首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Many numerical landform evolution models assume that soil erosion by flowing water is either purely detachment‐limited (i.e. erosion rate is related to the shear stress, power, or velocity of the flow) or purely transport‐limited (i.e. erosion/deposition rate is related to the divergence of shear stress, power, or velocity). This paper reviews available data on the relative importance of detachment‐limited versus transport‐limited erosion by flowing water on soil‐mantled hillslopes and low‐order valleys. Field measurements indicate that fluvial and slope‐wash modification of soil‐mantled landscapes is best represented by a combination of transport‐limited and detachment‐limited conditions with the relative importance of each approximately equal to the ratio of sand and rock fragments to silt and clay in the eroding soil. Available data also indicate that detachment/entrainment thresholds are highly variable in space and time in many landscapes, with local threshold values dependent on vegetation cover, rock‐fragment armoring, surface roughness, soil texture and cohesion. This heterogeneity is significant for determining the form of the fluvial/slope‐wash erosion or transport law because spatial and/or temporal variations in detachment/entrainment thresholds can effectively increase the nonlinearity of the relationship between sediment transport and stream power. Results from landform evolution modeling also suggest that, aside from the presence of distributary channel networks and autogenic cut‐and‐fill cycles in non‐steady‐state transport‐limited landscapes, it is difficult to infer the relative importance of transport‐limited versus detachment‐limited conditions using topography alone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The increasing popularity of remote sensing techniques has created numerous options for researchers seeking spatial datasets, especially digital elevation models (DEMs), for geomorphic investigations. This yields an important question regarding what DEM resolution is most appropriate when answering questions of geomorphic significance. The highest possible resolution is not always the best choice for a particular research aim, and DEM resolution should be tailored to fit both the scale of investigation and the simplicity/complexity of modelling processes applied to the dataset. We find that DEM resolution has a significant effect on a simple model of bed load sediment connectivity in the Lockyer Valley, Queensland. We apply a simple bed load transport threshold to catchment DEMs at three different resolutions – 1 m, 5 m, and 25 m. We find that using a 1 m resolution DEM generates numerous disconnections along tributary channel networks that underestimates the sediment contributing area, i.e. effective catchment area (ECA), of seven tributary basins of Lockyer Creek. Utilizing a coarser (lower‐resolution) DEM helps eliminate erroneous disconnections, but can reduce the detail of stream network definition. We find that the 25 m resolution DEM provides the best measure of ECA for comparing sediment connectivity between tributary catchments. The utility of simple models and coarse‐resolution datasets is important for undertaking large, catchment‐scale geomorphic investigations. As catchment‐scale investigations are becoming increasingly entwined with river management and rehabilitation efforts, scientists need not embrace an ‘out with the old’ philosophy. Simple models and coarse‐resolution datasets can help better integrate geomorphic research with management strategies and provide inexpensive and quick first‐order insights into catchment‐scale processes that can help focus future management efforts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
The assertion that the application of the USLE to predicting soil losses within a catchment or watershed is not sound because the USLE provides an estimate of erosion that would be measured if the entire area were divided up into 22·1 m long plots, and the output from them all added together, is incorrect. The slope length factor was derived from data obtained using a wide range of plot lengths and included the 22·1 m length simply to force it to take on a value of 1·0 when the slope length is 22·1 m. The 22·1 m length has no physical significance but the USLE slope length factor has a physical basis when applied to planar and convex hillslopes. The use of sediment delivery ratios when the USLE is applied to concave areas attempts to correct for applying the USLE beyond its design criteria. It fails because, in using the sediment delivery ratios in the prediction sediment delivery, it is incorrectly assumed that sediment delivery ratios de not vary with the amount of sediment entering a zone of deposition.  相似文献   

4.
An investigation has been conducted to identify the key parameters that are likely to scale laboratory sediment deposits to the field scale. Two types of bed formation were examined: one where sediment is manually placed and screeded and the second where sediment is fed into a running flume. This later technique created deposits through sequential cycles of sediment transport and deposition. Detailed bed surface topography measurements have been made over a screeded bed and three fed beds. In addition, bulk subsurface porosity and hydraulic conductivity have been measured. By comparing the four beds, results revealed that certain physical properties of the screeded bed were clearly different from those of the fed beds. The screeded bed had a random organization of grains on both the surface and within the subsurface. The fed beds exhibited greater surface and subsurface organization and complexity, and had a number of properties that closely resembled those found for water‐worked gravel beds. The surfaces were water‐worked and armoured and there was preferential particle orientation and direction of imbrication in the subsurface. This suggested that fed beds are able to simulate, in a simplified manner, both the surface and subsurface properties of established gravel‐bed river deposits. The near‐bed flow properties were also compared. It revealed that the use of a screeded bed will typically cause an underestimation in the degree of temporal variability in the flow. Furthermore, time‐averaged streamwise velocities were found to be randomly organized over the screeded bed but were organized into long streamwise flow structures over the fed beds. It clearly showed that caution should be taken when comparing velocity measurements over screeded beds with water‐worked beds, and that the formation of fed beds offers an improved way of investigating intragravel flow and sediment–water interface exchange processes in gravel‐bed rivers at a laboratory scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   

7.
Application of Schmidt‐hammer exposure‐age dating (SHD) to landforms has substantially increased in recent years. The original mechanical Schmidt hammer records R‐(rebound) values. Although the newly introduced electronic Schmidt hammer (SilverSchmidt) facilitates greatly improved data processing, it measures surface hardness differently, recording Q‐(velocity) values that are not a priori interconvertible with R‐values. This study is the first to compare the performance of both instruments in the context of field‐based exposure‐age dating with a particular focus on the interconvertibility of R‐values and Q‐values. The study was conducted on glacially polished pyroxene‐granulite gneiss, Jotunheimen, southern Norway. Results indicate that mean Q‐values are consistently 8–10 units higher than mean R‐values over the range of values normally encountered in the application of SHD to glacial and periglacial landforms. A convenient conversion factor of ±10 units may, therefore, be appropriate for all but the softest rock types close to the technical resolution of the instruments. The electronic Schmidt hammer should therefore be regarded as a useful complement and potential replacement for the mechanical Schmidt hammer. Conversion of published R‐values data to Q‐values requires, however, careful control and documentation of instrument calibration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Over the past few decades, soil densification has been widely employed to reduce the liquefaction hazard or consequences on structures. The decision to mitigate and the design of densification specifications are typically based on procedures that assume free‐field conditions or experience. As a result, the influence of ground densification on the performance of structures and the key mechanisms of soil‐structure interaction remains poorly understood. This paper presents results of four centrifuge tests to evaluate the performance of 3‐ and 9‐story, potentially inelastic structures on liquefiable ground with and without densification. Densification was shown to generally reduce the net excess pore pressures and foundation permanent settlements (although not necessarily to acceptable levels), while amplifying the accelerations on the foundation. The influence of these demands on the performance of the foundation and superstructure depended on the structure's strength and dynamic properties, as well as ground motion characteristics. In addition, densification tended to amplify the moment demand at the beam and column connections, which increased permanent flexural deformations and P‐Δ effects (particularly on the heavier and weaker structure) that could have an adverse effect on foundation rotation. The experimental results presented aim to provide insight into the potential tradeoffs of ground densification, which may reduce foundation permanent settlement, but amplify shaking intensity that can result in larger foundation rotation, flexural drifts, and damage to the superstructure, if not considered in design. These considerations are important for developing performance‐based strategies to design mitigation techniques that improve performance of the soil‐foundation‐structure system in a holistic manner.  相似文献   

10.
The majority of the world's mangrove forests occur on mostly mineral sediments of fluvial origin. Two perspectives exist on the biogeomorphic development of these forests, i.e. that mangroves are opportunistic, with forest development primarily driven by physical processes, or alternatively that biophysical feedbacks strongly influence sedimentation and resulting geomorphology. On the Firth of Thames coast, New Zealand, we evaluate these two possible scenarios for sediment accumulation and forest development using high‐resolution sedimentary records and a detailed chronology of mangrove‐forest (Avicennia marina) development since the 1950s. Cores were collected along a shore‐normal transect of known elevation relative to mean sea level (MSL). Activities for lead‐210 (210Pb), caesium‐137 (137Cs) and beryllium‐7 (7Be), and sediment properties were analysed, with 210Pb sediment accumulation rates (SARs), compensated for deep subsidence (~8 mm yr?1) used as a proxy for elevation gain. At least four phases of forest development since the 1950s are recognized. An old‐growth forest developed by the late‐1970s with more recent seaward forest expansion thereafter. Excess 210Pb profiles from the old‐growth forest exhibit relatively low SARs near the top (7–12 mm yr?1) and bottom (10–22 mm yr?1) of cores, separated by an interval of higher SARs (33–100 mm yr?1). A general trend of increasing SAR over time characterizes the recent forest. Biogeomorphic evolution of the system is more complex than simple mudflat accretion/progradation and mangrove‐forest expansion. Surface‐elevation gain in the old‐growth forest displays an asymptotic trajectory, with a secondary depocentre developing on the seaward mudflat from the mid‐1970s. Two‐ to ten‐fold increases in 210Pb SARs are unambiguously large and occurred years to decades before seedling recruitment, demonstrating that mangroves do not measurably enhance sedimentation over annual to decadal timescales. This suggests that mangrove‐forest development is largely dependent on physical processes, with forests occupying mudflats once they reach a suitable elevation in the intertidal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The pervasive application of the Null Hypothesis Significance Test in geomorphic research runs counter to widespread, long running, and often severe criticism of the method in the broader scientific literature. The application of the methodology typically leads to a binary separation of evidence into ‘significant’ and ‘not significant’ results based on a p‐value that is dependent on the null hypothesis being true. The method should not therefore be used to provide statistical support for substantive hypotheses, and is unsuitable for scientific inference in open systems where confirmation can only ever be partial. Alternative approaches based on Bayesian statistics can importantly be applied to measure partial support for hypotheses, conditional on the available data. Though not without their own assumptions, wider application of such methods can help facilitate a transition towards a broader approach to statistical, and in turn, scientific inference in geomorphic systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
A growing body of field, theoretical and numerical modelling studies suggests that predicting river response to even major changes in input variables is difficult. Rivers are seen to adjust rapidly and variably through time and space as well as changing independently of major driving variables. Concepts such as Self‐Organized Criticality (SOC) are considered to better reflect the complex interactions and adjustments occurring in systems than traditional approaches of cause and effect. This study tests the hypothesis that riverbank mass failures which occurred both prior to, and during, an extreme flood event in southeast Queensland (SEQ) in 2011 are a manifestation of SOC. Each wet‐flow failure is somewhat analogous to the ‘avalanche’ described in the initial sand‐pile experiments of Bak et al. (Physical Review Letters, 1987, 59(4), 381–384) and, due to the use of multitemporal LiDAR, the time period of instability can be effectively constrained to that surrounding the flood event. The data is examined with respect to the key factors thought to be significant in evaluating the existence of SOC including; non‐linear temporal dynamics in the occurrence of disturbance events within the system; an inverse power‐law relation between the magnitude and frequency of the events; the existence of a critical state to which the system readjusts after a disturbance; the existence of a cascading processes mechanism by which the same process can initiate both low‐magnitude and high‐magnitude events. While there was a significant change in the frequency of mass failures pre‐ and post‐flood, suggesting non‐linear temporal dynamics in the occurrence of disturbance events, the data did not fit an inverse power‐law within acceptable probability and other models were found to fit the data better. Likewise, determining a single ‘critical’ state is problematic when a variety of feedbacks and multiple modes of adjustment are likely to have operated throughout this high magnitude event. Overall, the extent to which the data supports a self‐organized critical state is variable and highly dependent upon inferential arguments. Investigating the existence of SOC, however, provided results and insights that are useful to the management and future prediction of these features. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Coastal and residential development along the Atlantic coast of the United States is expected to increase by about 73% between 1980 and 2000. Present estimates indicate that over 59% of the population of the United States lives within 50 miles of the coast. This increase in coastal population coupled with increased demands for fishery products and increased efficiency in catching fish has severely stressed many Atlantic coast fisheries. Fisheries have been affected by increased pollution, habitat loss and overfishing. In 1976, the Magnuson Fishery Conservation and Management Act was passed creating Fishery Management Councils with the goal of imposing strict conservation measures in the U.S. Exclusive Economic Zone (EEZ). This paper discusses potential causes of Atlantic Coast fisheries declines and gives examples of specific fishery plans that have been developed to manage U.S. fisheries.  相似文献   

16.
Biogeomorphological processes are an important component of dynamic intertidal systems. On rocky shores, the direct contribution of microorganisms, plants and animals to weathering and erosion is well known. There is also increasing evidence that organisms can alter rock breakdown indirectly, by moderating temperature and moisture regimes at the rock–air interface. These influences have been purported to represent mechanisms of bioprotection, by buffering microclimatic fluctuations associated with weathering processes such as wetting and drying and salt crystallization. However, virtually nothing has been done to test whether microclimatic buffering translates to differences in actual rock breakdown rates. Here we report a preliminary laboratory experiment to assess how an artificial canopy (chosen to represent seaweed) affects mechanical rock breakdown. Using a simplified and accelerated thermal regime based on field data from a rocky shore platform in southern England, UK, we find that breakdown (mineral debris release) of mudstone covered with a canopy is reduced by as much as 79% relative to bare rock after around 100 thermal cycles. Reduction in rock surface hardness (measured using an Equotip device) was also greater for bare rock (17%) compared to covered rock (10%) over this period. Measurements of salt crystal formation indicate that the mechanism driving these differences was a reduction in the frequency of crystallization events, via moisture retention and shading of the rock surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near‐bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water‐worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double‐averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three‐fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near‐bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse‐grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
We challenge the notion of steady‐state equilibrium in the context of progressive cliff retreat on micro‐tidal coasts. Ocean waves break at or close to the abrupt seaward edge of near‐horizontal shore platforms and then rapidly lose height due to turbulence and friction. Conceptual models assume that wave height decays exponentially with distance from the platform edge, and that the platform edge does not erode under stable sea‐level. These assumptions combine to a steady‐state view of Holocene cliff retreat. We argue that this model is not generally applicable. Recent data show that: (1) exponential decay in wave height is not the most appropriate conceptual model of wave decay; (2) by solely considering wave energy at gravity wave frequencies the steady‐state model neglects a possible formative role for infragravity waves. Here we draw attention to possible mechanisms through which infragravity waves may drive cliff retreat over much greater distances (and longer timescales) than imaginable under the established conceptual model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Ten methods for sampling beach litter were tested on 16 beaches located around the Firth of Forth, Scotland in order to ascertain the effectiveness of the various methods. Both fresh and/or accumulated litter were sampled. Some methods were more effective for recording gross amounts of litter. Maximum litter counts could be obtained by surveying the top boundary of the beach (e.g. vegetation line, retaining wall, rocks). Lowest amounts were obtained by surveying one five metre wide belt transect from the vegetation line to the shore. Some bias towards highlighting particular litter types was shown by specific methods. It was concluded that there were advantages and disadvantages for each method and that the aims of the study would in the end determine the method.  相似文献   

20.
Time nonlocal transport models such as the time fractional advection‐dispersion equation (t‐fADE) were proposed to capture well‐documented non‐Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non‐Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t‐fADE model. Fitting exercises show that the effective dispersion coefficient in the t‐fADE, although differing subtly from the dispersion coefficient in the standard advection‐dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t‐fADE, the motion‐independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale‐dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t‐fADE with a constant dispersion coefficient cannot capture scale‐dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real‐world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination approach are necessary to incorporate the spatial evolution of local velocities without adding cumbersome parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号