首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Brunovistulian terrane represents a microcontinent of enigmatic Proterozoic provenance that was located at the southern margin of Baltica in the early Paleozoic. During the Variscan orogeny, it represented the lower plate at the southern margin of Laurussia, involved in the collision with the Armorican terrane assemblage. In this respect, it resembles the Avalonian terrane in the west and the Istanbul Zone in the east. There is a growing evidence about the presence of a Devonian back-arc at the margin of the Brunovistulian terrane. The early Variscan phase was characterized by the formation of Devonian extensional basins with the within-plate volcanic activity and formation of narrow segments of oceanic crust. The oldest Viséan flysch of the Rheic/Rhenohercynian remnant basin (Protivanov, Andelska Hora and Horní Benesov formations) forms the highest allochthonous units and contains, together with slices of Silurian Bohemian facies, clastic micas from early Paleozoic crystalline rocks that are presumably derived from terranes of Armorican affinity although provenance from an active Brunovistulian margin cannot be fully excluded either. The development of the Moravo–Silesian late Paleozoic basin was terminated by coal-bearing paralic and limnic sediments. The progressive Carboniferous stacking of nappes and their impingement on the Laurussian foreland led to crustal thickening and shortening and a number of distinct deformational and folding events. The postorogenic extension led to the formation of the terminal Carboniferous-early Permian Boskovice Graben located in the eastern part of the Brunovistulian terrane, in front of the crystalline nappes. The highest, allochthonous westernmost flysch units, locally with the basal slices of the Devonian and Silurian rocks thrusted over the Silesicum in the NW part of the Brunovistulian terrane, may share a similar tectonic position with the Giessen–Harz nappes. The Silesicum represents the outermost margin of the Brunovistulian terrane with many features in common with the Northern Phyllite Zone at the Avalonia–Armorica interface in Germany.  相似文献   

2.
Ophiolites of different Paleozoic ages occur in North-West (NW) Iberia in a rootless suture representing the remnants of the Rheic Ocean. Associated allochthonous terranes in the hanging- and foot-walls of the suture derive from the former margins, whereas the relative autochthon corresponds to the Paleozoic passive margin of northern Gondwana. The Paleozoic tectonic evolution of this part of the circum-Atlantic region is deduced from the stratigraphical, petrological, structural and metamorphic evolution of the different units and their ages. The tectonic reconstruction covers from Cambro-Ordovician continental rifting and the opening of the Rheic Ocean to its Middle to Upper Devonian closure. Then, the Variscan Laurussia–Gondwana convergence and collision is briefly described, from its onset to the late stages of collapse associated with the demise of the orogenic roots.  相似文献   

3.
The structure and tectonics of the Aga Zone are considered. It is shown that this zone is a system of tectonic nappes thrust over the Argun microcontinent. The zone is composed of two rock complexes related to the Variscan and Kimmerian structural stages. The Variscan stage (Silurian(?)-Early Carboniferous) comprises structural elements that correspond to the continental slope; the oceanic basin proper; the active continental margin, including an accretionary wedge; and an island arc and backarc basin. The Devonian age of the ophiolites of the Shilka Belt is specified. The formation of this set of tectonic units is related to the Middle Paleozoic pulse of the opening of the Mongolia-Okhotsk paleobasin. The Kimmerian stage (Middle Carboniferous-Early Jurassic) is characterized by a different style of structural evolution. A system of separate troughs filled with flyschoid sequences was formed on the Variscan basement. The unstable setting related to shortening and closure of the paleobasin brought about the spatial migration of sedimentation zones and the development of intraformational breaks in sedimentation, as well as unconformities. This stage was completed in the Lias by the general uplift of the territory and the formation of Jurassic and Cretaceous mollase along its periphery. The Aga allochthonous mass was ultimately formed in the Middle Jurassic. This event is recorded in emplacement of Middle-Late Jurassic granitic plutons that blocked the nappes. The granitic-metamorphic layer was formed in the Paleozoic and Early Mesozoic at the margin of the Aga Zone upon its conjugation with the adjacent continental masses; this layer is related to crustal anatexis. The bulk of the granitic rocks of the Aga Zone were generated in the Middle and Late Jurassic due to the collision of the North Asian continent with the Argun microcontinent.  相似文献   

4.
More than 50% of the Alps expose fragments of Palaeozoic basement which were assembled during the Alpine orogeny. Although the tectonic and metamorphic history of the basement units can be compared to that of the Variscan crust in the Alpine foreland, most of the basement pieces of the Alps do not represent the direct southern continuation of Variscan structural elements evident in the Massif Central, the Vosges–Black Forest or the Bohemian massif. The basement units of the Alps all originated at the Gondwana margin. They were derived from a Precambrian volcanic arc suture fringing the northern margin of Gondwana, from which they were rifted during the Cambrian–Ordovician and Silurian. A short-lived Ordovician orogenic event interrupted the general rifting tendency at the Gondwana active margin. After the Ordovician, the different blocks drifted from the Gondwana margin to their Pangea position, colliding either parallel to Armorica with Laurussia or with originally peri-Gondwanan blocks assembled presently in Armorica. From the Devonian onwards, many basement subunits underwent the complex evolution of apparently oblique collision and nappe stacking. Docking started in the External massifs, the Penninic and Lower and middle Austroalpine units in approximately Devonian/early Carboniferous times, followed by the Upper Austroalpine and the South Alpine domains, in the Visean and the Namurian times, respectively. Wrenching is probably the best mechanism to explain all syn and post-collisional phenomena since the Visean followed by post-orogenic collapse and extension. It explains the occurrence of strike-slip faults at different crustal levels, the formation of sedimentary troughs as well as the extrusion and intrusion of crustal and mantle-derived magmas, and allows for contemporaneous rapid uplift of lower crustal levels and their erosion. From the Stephanian onwards, all regions were deeply eroded by large river systems.  相似文献   

5.
The Variscan continental suture zone exposed in NW Iberia is examined to uncover the long-lived rheological control exerted by the strata deposited over the external parts of Gondwana on its geodynamic evolution. The suture occurs within a set of allochthonous terranes whose limits were taken as domain boundaries to interpret the Variscan stacking of Paleozoic continental domains and retrodeform the resulting nappe pile. The suture zone formed due to closure of ocean basins located between Gondwana and Laurussia during the Late Paleozoic and consists of relics of oceanic and transitional crust. The suture zone exhibits a tabular to lens shape due to repeated tectonic events dominated by non-coaxial deformation (thrusts and low-angle normal faults). Thrusting and normal faulting also involved the margins of the continents bounding the suture. The structure of the continental blocks, however, is dominated by folds, particularly large nappe folds with pronounced superimposed flattening. The upper part of the basal allochthonous units comprises a rheologically incompetent domain below the suture zone. This domain is typified by the carbonaceous-rich strata, which are probably Ordovician–Silurian sediments based on U–Pb detrital zircon populations. The rheology of this layer determined the location of the first accretionary thrust that initiated the Late Devonian subduction of the Gondwana margin below the suture zone. By favoring fault development, the upper sequence of the basal allochthonous units as a whole influenced the exhumation of deep-seated continental crust, the transference of the suture zone over Gondwana, and the re-equilibration of the resulting overthickened crust.  相似文献   

6.
Zircon U-Pb LA-ICPMS ages were obtained from three metasedimentary and two metavolcanic samples from the Monte Cavallino (South Tyrol) and the Cima Vallona (Carnic Alps) tectono-metamorphic groups from the eastern South Alpine crystalline basement in NE Italy. These analyses were performed to constrain the maximum depositional ages of the South Alpine domain, and to compare the spatial and temporal provenance variations with those of adjacent terranes. The detrital zircon dataset from the metasedimentary rocks (416 grains) yield populations with age peaks at 2.7–2.9 Ga, 1.8–2.1 Ga, 1.2–0.85 Ga, and 0.65–0.45 Ga, with maximum depositional ages ranging from the latest Neoproterozoic to the Silurian. The metavolcanic zircon dataset (209 grains) documents the presence of a two Ordovician volcanic events in the South Alpine domain. The detrital zircon dataset implies that the clastic units of the South Alpine crystalline basement were (a) deposited on the peri-Gondwanan active continental margin and (b) were originally sourced from the Proterozoic and Paleozoic units of NW Gondwana and hence should no longer be considered as exotic elements. The age spectra of the three metasedimentary units highlight differences between the Ediacaran basement gneiss, the Ordovician greywacke, and the Silurian metaconglomerate, suggesting up-section age variations due to a temporal change in provenance. Collectively, these new detrital zircon U-Pb ages imply that the clastic units within the South Alpine domain recorded sedimentation at c. 550 Ma on the peri-Gondwanan active continental margin, followed by rift-related continental and marine sedimentation in a back-arc basin setting until at least the Silurian. The South Alpine domain ultimately rifted off from Gondwana due to back-arc spreading, and subsequently underwent Variscan metamorphism during accretion onto the Laurussia margin, which started at c. 380 Ma and lasted until at least c. 320 Ma.  相似文献   

7.
《Gondwana Research》2014,25(2):756-763
The Variscan suture exposed in NW Iberia contains a stack of terranes including two allochthonous units with continental affinity and Gondwanan provenance (Upper and Basal Units), separated by an ophiolite belt where the most common units show protolith ages at c. 395 Ma. Recent Lu–Hf zircon data obtained from these ophiolites indicate interaction between the gabbroic magmas and old continental crust. Hence, the ophiolites could not have originated in a deep ocean basin associated with a mature mid-ocean-ridge or intraoceanic subduction. The tectonothermal evolution of the continental terranes bounding the suture zone records two consecutive events of deep subduction. The Upper Units record an initial high-P/ultra-high-P metamorphic event that occurred before 400–390 Ma, while the Basal Units were affected by a second high-P/low-to-intermediate-T metamorphic event dated at c. 370 Ma. Continental subduction affected the most external margin of Gondwana and developed in a setting of dextral convergence with Laurussia. Development of the two high-P events alternated with the opening of an ephemeral oceanic basin, probably of pull-apart type, in Early Devonian times. This ephemeral oceanic domain is suggested as the setting for the protoliths of the most common ophiolites involved in the Variscan suture. Current ideas for the assembly of Pangea advocate a single collisional event between Gondwana and Laurussia in the Carboniferous. However, the new evidence from the allochthonous terranes of the Variscan belt suggests a more complex scenario for the assembly of the supercontinent, with an interaction between the colliding continental margins that started earlier and lasted longer than previously considered. Based on modern analogs of continental interaction, the development of complex collisions, as here suggested for Gondwana and Laurussia during the assembly of Pangea, could have been the norm rather than the exception throughout Earth history.  相似文献   

8.
There is little consensus in characterizing the effects of the migrated late Pan-African/Lower Paleozoic configuration (western Paleotethys and precursory Paleozoic oceans) and its Variscan, late Variscan, and Eo-Cimmerian involvement. Constrained by a limited choice of the geological, biostratigraphical, and paleogeographical constraints, the focus of this regional geological synthesis is the little-known Devonian – Lower Carboniferous polymetamorphic 'Veles Series' (southern Vardar-Axios Zone, Northeast Mediterranean). Kinematic reconstructions indicate that the drifted carbonate platform assemblage of the 'Veles Series' including its Lower Carboniferous collision occurred along an active margin of southwestern Moesia, Laurussian foreland. Despite the fact that the dominant, low-grade metamorphic imprint across the 'Veles Series' is compatible with the ‘soft’ Eo-Cimmerian docking (i.e. Triassic), the documented Lower Carboniferous age suggests a Variscan involvement.A distinctive Late Paleozoic age is consistent with the north Gondwana and Variscan developments, reflected by the peculiar protoliths pallet portraying the presence of the oceanic crust to deep-marine equivalents. Accommodated to the west (paleo-south) of the late Cadomian Serbo-Macedonian Unit (a segment of the former peri-Gondwanan terrane assembly) and to the north of the Cimmerian Minoan system (East Mediterranean), the 'Veles Series' reflects a migrated rift to carbonate platform system. Despite the significant Alpine overprinting, based on this regional geological synthesis we propose that the 'Veles Series' is a 60 km-long suture segment documenting a so far rather poorly explored Variscan segment of the Paleotethyan lithosphere exposed within Balkans/Northeast Mediterranean.  相似文献   

9.
Elba Island, located midway between Corsica and mainland Italy, is a small but important fragment of the Adria Plate. It has a rich sedimentary record preserved in a stack of tectonic nappes of both continental margin and oceanic origin. Especially the detrital zircons in early Paleozoic to early Mesozoic metasedimentary rocks provide an archive of many important geological events in the island's history. Elba Island and Adria originated along the northern margin of Gondwana, but drifted north in Silurian times to become part of Europe. A large new dataset of LA-ICP-MS and SIMS U–Pb zircon ages allows us to trace this history. Three main stratigraphic units have been investigated. The oldest Porto Azzurro Unit was deposited in the early Cambrian and has zircon age distributions indicating a typical northern African provenance, most likely sourced from the Saharan Metacraton. The Ortano Unit has a simple, mostly unimodal Ordovician age distribution that is entirely dominated by metavolcanic rocks and their erosional products; a sample of the metavolcanic Ortano Porphyroids provided a SIMS U–Pb zircon age of 460 ± 3 Ma. This phase of intense volcanism is related to the subduction of the Rheic Ocean beneath Gondwana, terminating with initial rifting and subsequent opening of the Paleotethys. This also marks the onset of the separation of a range of European terranes, including Adria and future Elba Island, from Gondwana. The Permo-Triassic Monticiano–Roccastrada Unit is the first to show a European provenance with the appearance of large amounts of Variscan and late to post-Variscan detritus. The presence of Variscan detrital zircons in the Permo-Triassic sediments is unexpected, since a Variscan age signature is so far not well recorded in the Adria Plate. This dataset is the most comprehensive detrital zircon dataset so far available for the Adria Plate and documents Adria's close affinity to Africa in the Lower Paleozoic, as well as its initial rifting within an active continental margin setting during the Ordovician and its final separation and independent evolution since late Palaeozoic times.  相似文献   

10.
The Cantabrian Zone of NW Iberia preserves a voluminous, almost continuous, sedimentary sequence that ranges from Neoproterozoic to Early Permian in age. Its tectonic setting is controversial and recent hypotheses include (i) passive margin deposition along the northern margin of Gondwana or (ii) an active continental margin or (iii) a drifting ribbon continent. In this paper we present detrital zircon U–Pb laser ablation age data from 13 samples taken in detrital rocks from the Cantabrian Zone sequence ranging from Early Silurian to Early Permian in depositional age. The obtained results, together with previously published detrital zircon ages from Ediacaran–Ordovician strata, allow a comprehensive analysis of changing provenance through time. Collectively, these data indicate that this portion of Iberia was part of the passive margin of Gondwana at least from Ordovician to Late Devonian times. Zircon populations in all samples show strong similarities with the Sahara Craton and with zircons found in Libya, suggesting that NW Iberia occupied a paleoposition close to those regions of present-day northern Africa during this time interval. Changes in provenance in the Late Devonian are attributed to the onset of the collision between Gondwana and Laurussia.Additionally, the Middle Carboniferous to Permian samples record populations consistent with the recycling of older sedimentary sequences and exhumation of the igneous rocks formed before and during the Variscan orogeny. Late-Devonian to Permian samples yield zircon populations that reflect topographic changes produced during the Variscan orogeny and development of the lithospheric scale oroclinal buckling.  相似文献   

11.
Due to the political boundaries between the Central European countries, on one hand, and the thick Tertiary cover in the Pannonian Basin, on the other, the eastward continuation of the Alpine and Dinaridic units has been ambiguous and poorly documented. Based on comparative analyses, the aim of the present paper is to define the pre-Tertiary structural units in the junction area of the Alpine, Dinaridic, and Pannonian regions, in the SW part of the Pannonian Basin, and to draw conclusions on the continuation of the Alpine and Dinaridic units. According to diagnostic characteristics of the Periadriatic Lineament system, the Balaton Lineament system may be considered as its direct eastern continuation. North of the Periadriatic–Balaton Lineament system, the Transdanubian Range Unit, due to its pre-Tertiary paleogeographic setting, shows mainly South Alpine facies relations; however, its present structural position is identical to that of the Upper Austroalpine nappes. Between the Periadriatic–Balaton and Zagreb–Zemplin Lineament systems heterogeneous structural units are juxtaposed, forming the Sava Composite Unit. In the northern part of this composite unit non-metamorphosed nappes occur which can be considered the eastern continuation of the South Alpine units. These nappes are overthrust onto Internal Dinaridic units in the Tertiary. The Zagreb–Zemplin (Mid-Hungarian) Lineament separates the Sava Unit from the Tisza Unit showing close affinity to the Tethyan margin of the Eurasian plate during the early stage of the Alpine evolution. Received: 1 June 1999 / Accepted: 14 March 2000  相似文献   

12.
Within the Variscan Orogen, Early Devonian and Late Devonian high‐P belts separated by mid‐Devonian ophiolites can be interpreted as having formed in a single subduction zone. Early Devonian convergence nucleated a Laurussia‐dipping subduction zone from an inherited lithospheric neck (peri‐Gondwanan Cambrian back‐arc). Slab‐retreat induced upper plate extension, mantle incursion and lower plate thermal softening, favouring slab‐detachment within the lower plate and diapiric exhumation of deep‐seated rocks through the overlying mantle up to relaminate the upper plate. Upper plate extension produced mid‐Devonian suprasubduction ocean floor spreading (Devonian ophiolites), while further convergence resulted in plate coupling and intraoceanic ophiolite imbrication. Accretion of the remaining Cambrian ocean heralded Late Devonian subduction of inner sections of Gondwana across the same subduction zone and the underthrusting of mainland Gondwana (culmination of NW Iberian allochthonous pile). Oblique convergence favoured lateral plate sliding, and explained the different lateral positions along Gondwana of terranes separated by Palaeozoic ophiolites.  相似文献   

13.
扬子地块泥盆纪—石炭纪古地磁新结果及其古地地理意义   总被引:15,自引:1,他引:15  
张世红  朱鸿等 《地质学报》2001,75(3):303-313
本文通过对扬子地块西南缘贵州独山-平塘地区泥盆-石炭纪316块定向岩心样品的系统退磁处理,揭示出晚侏罗世、新生代两期重磁化成.73个岩心样品,分布在早一中泥盆世(17个)、晚泥盆世(25个)、早石炭世(24个)和中-晚石炭世(7个)4个统计单元,得到了最可能的原生剩磁。结合已有的古地磁数据,修订了扬子地块极移曲,纯利 移曲线拟合的结果表明,扬子地块在早古生代是冈瓦那大陆的组成部分,与印度-喜马拉雅-澳大利亚地区临近。晚泥盆世、冈瓦那大陆发生大规模顺时针旋转,扬子地块开始与之分离。  相似文献   

14.
http://www.sciencedirect.com/science/article/pii/S1674987111001113   总被引:1,自引:0,他引:1  
The Rheic Ocean was one of the most important oceans of the Paleozoic Era.It lay between Laurentia and Gondwana from the Early Ordovician and closed to produce the vast Ouachita-Alleghanian -Variscan orogen during the assembly of Pangea.Rifting began in the Cambrian as a continuation of Neoproterozoic orogenic activity and the ocean opened in the Early Ordovician with the separation of several Neoproterozoic arc terranes from the continental margin of northern Gondwana along the line of a former suture.The rapid rate of ocean opening suggests it was driven by slab pull in the outboard lapetus Ocean.The ocean reached its greatest width with the closure of lapetus and the accretion of the periGondwanan arc terranes to Laurentia in the Silurian.Ocean closure began in the Devonian and continued through the Mississippian as Gondwana sutured to Laurussia to form Pangea.The ocean consequently plays a dominant role in the Appalachian-Ouachita orogeny of North America,in the basement geology of southern Europe,and in the Paleozoic sedimentary,structural and tectonothermal record from Middle America to the Middle East.Its closure brought the Paleozoic Era to an end.  相似文献   

15.
Variscan geodynamic evolution of the Carnic Alps (Austria/Italy)   总被引:1,自引:1,他引:1  
The South-Alpine Carnic Alps are part of the southern flank of the European Variscides and display a continuous sedimentary record from Late Ordovician to Devonian times followed by Carboniferous S-directed nappe stacking and Late Carboniferous to Early Permian post-collisional collapse. The tectonometamorphic and sedimentary evolution of the Carnic Alps resembles a continuous process where pre- and syn-orogenic volcanism, syn-orogenic flysch sedimentation, deformation including nappe stacking, metamorphism and tectonic collapse shift in age from internal zones in the N towards external zones in the S. New structural, petrological and sedimentological data are presented concerning the tectonometamorphic history of the Carnic Alps. We distinguish three thrust sheets or tectonic nappes differing in their stratigraphic, sedimentological, deformational and metamorphic histories which were thrust over each other in Carboniferous times. Our data lead to a new geodynamic model showing an evolution from rifting or back-arc spreading in the Late Ordovician to the establishment of a mature passive continental margin in the Late Devonian/Early Carboniferous, flysch sedimentation in an active continental margin setting during the Visean/Namurian and finally collision during the Late Carboniferous between the northern margin of Gondwana and a microcontinent to the N.  相似文献   

16.
The Variscan fold belt of Europe resulted from the collision of Africa, Baltica, Laurentia and the intervening microplates in early Paleozoic times. Over the past few years, many geological, palaeobiogeographic and palaeomagnetic studies have led to significant improvements in our understanding of this orogenic belt. Whereas it is now fairly well established that Avalonia drifted from the northern margin of Gondwana in Early Ordovician times and collided with Baltica in the late Ordovician/early Silurian, the nature of the Gondwana derived Armorican microplate is more enigmatic. Geological and new palaeomagnetic data suggest Armorica comprises an assemblage of terranes or microblocks. Palaeobiogeographic data indicate that these terranes had similar drift histories, and the Rheic Ocean separating Avalonia from the Armorican Terrane Assemblage closed in late Silurian/early Devonian times. An early to mid Devonian phase of extensional tectonics along this suture zone resulted in formation of the relatively narrow Rhenohercynian basin which closed progressively between the late Devonian and early Carboniferous. In this contribution, we review the constraints provided by palaeomagnetic data, compare these with geological and palaeobiogeographic evidence, and present a sequence of palaeogeographic reconstructions for these circum-Atlantic plates and microplates from Ordovician through to Devonian times.  相似文献   

17.
《Geodinamica Acta》2013,26(1-3):127-143
The western part of the Polish Outer Carpathians is built up from the thrust, imbricated Upper Jurassic-Neogene flysch deposits. The following Outer Carpathian nappes have been distinguished: Magura Nappe, Fore-Magura group of nappes, Silesian, Subsilesian and Skole nappes. Interpretation of seismic and magnetotelluric survey from the region South of Wadowice, allows observation of relationship between basement and flysch nappes in the Outer Carpathians. It also allows identification of dislocation cutting both flysch nappes and their basement. All the Outer Carpathian nappes are thrust over the southern part of the North European Platform. The platform basement is composed of older Precambrian metamorphic rocks belonging to the Bruno-Vistulicum terrane. Sedimentary cover consists of Paleozoic, Mesozoic and Neogene sequences. The characteristic features of this boundary are horsts and troughs of general direction NW-SE, turning W-E. Faults cutting only the consolidated basement and the Paleozoic cover were formed during the Hercynian Orogeny in the Carboniferous and the Early Permian. Most of the older normal faults were covered by allochtonous flysch nappes forming thus the blind faults. During the last stage of the geodynamic development the Carpathians thrust sheets moved towards their present position. Displacement of the Carpathians northwards is related to development of dextral strike-slip faults of N—S direction. The orientation of this strike-slip fault zones zone more or less coincides with the surface position of the major faults perpendicular to the strike of the Outer Carpathian thrustsheets. The huge fault cuts formations from the Paleozoic basement through the flysch allochton between the boreholes in Sucha Beskidzka area. The displacement of nappes of the Carpathian overthrust and diapiric extrusion of plastic formations of the lower flysch units occurred along this fault.  相似文献   

18.
Four metasedimentary zircon populations from different tectonometamorphic units of the Central and the Northern Schwarzwald (Variscan belt, SW-Germany) were investigated using SEM, cathodoluminescence and SHRIMP dating. Despite partially strong modifications of primary internal morphologies during Variscan metamorphism at amphibolite (750 °C, 0.4–0.6 GPa) and granulite-facies conditions (950–1,000 °C, 1.4–1.8 GPa), many grains show well-preserved protolith ages. The detritus indicates a northern Gondwana origin and different Palaeozoic episodes of sediment deposition and consolidation. Two of the studied sediments were deposited in Cambrian/early-Ordovician times and consolidated in positions close to northern Gondwana. Late Ordovician and rare Devonian detritus from sediments of two other tectonometamorphic units indicates much later sedimentation close to the leading edge of Gondwana or a terrane assemblage during northern drift towards Laurussia. Subsolidus growth of new zircon due to Variscan granulite facies metamorphism of one of the tectonometamorphic units is precisely dated at 335±2 Ma.Editorial responsibility: J. Hoefs  相似文献   

19.
The Guarguardz Complex, basement of the Cordillera Frontal, included in the proposed Chilenia Terrane, consists of metasedimentary rocks deposited in clastic and carbonatic platforms. Turbiditic sequences point out to slope or external platform environments. According to geochemical data, the sedimentary protoliths derived through erosion of a mature cratonic continental basement. Volcanic and subvolcanic rocks with N and E-MORB signature were interbeded in the metasedimentary rocks during basin development. A compressional stage, starting with progressive deformation and metamorphism, followed this extensional stage. Continuing deformation led to the emplacement of slices of oceanic crust, conforming an accretionary prism during Late Devonian. The Guarguardz Complex and equivalent units in western Precordillera and also in the Chilean Coastal Cordillera share common evolutional stages, widely represented along the western Gondwana margin. These evidences imply that Chilenia is not an allochthonous terrane to Gondwana, but a portion of its Early Paleozoic margin. Regional configuration indicates that the Guarguardz Complex and equivalent units represent the accretionary prism of the Famatinian arc (Middle Ordovician-Late Devonian).  相似文献   

20.
A number of Variscan nappe complexes were recognized in the Late Mesozoic structure of the Front Range Zone of the Greater Caucasus in the 1970s. They consist predominantly of greenstone units and override one another in a consecutive order. The only exception is the upper, Atsgara Nappe, which is composed of crystalline schists, amphibolites, and microgneisses. Crystalline schists, gneisses, amphibolites, and other rocks of the so-called Blyb Complex occur at the base of the nappe packet. The affinity of crystalline rocks of the Blyb Complex to one of the upper Variscan nappes is substantiated in this paper. The Middle Paleozoic rocks, which originally were located below the Blyb Complex in the Front Range structure, overrode its rocks along the surface of the Blyb Thrust Fault in the Early Triassic. Since that time, the crystalline rocks of the Blyb Complex have occupied the lowermost position in the structure of the Front Range. The absence of Upper Paleozoic rocks in the footwall of the thrust fault is due to the fact that, in the Late Paleozoic, the area underlain by the Blyb Complex was an inlier and a source of clastic material. The hanging wall of the Blyb Thrust Fault may be traced farther southward into the Main Range Zone, where it most likely consists of the Laba Group and other rocks. As has been established previously, the lower portion of the Laba Group consists of analogues of the Middle Paleozoic successions of the Front Range Zone, while its upper portion consists of crystalline schists of the Lashtrak Nappe, which occupy a position similar to that of the Atsgara Nappe metamorphic rocks. These relationships suggest that the rock complexes of the Front Range Zone could have undergone repeated displacements due to post-Variscan (Indosinian) tectonic events and overrode crystalline rocks in the Main Range Zone and more easterly areas. Owing to the uplift of the Central Caucasus, they are now eroding. The difference in the metamorphic grade of the Blyb Complex and the rocks of the Atsgara and Marukha nappes is due to the fact the Blyb Complex lies close to the root zones of nappes or belongs to different nappe sheets. The Blyb Thrust Fault pertains to the Indosinian faults that played the main role in the formation of the Front Range structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号