首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
评稳恒态学说   总被引:1,自引:0,他引:1  
在人类对宇宙的认识史上,一直存在着唯物主义和唯心主义,辩证法和形而上学的尖锐斗争.唯心主义者认为精神是第一性的,物质是第二性的,有的还公开主张宇宙万物是神创造出来的;唯物主义者认为今天存在于宇宙间的万物,是既有的物质按照客观规律发展的结果.三、四百年来自然科学以越来越快的速度发展着,人们对自然界的认识越来越深入,但两种宇宙观的斗争至今仍十分激烈.滥用、歪曲自然科学的新成就从而提出的各  相似文献   

2.
本文阐明了引力规范理论的自治性.以简单的R+Q~2理论为例讨论了宇宙模型.挠率的存在并不改变标准宇宙模型的结果.  相似文献   

3.
法轮功组织者利用广大群众对宇宙的好奇和求知心理,东拼西凑,到处抄袭和编造出所谓的“法轮宇宙”来蒙骗广大群众和他的信徒们。李洪志等人编造的“法轮宇宙”有以下内容:1.地球是宇宙的中心。2.宇宙是有外壳、有边缘的。3.在一定范围内有3000个这样的宇宙。4.宇宙是有层次的(只有法轮功才能分出层次)。5.将会发生地球爆炸。6.用现代科学永远探测不到这个宇宙的奥秘等。  相似文献   

4.
本文回顾了已有的利用类星体各种子集来确定宇宙减速因子q_0的工作,并对q_0重新作了统一的归算. 从8个射电类星体的样品子集计算所得的q_0值,全部落在1.0≤q_0≤3.5范围内.文中最重要的假设就是射电类星体的特征光度与宇宙时(cosmic epoch)无关,因此,只要宇宙早期的射电类星体不比晚期的亮,那么宇宙的封闭性就是非常可能的了.  相似文献   

5.
本文用球对称扰动模型导出了星系暗晕的平均密度与形成时间的关系 ,并由此估算银河系的形成时间tV.我们把球状星团的年龄作为银河系年龄tG 的代表 ,则tG tV 是宇宙年龄 .对Ωλ=0 ,0 .7和 0 .8的平坦宇宙模型 ,本文计算并讨论了能与它相洽的哈勃常数的范围 .结果表明 ,若哈勃常数大到 80km·s- 1 Mpc- 1 左右 ,引入宇宙常数并不一定能解决宇宙年龄的矛盾  相似文献   

6.
该文利用Integrated Sachs-Wolfe(ISW)效应探测宇宙大尺度引力势随时间的变化速率,从而能够在宇宙学尺度上检验引力的性质.以Yukawa引力势为例,探讨了利用ISW效应检验引力性质的能力.计算表明,ISW效应对引力的性质很敏感,通过与宇宙微波背景辐射实验WMAP五年的观测结果相比较,发现相对于牛顿常数,等效牛顿常数在宇宙学尺度上最多只有约2%的改变.  相似文献   

7.
自1998年超新星观测发现宇宙加速膨胀以来,暗能量问题已经成为当前天体物理和宇宙学研究中最重要的问题之一.此后关于宇宙微波背景辐射和大尺度结构的测量也进一步支持了1998年的发现.该文首先概述了宇宙学的起源,然后详细介绍了目前解释宇宙加速膨胀机制的三类模型,包括各模型提出的动机、存在的优缺点,以及当前的主要进展等.最后对暗能量模型作了总结和展望.  相似文献   

8.
宇宙上演的是一场气势恢宏的星系舞蹈,每一个成员都参演其中。可观测宇宙是一个浩瀚的时空剧场,在这个剧场里的演员是数以千亿计的星系。星系并不喜欢孤零零地独处,它们往往呼朋引伴,群居共舞,跳起了一曲曲优美的宇宙华尔兹。  相似文献   

9.
安芳霞 《天文学报》2019,60(6):116-119
<正>星系是组成宇宙的基石,其形成与演化是天体物理研究的重要内容.星系中的恒星形成活动是星系成长和演化的主要驱动力之一.已有的星系巡天给出比较一致的宇宙恒星形成历史:宇宙的恒星形成密度从高红移一直增加到红移z~2,随后按指数率下降直到z=0.系统地研究宇宙恒星形成峰值时期恒星形成星系的性质对我们理解并限制星系形成与演化的理论模型至关重要.  相似文献   

10.
爱因斯坦的引力学说和广义相对论,除对牛顿引力理论做了众所周知的改进外,还在其1919年提出的引力方程式中,首次引进了宇宙学常数∧。这样,便意味着宇宙中存在负的引力质量,产生斥力,以与普通物质的引力相抗衡,使整个宇宙保持静态。但是,在哈勃于1923年发现宇宙膨胀现象之后,爱因斯坦极度后悔,称此事是他一生中所犯的最大错误,又放弃了宇宙学常数项。 20世纪80年代兴起的暴涨宇宙学说却认为正是因为极早期宇宙中∧不为零,导致宇宙在极短时间内急剧膨胀,但在今日的宇宙中∧=0。1998年初,两个天  相似文献   

11.
<正>当前对宇宙的主要观测都指向物质成分为冷暗物质主导的~CDM宇宙学.在冷暗物质的宇宙中,原初的微小扰动在引力作用下增长为位力化的团块,称为暗物质晕.小质量暗晕最先形成,它们之间的相互并合形成了更大质量的暗晕.并合之后,前身暗晕在当前载晕中会以自束缚的子结构形式存活很长时间,称为子晕.在数值模拟中我们可以对子晕的形成和演化进行详细的研究.这种研究为星系形成演化模型提供了基础,同时也影响了我们观测上探测暗物质的方式.  相似文献   

12.
夏子晴 《天文学报》2021,62(2):21-112
目前已经有很多观测证据表明宇宙中存在着大量暗物质,其能量密度占据了目前宇宙总能量密度的1/4.根据高精度的数值模拟和引力透镜观测,我们已经对从矮星系到星系团中的暗物质空间分布有了较好的理解,但是对于暗物质究竟是什么我们还一无所知.由此,物理学家提出了很多假想的粒子模型.  相似文献   

13.
宇宙信息     
宇宙信息宇宙膨胀的新证据大家知道,多年来,宇宙膨胀唯一的观测证据是哈勃定律,即视河外星系的谱线红移为多普勒效应所计算出的星系退行速度与距离成正比。但一直有学者对宇宙膨胀说提出疑问(参见本刊1996年第6期“宇宙真的在膨胀吗”一文)以欧洲南方天文台莱邦...  相似文献   

14.
追溯宇宙演化的长河,随着137亿年前大爆炸的余晖逐渐散去,宇宙曾经经历过一段漫长的黑暗时期。忽然有一天,在宇宙的深处,诞生了第一代发光天体,这些天体的光芒逐步照亮了整个宇宙,从此给我们的宇宙带来了蓬勃的生机。能否让人们亲眼目睹宇宙从黑暗走向光明的整个过程?能否让人们看到宇宙中诞生的第一缕曙光?今天,天文学家们正在努力实现人类的这一梦想。  相似文献   

15.
天文学是以宇宙为研究对象的。在当代,对宇宙的研究不仅包括宇宙间数不胜数的星系,也包括它们的生态环境,特别是各种形式的生命的存在,包括智能生物,形象点说就是“外星人”。对外星人,有些民族留下了各种传说。比如有人认为西非马里共和的朵根族黑人对天狼星的知识是由外...  相似文献   

16.
对若干遥远星系中Ⅰa型超新星的观测,以及威尔金森微波各向异性探测器(WMAP)提供的信息和星系斯隆数字巡天(SDSS)的结果都表明宇宙确实在加速膨胀。宇宙加速膨胀说明宇宙中存在着一种排斥力,这种力在星系尺度内并不重要,但在星系之间的环境下,它的作用就十分明显,大多数天文学家认为这种排斥力源于宇宙内存在着的暗能量。但暗能量究竟是什么?一种建议认为暗能量就是爱因斯坦在用广义相对论说明宇宙时,为使宇宙模型维持静止状态而引进的以宇宙学常数(cosmological constant)λ为标志的暗能量,λ与普遍存在于真空空间内的反引力有关,其主要特征是能量密度在宇宙长河的所有时期保持不变,是一个恒量;另一种建议是斯坦哈特(P.Steinhardt)等人提出的充斥在空间中的精质(quintessence),这种形式的暗能量不是恒定不变的,因时间和空间而异,一些理论工作者建议修改引力学说来说明宇宙加速膨胀现象。美国费米实验室的宇宙学家科尔布(Rocky Kolb)则认为星系在空间分布的不均匀是导致宇宙加速膨胀的诱因。  相似文献   

17.
正宇宙再电离是宇宙从黑暗时期到完全电离过渡的重要阶段,也是宇宙学研究的一个非常重要的课题,但是目前为止人们对宇宙再电离仍然缺乏足够精确的观测,其中最大的问题是微弱的有效信号往往淹没于巨大的前景噪声中因而很难提取出来.本工作中研究了宇宙再电离时代的动力学苏尼阿耶夫-泽尔多维奇效应(Kinetic Sunyaev-Zel’dovich, k SZ)、X射线背景以及与中性氢的21 cm信息的互相  相似文献   

18.
我们利用含αR~2+γR_(μv)R~(μv)项的宇宙理论同带有一个标量场φ的Einstein理论之间的等价性,讨论了该宇宙的暴涨行为.结果表明,在D维空时(D>2)中,存在指数型的暴涨解.  相似文献   

19.
吴德金  陈玲 《天文学报》2023,64(3):24-29
现代科学表明宇宙中99%以上的可观测物质都处于等离子体状态,从小尺度的微观粒子动力学集体过程与能量转换机制到大尺度的宇宙等离子天体结构状态与爆发活动现象,都是等离子天体物理学的研究课题.从宇宙演化历史、大尺度结构形成以及爆发活动现象等方面,系统地论述了等离子天体物理学在现代天文学发展以及现代等离子体宇宙观形成中的重要作用.同时,结合空间卫星科学探测研究及其对现代天文学的巨大影响,进一步阐述了地球磁层和日球层等空间等离子体实地探测研究在等离子天体物理学研究中所扮演的“天然实验室”的独特作用.  相似文献   

20.
一.能探测到总星系的边缘吗? 通常把我们观测所及的宇宙部分称为总星系(Metagalaxy)。也有人认为,总星系是一个比星系更高一级的天体层次,它的尺度可能小于、等于或大于观测所及的宇宙部分。 20世纪八九十年代以来,天文学家们已观测到了不少遥远的天体。例如,一个红移值z=5.64的天体就意味着我们见到了122.8亿年以前古老宇宙中  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号