首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Raman spectroscopic study of shock-wave densification of vitreous silica   总被引:1,自引:0,他引:1  
The densification processes in SiO2 glass induced by shock-wave compression up to 43.4 GPa are investigated by Raman spectroscopy. At first, densification increases with increasing shock pressure. A maximum densification of 11% is obtained for a shock pressure of 26.3 GPa. This densification is attributed to the reduction of the average Si−O−Si angle, which occurs first by the collapse of the largest ring cavities, then by further reduction of the average ring size. For higher shock pressures, a different structural modification is observed, resulting in decreasing densification with increasing shock pressure. Indeed, the recovered densification becomes very small, with values of 1.8 and 0.5% at 32 and 43.4 GPa, respectively. This is attributed to partial annealing of the samples due to high after shock residual temperatures. The study of the annealing process of the most densified glass by in situ high temperature Raman spectroscopy confirms that relaxation of the Si−O−Si angle starts at a lower temperature (about 800 K) than that of the siloxane rings (about 1000 K), thus explaining the high intensity of the siloxane defect bands in the samples schocked at compressions of 32 and 43.4 GPa. The large intensity of the siloxane bands in the nearly undensified samples shocked by compressions above 30 GPa may be explained by the relaxation during decompression of five- and six-fold coordinated silicon species formed at high pressure and high temperature during the shock event. Received: March 30, 1998 / Revised, accepted: August 21, 1998  相似文献   

2.
 Raman spectra of a single-crystal fragment of hydrous γ-Mg2SiO4, synthesized in a multianvil press, have been measured in a diamond-anvil cell with helium as pressure-transmitting medium to 56.5 GPa at room temperature. All five characteristic spinel Raman modes shift continuously up to the highest pressure, showing no evidence for a major change in the crystal structure despite compression well beyond the stability field of ringwoodite in terms of pressure. At pressures above ∼30 GPa a new mode on the low-frequency site of the two silicate-stretching modes is clearly identifiable, indicating a modification in the spinel structure which is reversible on pressure release. The frequency of the new mode (802 cm−1 extrapolated to 1 bar) suggests the presence of Si–O–Si linkages and/or a partial increase in the coordination of Si. Direct determination of the subtle structural change causing the new Raman mode would require high-pressure, single-crystal synchrotron X-ray diffraction experiments. The Raman modes of hydrous and anhydrous Mg-end-member ringwoodite are nearly identical up to 20 GPa, suggesting that protonation has only minor effect on the lattice dynamics over the entire pressure stability range for ringwoodite in the mantle. Received: 7 December 2001 / Accepted: 16 April 2002  相似文献   

3.
 The charge density and bond character of the rutile-type structure of SiO2 (stishovite) under compression to 30 GPa were investigated by X-ray diffraction study using synchrotron radiation and AgKα rotating anode X-ray generator through a newly devised diamond-anvil cell. The valence electron density was determined by least-squares refinement including the κ parameter and the electron population in the X-ray atomic scattering parameters. The oxygen κ-parameter of SiO2 is 0.94 under ambient conditions and 1.11 at 29.1 GPa and the silicon valence changes from +2.12(8) at ambient pressure to +2.26(15) at 29.1 GPa. These values indicate that the electron distributions are more localized with increasing pressure. The difference Fourier map shows the deformation of the valence electron distribution and the bonding electron population in residual electron densities. The bonding electron observed from the X-ray diffraction study is interpreted by molecular orbital calculations. The deformation of SiO6octahedra and the bonding electron density of stishovite structures are elucidated from the overlapping electron orbits. The O–O distances of shared and unshared edge of SiO6 octahedra change with the cation ionicity. The repulsive force between the two cations in the adjacent octahedron makes its shared edge shorter. The pressure changes of the apical and equatorial Si–O interatomic distances are explained by the electron density of state (DOS) of Si and electron configuration. Received: 7 January 2002 / Accepted: 6 May 2002  相似文献   

4.
 The chemical bonding in the ring silicate mineral dioptase is investigated on the basis of accurate single-crystal X-ray diffraction data. A multipole model is used in the refinements. Static deformation electron density is mapped for the silicon tetrahedron, Cu-octahedron and water molecule in different sections. The silicon tetrahedron exhibits peaks resulting from σ-bonds between Si–sp3 hybrid orbitals and O–p orbitals. The excess density is located on bonds between the Si atom and bridge (in ring) O(1)-, O(1′)-oxygens and across the interior of the Si–O–Si angle. In the Jahn-Teller distorted Cu octahedron, in addition to peaks which result from single Cu–O σ-bonds, there are peaks which are due to 3d electrons. The analysis of crystal-field influence on the Cu charge distribution is made using the tetragonal D 4 d approximation for the low-symmetry (C1) Cu octahedron. The calculation of the occupancies of the 3d atomic orbitals shows that the Cu non-bonding orbitals are most populated (˜20%) and the bonding orbitals least populated (14%), as is typical for the Jahn-Teller octahedron. The effective atomic charge on the Cu atom in dioptase determined from the multipoles is +1.23e: closer to the Cu+1 than to the Cu+2 state. The charge on the Si atom has a value +1.17e, which is in the range typical for Si atoms already determined by this method. The accumulation of density on bridge oxygens and across the interior of the Si–O–Si angle may be explained by additional strain in the bond with the decrease of the Si–O–Si angle in dioptase to 132°. The same effect was found earlier in coesite. A single-crystal neutron diffraction study shows that dioptase becomes antiferromagnetic below a Néel temperature of 15.9(1) K, in contrast to the previously reported specific heat anomaly at 21 K. The magnetic propagation vector is (0, 0, 3/2) on the hexagonal triple cell or (1/2, 1/2, 1/2) in rhombohedral indices. The relation between the antiferromagnetic and the charge-density models for dioptase is discussed. The less occupied Cu d x2−y2 orbitals are responsible for the magnetic properties. These lie in the Cu–O squares, which are approximately perpendicular to c hex, but which are alternately inclined to it by a small angle. The magnetic moments of 0.59(1)μ B on the Cu ions in the same level are ordered ferromagnetically, but between ions in alternate levels the coupling is antiferromagnet. Within experimental error the magnetic moments are perpendicular to the square planes, which make an angle ±13(3)° to the triad axis. Received: 8 June 2001 / Accepted: 10 January 2002  相似文献   

5.
 The structure of coesite has been determined at ten pressures up to a maximum of 8.68 GPa by single-crystal X-ray diffraction. The dominant mechanism of compression is the reduction of four of the five independent Si–O–Si angles within the structure. There is no evidence of the fifth linkage, Si1–O1–Si1, deviating from 180°. Some Si–O bond distances also decrease by up to 1.6% over the pressure range studied. The pattern of Si–O–Si angle reduction amounts to a rotation of the Si2 tetrahedron around the [001] direction. This rotation induces significant internal deformation of the Si1 tetrahedron. Comparison of the experimental data with rigid-unit distance least-squares simulations of coesite suggests that this pattern of compression, the anomalous positive values of both s23 and K′′ in the equation of state of coesite, its high elastic anisotropy and the unusual straight Si1–O1–Si1 linkage within the structure are all consequences of the connectivity of the tetrahedral framework. Received: 11 July 2002 / Accepted: 14 January 2003 Acknowledgements The help of Christian Baerlocher of ETH Zurich in providing both the DLS-76 software and advice in its use is gratefully acknowledged, as are discussions with Paul Ribbe of Virginia Tech and the comments of two anonymous reviewers. The data analysis was supported by the National Science Foundation under grant EAR-0105864 to N.L. Ross and R.J. Angel.  相似文献   

6.
Al-containing MgSiO3 perovskites of four different compositions were synthesized at 27 GPa and 1,873 K using a Kawai-type high-pressure apparatus: stoichiometric compositions of Mg0.975Si0.975Al0.05O3 and Mg0.95Si0.95Al0.10O3 considering only coupled substitution Mg2+ + Si4+ = 2Al3+, and nonstoichiometric compositions of Mg0.99Si0.96Al0.05O2.985 and Mg0.97Si0.93Al0.10O2.98 taking account of not only the coupled substitution but also oxygen vacancy substitution 2Si4+ = 2Al3+ + VO¨. Using the X-ray diffraction profiles, Rietveld analyses were performed, and the results were compared between the stoichiometric and nonstoichiometric perovskites. Lattice parameter–composition relations, in space group Pbnm, were obtained as follows. The a parameters of both of the stoichiometric and nonstoichiometric perovskites are almost constant in the X Al range of 0–0.05, where X Al is Al number on the basis of total cation of two (X Al = 2Al/(Mg + Si + Al)), and decrease with further increasing X Al. The b and c parameters of the stoichiometric perovskites increase linearly with increasing Al content. The change in the b parameter of the nonstoichiometric perovskites with Al content is the same as that of the stoichiometric perovskites within the uncertainties. The c parameter of the nonstoichiometric perovskites is slightly smaller than that of the stoichiometric perovskites at X Al of 0.10, though they are the same as each other at X Al of 0.05. The Si(Al)–O1 distance, Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O distance of the nonstoichiometric perovskites keep almost constant up to X Al of 0.05, and then the Si(Al)–O1 increases and both of the Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O decrease with further Al substitution. These results suggest that the oxygen vacancy substitution may be superior to the coupled substitution up to X Al of about 0.05 and that more Al could be substituted only by the coupled substitution at 27 GPa. The Si(Al)–O1 distance and one of two independent Si(Al)–O2 distances in Si(Al)O6 octahedra in the nonstoichiometric perovskites are always shorter than those in the stoichiometric perovskite at the same Al content. These results imply that oxygen defects may exist in the nonstoichiometric perovskites and distribute randomly.  相似文献   

7.
The synthetic LiGaSi2O6 clinopyroxene is monoclinic C2/c at room-T. Its experimental electron density, ρ(r), has been derived starting from accurate room-T single-crystal diffraction data. Topological analysis confirms an intermediate ionic-covalent character for Si–O bonding, as found by previous electron-density studies on other silicates such as diopside, coesite and stishovite. The non-bridging Si–O bonds have more covalent character than the bridging ones. The Ga–O bonds have different bonding characters, the Ga–O2 bond being more covalent than the two Ga–O1 bonds. Li–O bonds are classified as pure closed-shell ionic interactions. Similar to spodumene (LiAlSi2O6), Li has sixfold coordination, but the bond critical points associated to the two longest bonds are characterized by very low electron density values. Similar to what previously found in spodumene and diopside, O···O interactions were detected from the topological analysis of ρ(r), and indicate a cooperative interaction among the lone pairs of neighbouring oxygen atoms. In particular, this kind of interaction has been obtained for the O1···O1 edge shared between two Ga octahedra. Integration over the atomic basins gives net charges of −1.39(10), 2.82(10), 1.91(10) and 0.82(8) e for O (averaged), Si, Ga and Li atoms, respectively. Periodic Hartree–Fock and DFT calculations confirm the results obtained by multipole refinement of the experimental data. Moreover, the theoretical topological properties of the electron density distribution on the Si2O6 group are very similar to those calculated for spodumene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The equation of state and crystal structure of pyrope were determined by single crystal X-ray diffraction under hydrostatic conditions to 33 GPa, a pressure that corresponds to a depth of about 900 km in the lower mantle. The bulk modulus K T0 and its pressure derivative K ' T0 were determined simultaneously from an unweighted fit of the volume data at different pressures to a third order Birch-Murnaghan equation of state. They are 171(2) GPa and 4.4(2), respectively. Over the whole pressure range, MgO8 polyhedra showed the largest compression of 18.10(8)%, followed by AlO6 and SiO4 polyhedra, with compression of 11.7(1)% and 4.6(1)%, respectively. The polyhedral bulk moduli for MgO8, AlO6 and SiO4 are 107(1), 211(11) and 580(24) GPa, respectively, with K ' T0 fixed to 4. Significant compression of up to 1.8(1)% in the very rigid Si−O bonding in pyrope could be detected to 33 GPa. Changes in the degree of polyhedral distortion for all three types of polyhedra could also be observed. These changes could be found for the first time for AlO6 and SiO4 in pyrope. It seems that the compression of pyrope crystal structure is governed by the kinking of the Al−O−Si angle between the octahedra and tetrahedra. No phase transition could be detected to 33 GPa. Received: 24 March 1997 / Revised, accepted: 29 July 1997  相似文献   

9.
High-pressure synchrotron infrared (IR) absorption spectra were collected between 650 and 4,000 cm−1 at ambient temperature for hydrous Mg-ringwoodite (γ-Mg2SiO4) up to 30 GPa. The main feature in the OH stretching region is an extremely broad band centred at 3,150 cm−1. The hydrogen bond is strong for most protons and the most probable site for protonation is the tetrahedral edge. With increasing pressure, this band shifts downward while decreasing its integrated intensity until disappearance at a pressure of 25 GPa. Only one band at 2,450 cm−1 and an absorption plateau persist with a maximum wavenumber of 3,800 cm−1. This behaviour is reversible upon pressure release. We interpret this as a second-order phase transition occurring in hydrated Mg-ringwoodite at high pressure (beyond ∼ 25 GPa). This result is compatible with the observation by Kleppe et al. (Phys Chem Miner 29:473–476, 2002a) who suggested the presence of Si–O–Si linkages and/or partial increase in the coordination of Si. Beyond the phase transition, the protons are delocalized and their environment on the ringwoodite structure is probably quite different from that at low pressure. Data obtained in situ at high pressures and temperatures are needed to better understand the effect of protonation on the structure and to better constrain this phase transition.  相似文献   

10.
 Synthetic aegirine LiFeSi2O6 and NaFeSi2O6 were characterized using infrared spectroscopy in the frequency range 50–2000 cm−1, and at temperatures between 20 and 300 K. For the C2/c phase of LiFeSi2O6, 25 of the 27 predicted infrared bands and 26 of 30 predicted Raman bands are recorded at room temperature. NaFeSi2O6 (with symmetry C2/c) shows 25 infrared and 26 Raman bands. On cooling, the C2/cP21/c structural phase transition of LiFeSi2O6 is characterized by the appearance of 13 additional recorded peaks. This observation indicates the enlargement of the unit cell at the transition point. The appearance of an extra band near 688 cm−1 in the monoclinic P21/c phase, which is due to the Si–O–Si vibration in the Si2O6 chains, indicates that there are two non-equivalent Si sites with different Si–O bond lengths. Most significant spectral changes appear in the far-infrared region, where Li–O and Fe–O vibrations are mainly located. Infrared bands between 300 and 330 cm−1 show unusually dramatic changes at temperatures far below the transition. Compared with the infrared data of NaFeSi2O6 measured at low temperatures, the change in LiFeSi2O6 is interpreted as the consequence of mode crossing in the frequency region. A generalized Landau theory was used to analyze the order parameter of the C2/cP21/c phase transition, and the results suggest that the transition is close to tricritical. Received: 21 January 2002 / Accepted: 22 July 2002  相似文献   

11.
The electrical conductivity of (Mg0.93Fe0.07)SiO3 ilmenite was measured at temperatures of 500–1,200 K and pressures of 25–35 GPa in a Kawai-type multi-anvil apparatus equipped with sintered diamond anvils. In order to verify the reliability of this study, the electrical conductivity of (Mg0.93Fe0.07)SiO3 perovskite was also measured at temperatures of 500–1,400 K and pressures of 30–35 GPa. The pressure calibration was carried out using in situ X-ray diffraction of MgO as pressure marker. The oxidation conditions of the samples were controlled by the Fe disk. The activation energy at zero pressure and activation volume for ilmenite are 0.82(6) eV and −1.5(2) cm3/mol, respectively. Those for perovskite were 0.5(1) eV and −0.4(4) cm3/mol, respectively, which are in agreement with the experimental results reported previously. It is concluded that ilmenite conductivity has a large pressure dependence in the investigated P–T range.  相似文献   

12.
We have explored first-principles molecular dynamics simulation data for hydrous MgSiO3 liquid (with 10 wt% water) to gain insight into its structural and dynamical behavior as a function of pressure (0–150 GPa) and temperature (2,000–6,000 K). By visualizing/analyzing a number of parameters associated with short- and mid-range orders, we have shown that the melt structure changes substantially on compression. The speciation of the water component at low pressures is dominated by the isolated structures (with over 90% hydrogen participated) consisting of hydroxyls, water molecules, O–H–O bridging and four-atom (O–H–O–H and H–O–H–O) groups, where every oxygen atom may be a part of polyhedron or free (i.e., bound to only magnesium atom). Hydroxyls favor polyhedral sites over magnesium sites whereas molecular water is almost entirely bound to magnesium sites, and also interpolyhedral bridging (Si–O–H–O–Si) dominates other types of bridging. Water content is shown to enhance and suppress, respectively, the proportions of hydroxyls and molecular water. As compression increases, these isolated structures increasingly combine with each other to form extended structures involving a total of five or more O and H atoms and also containing threefold coordination species, which together consume over 80% hydrogen at the highest compression studied. Our results show that water lowers the mean coordination numbers of different types including all cation–anion environments. The hydrous melt tends to be more tetrahedrally coordinated but with the Si–Si network being more disrupted compared to the anhydrous melt. Protons increase the content of non-bridging oxygen and decrease the contents of bridging oxygen as well as oxygen triclusters (present at pressures above 10 GPa). The calculated self-diffusion coefficients of all atomic species are enhanced in the presence of water compared to those of the anhydrous melt. This is consistent with the prediction that water depolymerizes the melt structure at all pressures. Our analysis also suggests that proton diffusion involves two processes—the transfer of H atoms (requiring the rupture and formation of O–H bonds) and the motion of hydroxyls as hydrogen carriers (requiring the rupture and formation of Si–O and/or Mg–O bonds). Both the processes are operative at low compression whereas only the first process is operative at high compression.  相似文献   

13.
This study examines the electron localization function (ELF) isosurfaces of the Al2SiO5 polymorphs kyanite, sillimanite, and andalusite to see how differences in coordination and geometry of the cations and anions affect the ELF isosurfaces. Examination of the ELF isosurfaces indicates that their shapes are dependent on the coordination and geometry of the oxygen atoms and are not sensitive to coordination of the surrounding cations. Of the 18 crystallographically distinct oxygen atoms in the Al2SiO5 polymorphs, 13 are bonded to two aluminum atoms and one silicon atom (Al2–O–Si) and are associated with two different ELF isosurface shapes. The shape of the ELF isosurface is dependent on the distance at which the oxygen atom lies from a plane defined by the three surrounding cations: at a distance greater than 0.2 Å the ELF can be defined as horseshoe-shaped and at a distance less then 0.2 Å it can be described as concave hemispherical. This feature is also seen in the ELF isosurfaces for the oxygens bonded to three aluminum atoms (Al3–O) where the isosurfaces can be defined as trigonally toroidal and uniaxially trigonally toroidal. The changes in the ELF isosurfaces for the three coordinated oxygens are also indicative of changes in hybridization. The ELF isosurface for the two-fold coordinated oxygen (Al–O–Si) has a large mushroom-shaped isosurface along the Al–O bond and a concave hemispherical isosurface along the Si–O. The four-fold coordinated oxygen (Al4–O) contains two concave hemispherical isosurfaces along the shorter Al–O bonds and a banana-shaped isosurface, which encompasses the longer Al–O bonds. In addition, this study shows the homeomorphic relationship between the ELF isosurfaces and electron density difference maps with respect to number and arrangement of domains.  相似文献   

14.
Many of ilmenites ABO3 compounds bearing transition elements have semiconductive, ferroelectric and antiferromagnetic properties. The high-pressure diffraction studies of FeTiO3 have been conducted up to 8.2 GPa using synchrotron radiation in KEK at Tsukuba with diamond anvil cell. The compression mechanism of FeTiO3 ilmenite has been investigated by the structure refinements converged to the reliable factors R = 0.05. The deformations of the FeO6 and TiO6 octahedra were reduced with increasing pressure. In order to elucidate the electric conductivity change with pressure, electron density distribution of ilmenite have been executed by maximum entropy method (MEM) using single-crystal diffraction intensity data. MEM based on F obs(hkl) of FeTiO3 clearly shows electron density in comparison with the difference Fourier synthesis based on F obs(hkl) − F calc(hkl). The radial distribution of the electron density indicates electron localization around the cation positions. The bonding electron density found in bond Fe–O and Ti–O is lowered with pressure. The isotropic temperature factors B iso become smaller with increasing pressure. Nevertheless the thermal vibration is considerably restrained by the compression, the electric conductivity is enhanced with pressure. Neither charge transfer nor electron hopping between Fe and Ti along the c axis in FeTiO3 is plausible under high pressure. But the electric conductivity due to electron super-exchange in Fe–Fe and Ti–Ti has been clarified by the MEM electron density distribution. The anisotropy in the electric conductivity has been clarified.  相似文献   

15.
The 1-bar structure and properties of the high-pressure SiO2 polymorph coesite have been simulated by lattice and molecular dynamics up to 1600 and 2100 K, respectively. In agreement with available experimental data, the monoclinic structure was found metastable (with respect to cristobalite or SiO2 liquid) up to the highest temperatures investigated. Thermal expansion of coesite is small because of restricted rotations of SiO4 tetrahedra. Above about 1000 K, the structure of coesite becomes dynamically disordered and similar to those reported for the -phases of quartz and cristobalite. Disorder sets smoothly, however, in contrast to its abrupt onset in quartz and cristobalite, which have transitions. The radial distribution functions for all bond distances indicate that order then prevails only for the nearest neighbors whereas the angle distributions widen markedly so that the monoclinic form of coesite with an Si–O–Si angle of 180° is only a time-averaged structure.  相似文献   

16.
We report the first study of electrical conductivities of silicate melts at very high pressures (up to 10 GPa) and temperatures (up to 2,173 K). Impedance spectroscopy was applied to dry and hydrous albite (NaAlSi3O8) glasses and liquids (with 0.02–5.7 wt% H2O) at 473–1,773 K and 0.9–1.8 GPa in a piston-cylinder apparatus, using a coaxial cylindrical setup. Measurements were also taken at 473–2,173 K and 6–10 GPa in two multianvil presses, using simple plate geometry. The electrical conductivity of albite melts is found to increase with temperature and water content but to decrease with pressure. However, at 6 GPa, conductivity increases rapidly with temperature above 1,773 K, so that at temperatures beyond 2,200 K, conductivity may actually increase with pressure. Moreover, the effect of water in enhancing conductivity appears to be more pronounced at 6 GPa than at 1.8 GPa. These observations suggest that smaller fractions of partial melt than previously assumed may be sufficient to explain anomalously high conductivities, such as in the asthenosphere. For dry melt at 1.8 GPa, the activation energy at T > 1,073 K is higher than that at T < 1,073 K, and the inflection point coincides with the rheological glass transition. Upon heating at 6–10 GPa, dry albite glass often shows a conductivity depression starting from ~1,173 K (due to crystallization), followed by rapid conductivity enhancement when temperature approaches the albite liquidus. For hydrous melts at 0.9–1.8 GPa, the activation energies for conductivity at ≥1,373 K are lower than those at <973 K, with a complex transition pattern in between. Electrical conductivity and previously reported Na diffusivity in albite melt are consistent with the Nernst–Einstein relation, suggesting the dominance of Na transport for electrical conduction in albite melts.  相似文献   

17.
The equation of state and pressure-induced structural evolution of pyrite-type SiO2 have been investigated based on synchrotron X-ray diffraction measurements in a diamond-anvil cell. The Rietveld refinement revealed that the oxygen coordinate x of pyrite-type SiO2 increases with increasing pressure. The SiO6 coordination polyhedra of pyrite-type SiO2 is less compressible than the unit cell, and the increase in x induces a rotation of the SiO6 coordination polyhedra to fill the blank space in the unit cell. Thus, the volume reduction in pyrite-type SiO2 is achieved mainly by the rotation of the SiO6 polyhedra, rather than by the compression of the SiO6 polyhedra. In addition, the increase in x with increasing pressure enhances a distortion of the coordination polyhedra of pyrite-type SiO2, implying that pyrite-type SiO2 is not likely to transform into a fluorite-type structure at higher pressures.  相似文献   

18.
The structural compression mechanism and compressibility of diaspore, AlO(OH), were investigated by in situ single-crystal synchrotron X-ray diffraction at pressures up to 7 GPa using the diamond-anvil cell technique. Complementary density functional theory based model calculations at pressures up to 40 GPa revealed additional information on the pressure-dependence of the hydrogen-bond geometry and the vibrational properties of diaspore. A fit of a second-order Birch–Murnaghan equation of state to the p–V data resulted in the bulk modulus B 0 = 150(3) GPa and B 0 = 150.9(4) GPa for the experimental and theoretical data, respectively, while a fit of a third-order Birch–Murnaghan equation of state resulted in B 0 = 143.7(9) GPa with its pressure derivative B′ = 4.4(6) for the theoretical data. The compression is anisotropic, with the a-axis being most compressible. The compression of the crystal structure proceeds mainly by bond shortening, and particularly by compression of the hydrogen bond, which crosses the channels of the crystal structure in the (001) plane, in a direction nearly parallel to the a-axis, and hence is responsible for the pronounced compression of this axis. While the hydrogen bond strength increases with pressure, a symmetrisation is not reached in the investigated pressure range up to 40 GPa and does not seem likely to occur in diaspore even at higher pressures. The stretching frequencies of the O–H bond decrease approximately linearly with increasing pressure, and therefore also with increasing O–H bond length and decreasing hydrogen bond length. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

19.
The reverse Monte Carlo (RMC) method was used for modelling the three-dimensional structure of sodium tetrasilicate glass (Na2Si4O9, NS4). Neutron diffraction data over a large momentum transfer range and nuclear magnetic resonance results (Q-species distribution) as well as chemical bonding considerations have been used to constrain the RMC simulations. Very good agreement with the experimental structure factor was achieved. The three-dimensional model is analysed in terms of partial pair distribution functions, bond-angle distributions, short-range order (SRO) clusters and ring statistics. The average Si–O–Si bridging angle is different for the different Qi–Qj units. The effect of different Q species on the network connectivity is analysed by comparison with statistical SRO distributions. While the Q2 species are randomly distributed, a high preference for the formation of Q4–Q4 units in three-membered rings is found. This explains why during the initial stages of hydration of NS4 glass, Si–OH groups are preferentially formed by breaking Q4–Q4 linkages. The RMC model also provides an independent test for the assignment of bands in the Si–O stretching region of the Raman spectrum. It is shown that the bands at about 1050 and 1100 cm−1 are probably due to Q3 units surrounded by different numbers of Q4 units. Received: 7 April 1997 / Revised, accepted: 5 July 1997  相似文献   

20.
 The crystal structure of a synthetic Rb analog of tetra-ferri-annite (Rb–TFA) 1M with the composition Rb0.99Fe2+ 3.03(Fe3+ 1.04 Si2.96)O10.0(OH)2.0 was determined by the single-crystal X-ray diffraction method. The structure is homooctahedral (space group C2/m) with M1 and M2 occupied by divalent iron. Its unit cell is larger than that of the common potassium trioctahedral mica, and similar lateral dimensions of the tetrahedral and octahedral sheets allow a small tetrahedral rotation angle α=2.23(6)°. Structure refinements at 0.0001, 1.76, 2.81, 4.75, and 7.2 GPa indicate that in some respects the Rb–TFA behaves like all other micas when pressure increases: the octahedra are more compressible than the tetrahedra and the interlayer is four times more compressible than the 2:1 layer. However, there is a peculiar behavior of the tetrahedral rotation angle α: at lower pressures (0.0001, 1.76, 2.81 GPa), it has positive values that increase with pressure [from 2.23(6)° to 6.3(4)°] as in other micas, but negative values −7.5(5)° and −8.5(9)° appear at higher pressures, 4.75 and 7.2 GPa, respectively. This structural evidence, together with electrostatic energy calculations, shows that Rb–TFA has a Franzini A-type 2:1 layer up to at least 2.81 GPa that at higher pressure yields to a Franzini B-type layer, as shown by the refinements at 4.75 and 7.2 GPa. The inversion of the α angle is interpreted as a consequence of an isosymmetric displacive phase transition from A-type to B-type structure between 2.81 and 4.75 GPa. The compressibility of the Rb–TFA was also investigated by single-crystal X-ray diffraction up to a maximum pressure of 10 GPa. The lattice parameters reveal a sharp discontinuity between 3.36 and 3.84 GPa, which was associated with the phase transition from Franzini-A to Franzini-B structure. Received: 21 October 2002 / Accepted: 25 February 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号