subpopulations being old, and with metallicities of  [Fe/H]∼−1.5  and −0.6 for the blue and red subpopulations, respectively. The models of Worthey do not reproduce the  ( U − B ) o   colours of the red (metal-rich) subpopulation for any modelled age.
For NGC 3379 we detect a blue subpopulation with similar colours, and presumably age/metallicity, to that of the Milky Way and M31 globular cluster systems. The red subpopulation is less well defined, perhaps due to increased photometric errors, but indicates a mean metallicity of [Fe/H]∼−0.6.  相似文献   

8.
The presence of two globular cluster subpopulations in early-type galaxies is now the norm rather than the exception. Here we present two more examples for which the host galaxy appears to have undergone a recent merger. Using multi-colour Keck imaging of NGC 1052 and 7332 we find evidence for a bimodal globular cluster colour distribution in both galaxies, with roughly equal numbers of blue and red globular clusters. The blue ones have similar colours to those in the Milky Way halo and are thus probably very old and metal-poor. If the red globular cluster subpopulations are at least of solar metallicity, then stellar population models indicate young ages. We discuss the origin of globular clusters within the framework of formation models. We conclude that recent merger events in these two galaxies have had little effect on their overall globular cluster systems. We also derive globular cluster density profiles, global specific frequencies and, in the case of NGC 1052, radial colour gradients and azimuthal distribution. In general these globular cluster properties are normal for early-type galaxies.  相似文献   

9.
We present a study of the X-ray emission from the nuclei of galaxies observed in the core of the Perseus cluster in a deep exposure with Chandra . Point sources are found coincident with the nuclei of 13 early-type galaxies, as well as the central galaxy NGC 1275. This corresponds to all galaxies brighter than M B > −18 in the Chandra field. All of these sources have a steep power-law spectral component and four have an additional thermal component. The unabsorbed power-law luminosities in the 0.5–7.0 keV band range from 8 × 1038 to 5 × 1040 erg s−1. We find no simple correlations between the K -band luminosity, or the FUV and NUV AB magnitudes of these galaxies and their X-ray properties. We have estimated the black hole masses of the nuclei using the K -band   M BH– L K bol  relation and again find no correlation between black hole mass and the X-ray luminosity. Bondi accretion on to the black holes in the galaxies with minihaloes should make them much more luminous than observed.  相似文献   

10.
We report the detection of hard X-ray emission components in the spectra of six nearby, giant elliptical galaxies observed with the ASCA satellite. The systems studied, which exhibit strong dynamical evidence for supermassive black holes in their nuclei, are M87, NGC 1399 and NGC 4696 (the dominant galaxies of the Virgo, Fornax and Centaurus clusters, respectively) and NGC 4472, 4636 and 4649 (three further giant ellipticals in the Virgo cluster). The ASCA data for all six sources provide clear evidence for hard emission components, which can be parametrized by power-law models with photon indices in the range Γ=0.6–1.5 (mean value 1.2) and intrinsic 1–10 keV luminosities of 2×1040–2×1042 erg s−1. Our results imply the identification of a new class of accreting X-ray source, with X-ray spectra significantly harder than those of binary X-ray sources, Seyfert nuclei or low-luminosity active galactic nuclei, and bolometric luminosities relatively dominated by their X-ray emission. We discuss various possible origins for the hard X-ray emission and argue that it is most likely to be due to accretion on to the central supermassive black holes, via low radiative efficiency accretion flows coupled with strong outflows. In the case of M87, our detected power-law flux is in good agreement with a previously reported measurement from ROSAT High Resolution Imager observations, which were able to resolve the jet from the nuclear X-ray emission components. We confirm previous results showing that the use of multiphase models in the analysis of the ASCA data leads to determinations of approximately solar emission-weighted metallicities for the X-ray gas in the galaxies. We also present results on the individual element abundances in NGC 4636.  相似文献   

11.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

12.
We investigate the old globular cluster (GC) population of 68 faint  ( M V > −16 mag)  dwarf galaxies located in the halo regions of nearby (≲12 Mpc) loose galaxy groups and in the field environment based on archival Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) images in F606W and F814W filters. The combined colour distribution of 175 GC candidates peaks at  ( V − I ) = 0.96 ± 0.07 mag  and the GC luminosity function turnover for the entire sample is found at   M V ,TO=−7.6 ± 0.11 mag  , similar to the old metal-poor Large Magellanic Cloud (LMC) GC population. Our data reveal a tentative trend of   M V ,TO  becoming fainter from late- to early-type galaxies. The luminosity and colour distributions of GCs in dIrrs show a lack of faint blue GCs (bGCs). Our analysis reveals that this might reflect a relatively younger GC system than typically found in luminous early-type galaxies. If verified by spectroscopy, this would suggest a later formation epoch of the first metal-poor star clusters in dwarf galaxies. We find several bright (massive) GCs which reside in the nuclear regions of their host galaxies. These nuclear clusters have similar luminosities and structural parameters as the peculiar Galactic clusters suspected of being the remnant nuclei of accreted dwarf galaxies, such as M54 and ωCen. Except for these nuclear clusters, the distribution of GCs in dIrrs in the half-light radius versus cluster mass plane is very similar to that of Galactic young halo clusters, which suggests comparable formation and dynamical evolution histories. A comparison with theoretical models of cluster disruption indicates that GCs in low-mass galaxies evolve dynamically as self-gravitating systems in a benign tidal environment.  相似文献   

13.
We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ∼0.17 using rest-frame near-ultraviolet–optical spectral energy distributions, 24-μm infrared data and Hubble Space Telescope morphologies from the STAGES data set. The cluster sample is based on COMBO-17 redshifts with an rms precision of  σ cz ≈ 2000 km s−1  . We find that 'dusty red galaxies' and 'optically passive spirals' in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only four times lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of  log  M */M=[10, 11]  where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific star formation rate (SFR) of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At  log  M */M < 10  , such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note that edge-on spirals play a minor role; despite being dust reddened they form only a small fraction of spirals independent of environment.  相似文献   

14.
The discovery of protoglobular cluster candidates in many present-day mergers allows us to understand better the possible effects of a merger event on the globular cluster system of a galaxy, and to foresee the properties of the end-product. By comparing these expectations with the properties of globular cluster systems of elliptical galaxies at the present time we can constrain merger models. The observational data indicate that (i) every gaseous merger induces the formation of new star clusters, and (ii) the number of new clusters formed in such a merger increases with the gas content of the progenitor galaxies. Low-luminosity (about M V  > −21), discy ellipticals are generally thought to be the result of a gaseous merger. As such, new globular clusters are expected to form but have not been detected to date. We investigate various reasons for the non-detection of subpopulations in low-luminosity ellipticals, i.e. absence of an old population, absence of a new population, destruction of one of the populations and, finally, an age–metallicity conspiracy that allows old and new globular clusters to appear indistinguishable at the present epoch. All of these possibilities lead us to a similar conclusion, namely that low-luminosity ellipticals did not form recently ( z  < 1) in a gas-rich merger, and might not have formed in a major merger of stellar systems at all. High-luminosity ellipticals do reveal globular cluster subpopulations. However, it is difficult to account for the two populations in terms of mergers alone and, in particular, we can rule out scenarios in which the second subpopulation is the product of a recent, gas-poor merger.  相似文献   

15.
The first spectroscopic census of active galactic nuclei (AGNs) associated with late-type galaxies in the Virgo cluster was carried out by observing 213 out of a complete set of 237 galaxies more massive than   M dyn > 108.5 M  . Among them, 77 are classified as AGNs [including 21 transition objects, 47 low-ionization nuclear emission regions (LINERs) and nine Seyferts] and comprise 32 per cent of the late-type galaxies in Virgo. Due to spectroscopic incompleteness, at most 21 AGNs are missed in the survey, so that the fraction would increase up to 41 per cent. Using corollary near-infrared observations that enable us to estimate galaxy dynamical masses, it is found that AGNs are hosted exclusively in massive galaxies, i.e.   M dyn≳ 1010 M  . Their frequency increases steeply with the dynamical mass from zero at   M dyn≈ 109.5 M  to virtually 1 at   M dyn > 1011.5 M  . These frequencies are consistent with those of low-luminosity AGNs found in the general field by the Sloan Digital Sky Survey. Massive galaxies that harbour AGNs commonly show conspicuous r -band star-like nuclear enhancements. Conversely, they often, but not necessarily, contain massive bulges. A few well-known AGNs (e.g. M61, M100, NGC 4535) are found in massive Sc galaxies with little or no bulge. The AGN fraction seems to be only marginally sensitive to galaxy environment. We infer the black hole masses using the known scaling relations of quiescent black holes. No black holes lighter than  ∼106 M  are found active in our sample.  相似文献   

16.
We report the 3.5σ detection of dust in the core of the metal-rich ([Fe/H] =−0.4) globular cluster NGC 6356. The dust mass in the core is ∼ 4–17 × 10−3 M⊙, depending on the dust equilibrium temperature. We rule out sputtering as a grain destruction mechanism in NGC 6356, unless grains are very small (∼30 Å). We also place the upper limit of 6.6 × 10−3 on the CO-to-dust ratio in this cluster. This value is significantly smaller than the CO-to-dust ratio in the general Galactic interstellar medium, and in the outflows of evolved stars.  相似文献   

17.
Recent spectroscopic observations of galaxies in the Fornax Cluster reveal nearly unresolved 'star-like' objects with redshifts appropriate to the Fornax Cluster. These objects have intrinsic sizes of ≈100 pc and absolute B -band magnitudes in the range  −14< M B<−11.5 mag  and lower limits for the central surface brightness   μ B≳23 mag arcsec−2  , and so appear to constitute a new population of ultracompact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar superclusters (by Kroupa) , which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of superclusters in a tidal field. The YMCs merge on a few supercluster crossing times. Superclusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. Less massive superclusters resembling knot 430 in the Antennae may evolve to ω Cen-type systems. Low-concentration superclusters are disrupted by the tidal field, dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the   μ B− M B  region populated by low-mass Milky Way dSph satellites.  相似文献   

18.
We study the globular cluster (GC) system of the dust-lane elliptical galaxy NGC 6702, using B -, V - and I -band imaging observations carried out at the Keck telescope. This galaxy has a spectroscopic age of ≈2 Gyr suggesting recent star formation. We find strong evidence for a bimodal GC colour distribution, with the blue peak having a colour similar to that of the Galactic halo GCs. Assuming that the blue GCs are indeed old and metal-poor, we estimate an age of 2–5 Gyr and supersolar metallicity for the red GC subpopulation. Despite the large uncertainties, this is in reasonable agreement with the spectroscopic galaxy age. Additionally, we estimate a specific frequency of S N =2.3±1.1 for NGC 6702. We predict that passive evolution of NGC 6702 will further increase its specific frequency to S N ≈2.7 within 10 Gyr, in closer agreement to that of typical present-day ellipticals. We also discuss evidence that the merger/accretion event that took place a few Gyr ago involved a high gas fraction.  相似文献   

19.
We have measured central line strengths for a complete sample of early-type galaxies in the Fornax cluster, comprising 11 elliptical and 11 lenticular galaxies, more luminous than M B  = −17. In contrast to the elliptical galaxies in the sample studied by González (and recently revisited by Trager) we find that the Fornax ellipticals follow the locus of galaxies of fixed age in Worthey's models and have metallicities varying from roughly solar to three times solar. The lenticular galaxies, however, exhibit a substantial spread to younger luminosity-weighted ages, indicating a more extended star formation history. We present measurements of the more sensitive indices: C4668 and HγA; these confirm and reinforce the conclusions that the elliptical galaxies are coeval and that only the lenticular galaxies show symptoms of late star formation. The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The young luminosity-weighted ages of the S0s in the Fornax cluster are consistent with the recent discovery that the fraction of S0 galaxies in intermediate-redshift clusters is a factor of 2–3 lower than found locally, and suggest that a fraction of the cluster spiral galaxy population has evolved to quiescence in the 5-Gyr interval from z  = 0.5 to the present. Two of the faintest lenticular galaxies in our sample have blue continua and strong Balmer-line absorption, suggesting starbursts ≲2 Gyr ago. These may be the low-redshift analogues of the starburst or post-starburst galaxies seen in clusters at z  = 0.3, similar to the Hδ-strong galaxies in the Coma cluster.  相似文献   

20.
We present K -band observations of the low-luminosity galaxies in the Coma cluster, which are responsible for the steep upturn in the optical luminosity function at M R∼−16, discovered recently. The main results of this study are as follows.
(i) The optical–near-infrared colours of these galaxies imply that they are dwarf spheroidal galaxies. The median B − K colour for galaxies with −19.3< MK <−16.3 is 3.6 mag.
(ii) The K -band luminosity function in the Coma cluster is not well constrained, because of the uncertainties due to the field-to-field variance of the background. However, within the estimated large errors, this is consistent with the R -band luminosity function, shifted by ∼3 mag.
(iii) Many of the cluster dwarfs lie in a region of the B − K versus B − R colour–colour diagram where background galaxies are rare ( B − K <5; 1.2< B − R <1.6). Local dwarf spheroidal galaxies lie in this region too. This suggests that a better measurement of the K -band cluster luminosity can be made if the field-to-field variance of the background can be measured as a function of colour, even if it is large.
(iv) If we assume that none of the galaxies in the region of the B − K versus B − R plane given in (iii) in our cluster fields are background, and that all the cluster galaxies with 15.5< K <18.5 lie in this region of the plane, then we measure α=−1.41+0.34−0.37 for −19.3< MK −16.3, where α is the logarithmic slope of the luminosity function. The uncertainties in this number come from counting statistics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号