首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A geochronological framework based on amino acid racemisation (AAR) and constrained by previously reported optically stimulated luminescence (OSL) ages is presented for the evolution and paleosea-level record of the Pleistocene Bridgewater Formation of the Mount Gambier region, of southern Australia. Within the study area, the Bridgewater Formation is represented by late early Pleistocene [Marine Isotope Stage (MIS) 23 at 933 ka] to Holocene barrier shoreline successions deposited during sea-level highstands. Regional monotonic uplift (0.13 mm yr–1) and pervasive calcrete development during the Pleistocene have preserved the sequence of calcarenite (mixed quartz-skeletal carbonate sand) shoreline complexes from denudation. AAR analyses confirm that the barriers generally increase in age landwards and correlate with sea-level highstands associated with interglacials as defined by the marine oxygen isotope record. AAR analyses on the benthic foraminifer Elphidium crispum have proved more reliable than the whole-rock method in extending the age range of AAR dating of these relict shoreline successions. Paleosea-levels from the coastal plain are as follows: MIS 7, –9 ± 2 m; MIS 9, 4 ± 1 m; and a minimum sea-level of 2 ± 2 m is derived for MIS 11. Paleosea-level could not be determined for MIS 15, 19 or 23 as diagnostic sea-level indicators were not identified within these sedimentary successions. Dismal Range, dated at 933 ± 145 ka (MIS 23), represents a correlative feature to the East Naracoorte Range but is some 25 km seaward of the Kanawinka Fault compared with the same barrier at Naracoorte. Mingbool Range (788 ± 18 ka) is of similar age to the West Naracoorte Range (MIS 19) and formed as an arcuate shoreline complex that became attached to the higher relief of the area represented by the Mount Burr Volcanic Province. The higher topographical relief resulted from crustal doming of the Oligo-Miocene Gambier Limestone caused by the intrusion of magma associated with the volcanic province. The AAR age of 788 ± 118 ka for Mingbool Range indicates that the Mount Burr volcanics predate the deposition of this shoreline complex.  相似文献   

2.
The continental margin of southern South Africa exhibits an array of emergent marginal marine sediments permitting the reconstruction of long-term eustatic sea-level changes. We report a suite of optical luminescence ages and supplementary amino acid racemization data, which provide paleosea-level index points for three sites on this coastline. Deposits in the Swartvlei and Groot Brak estuaries display tidal inlet facies overlain by shoreface or eolian facies. Contemporary facies relations suggest a probable high stand 6.0-8.5 m above modern sea level (amsl). At Cape Agulhas, evidence of a past sea-level high stand comprises a gravel beach (ca. 3.8 m amsl) and an overlying sandy shoreface facies (up to 7.5 m amsl). OSL ages between 138 ± 7 ka and 118 ± 7 ka confirm a last interglacial age for all marginal marine facies. The high stand was followed by a sea-level regression that was associated with the accumulation of eolian dunes dating to between 122 ± 7 ka and 113 ± 6 ka. These data provide the first rigorous numerical age constraints for last interglacial sea-level fluctuations in this region, revealing the timing and elevation of the last interglacial high stand to broadly mirror a number of other far-field locations.  相似文献   

3.
Thirty-one new bulk-sediment U–Th dates are presented, together with an improved δ18O stratigraphy, for ODP Site 1008A on the slopes of the Bahamas Banks. These ages supplement and extend those from previous studies and provide constraints on the timing of sea-level highstands associated with marine isotope stages (MIS) 7 and 9. Ages are screened for reliability based on their initial U and Th isotope ratios, and on the aragonite fraction of the sediment. Twelve ‘reliable’ dates for MIS 7 suggest that its start is concordant with that predicted if climate is forced by northern-hemisphere summer insolation following the theory of Milankovitch. But U–Th and δ18O data indicate the presence of an additional highstand which post-dates the expected end of MIS 7 by up to 10 ka. This event is also seen in coral reconstructions of sea-level. It suggests that sea-level is not responding in any simple way to northern-hemisphere summer insolation, and that tuned chronologies which make such an assumption are in error by ≈10 ka at this time. U–Th dates for MIS 9 also suggest a potential mismatch between the actual timing of sea-level and that predicted by simple mid-latitude northern-hemisphere forcing. Four dates are earlier than that predicted for the start of MIS 9. Although the most extreme of these dates may not be reliable (based on the low-aragonite content of the sediment) the other three appear robust and suggest that full MIS 9 interglacial conditions were established at 343 ka. This is ≈8 ka prior to the date expected if this warm period were driven by northern-hemisphere summer insolation.  相似文献   

4.
The Provo shoreline of Lake Bonneville formed following the Bonneville flood, and, based on previous dating, was formed during a period of overflow from about 17.5 to 15.0 cal. ka. In many places the Provo shoreline consists of a pair of distinct shorelines, one ~3 m higher than the other. We present data from two cuts through double beaches to show that the upper beach is younger and represents sedimentation after a lake‐level rise. In addition, the lower beach deposits are internally stratified by beds that suggest three more lake‐level rises during its development. The Provo beach complex thus appears to have been built during rising lake levels, which can be explained by rises in the overflow threshold by sequential landslide deposition. Evaluation of beach altitudes demonstrates that the two beach crests throughout the Bonneville basin experienced equivalent rebound from removal of the lake load, and therefore they formed after the rebound associated with the Bonneville flood occurred in early Provo time. However, radiocarbon ages on gastropods collected within the beach deposits suggest both that the sequence of five beach deposits formed from c.18.1 to c. 17.0 cal. ka, and that the Bonneville flood occurred before 18 cal. ka. These ages are discordant with previous dates on shells within offshore sands, and raise questions about the validity of radiocarbon ages for shells in Lake Bonneville as well as about the age of the Bonneville flood and Provo shoreline. The timing for maximum Provo lake depths and its association with climate stages during deglaciation remain unresolved.  相似文献   

5.
We report new ages on glaciofluvial (outwash) sediment from a large upland in northern Lower Michigan—the Grayling Fingers. The Fingers are cored with > 150 m of outwash, which is often overlain by the (informal) Blue Lake till of marine isotope stage (MIS) 2. They are part of an even larger, interlobate upland comprised of sandy drift, known locally as the High Plains. The ages, determined using optically stimulated luminescence (OSL) methods, indicate that subaerial deposition of this outwash occurred between 25.7 and 29.0 ka, probably associated with a stable MIS 2 ice margin, with mean ages of ca. 27 ka. These dates establish a maximum-limiting age of ca. 27 ka for the MIS 2 (late Wisconsin) advance into central northern Lower Michigan. We suggest that widespread ice sheet stabilization at the margins of the northern Lower Peninsula, during this advance and later during its episodic retreat, partly explains the thick assemblages of coarse-textured drift there. Our work also supports the general assumption of a highly lobate ice margin during the MIS 2 advance in the Great Lakes region, with the Fingers, an interlobate upland, remaining ice-free until ca. 27 ka.  相似文献   

6.
We present new stratigraphic, sedimentological, and chronological data for a suite of tectonically raised beaches dating to Marine Isotope Stages 5, 4, and 3 along the Estremadura coast of west-central Portugal. The beach deposits are found in association with ancient tidal channels and coastal dunes, pollen bearing mud and peat, and Middle Paleolithic archaeological sites that confirm occupation of the coastal zone by Neanderthal populations. The significance of these deposits is discussed in terms of the archaeological record, the tectonic and geomorphic evolution of the coast, and correlation with reconstructions of global climate and eustatic sea-level change. Direct correlation between the Estremadura beach sections is complicated by the tectonic complexity of the area and the age of the beach deposits (which are near or beyond the limit of radiocarbon dating). Evidence from multiple sites dated by AMS radiocarbon and optical luminescence methods suggests broad synchroneity in relative sea-level changes along this coast during Marine Isotope Stage 3. Two beach complexes with luminescence and radiocarbon age control date to about 35 ka and 42 ka, recording a rise in relative sea level around the time of Heinrich Event 4 at 39 ka. Depending on assumptions about eustatic sea level at the time they were deposited, we estimate that these beaches have been uplifted at rates of 0.4–4.3 mm yr?1 by the combined effects of tectonic, halokinetic, and isostatic processes. Uplift rates of 1–2 mm yr?1 are likely if the beaches represent sea level stands at roughly 40 m below modern, as suggested by recent eustatic sea level reconstructions. Evidence from coastal bluffs and the interior of the study area indicates extensive colluvial, fluvial, and aeolian sedimentation beginning around 31 ka and continuing into the Holocene. These geomorphic adjustments are related to concomitant changes in climate and sea level, providing context that improves our understanding of Late Pleistocene landscape change and human occupation on the western Iberian margin.  相似文献   

7.
This paper reports the main sedimentary characteristics, soil micromorphology and optically-stimulated luminescence (OSL) ages, and details the pedosedimentary reconstruction, of the Hudson site situated in the northern Pampas of Buenos Aires province. It also provides the OSL chronology and a reinterpretation of previously reported micromorphological features for the nearby site of Gorina. Finally, the stratigraphic records of both sites are compared and the main environmental events discussed in a regional context.At Hudson, situated at a low altitude environment close to the coastal plain, the basal fine-grained paludal deposits were unconformably covered by coastal marine sediments with an OSL age of ca. 128 ka supporting its correlation with the high stand of sea level of marine isotope stage 5e. A paleosol developed on the marine deposits and the underlying paludal sediments. OSL ages suggest that soil development and its subsequent erosion occurred over some period between ca. 128 and 54 ka. Fine sediment accumulation in a paludal environment continued until prior to ca. 23 ka when the accumulation of the uppermost loess mantle started. It continued until the early Holocene when present soil development began. At Gorina, OSL ages suggest that the upper part of the pedocomplex formed at some stage between ca. 194 and 56 ka. Loess then accumulated followed by an erosional phase; loess deposition restarted by ca. 29 ka and continued until the beginning of the Holocene (ca. 9 ka) when the present land surface was established.The stratigraphic and paleoenvironmental differences exhibited by the Hudson and Gorina records result from their contrasting geomorphological settings. The OSL geochronology suggests that the last interglacial (MIS 5) at Hudson is marked by the accumulation of marine deposits (MIS 5e) and the subsequent development of a paleosol. The equivalent soil-forming interval at Gorina is represented by the upper part of the buried pedocomplex. Both at Gorina and Hudson, loess accumulation was dominant especially during MIS 2. Loess accumulation continued during MIS 1 until the early Holocene with apparently somewhat higher sedimentation rates in Hudson. Pedogenesis has been predominant during the rest of the Holocene, resulting in the formation of the surface soil profiles.  相似文献   

8.
Electron spin resonance (ESR) dating of coral has become an efficient geochronological tool in supporting morphostratigraphic studies carried out on Barbados during the last 10 years. The newly developed approach for DE determination (DEDmax plot procedure) improves the precision of ESR dating of Pleistocene coral, and therefore permits differentiation between the main marine isotope stages (MIS) 5, 7, 9 and 11 and also between sub-stages 5e, c and a. This study compares results of ESR and TIMS Uranium series dating (U/Th) of emergent Last Interglacial coral reef terraces from Barbados, and presents some implications for the timing and extent of sea-level changes during marine isotope stages (MIS) 5e, c and a. Both dating methods indicate a distinct formation of up to three coral reef terraces during MIS 5e, at approximately 132 ka (ESR) to 128 ka (U/Th), at c. 128 ka (ESR) and at c. 120 ka (U/Th) to 118 ka (ESR). It is also highly probable that three reef terraces were developed during MIS 5c between c. 103 ka (U/Th) and 105 ka (ESR). The formation of two separate coral reefs during MIS 5a is recognized for the first time on Barbados, with an age estimate for the older MIS 5a-2 reef of 85 ka (ESR) or 84 ka (U/Th), and an age estimate for the younger MIS 5a-1 reef terraces of 74 ka (ESR) or 77 ka (U/Th). Assuming a constant uplift rate of 0.276 m/ka at the south coast of Barbados, sea-level reached its maximum during MIS 5e-3 and MIS 5e-2 between 132 and 128 ka ago. After this, sea-level declined reaching a level of c. −11 m below present sea level approx. 118–120 ka ago (MIS 5e-1). During the substage 5c sea-level was generally lower than in substage 5e. It reached relative maxima at c. −13, −20 and −25 m during MIS 5c (approx. 105 ka) and formed three distinct coral reef terraces probably in relative short time intervals. For the first time, a double sea-level oscillation is recognized on Barbados during MIS 5a: an early MIS 5a-2 (c. 85 ka) with a sea-level places at approx. −21 m, and a late MIS 5a-1 sub-stage (c. 74 or 77 ka) with a sea-level at approx. –19 m below present sea level.  相似文献   

9.
Sedimentological, geomorphic, and ground penetrating radar (GPR) data are combined with optically stimulated luminescence data to define the Holocene evolution of a coastal system in peninsular Malaysia. The Setiu coastal region of northeast Malaysia comprises five geological and geomorphic units representing distinct evolutionary phases of this coastline. Estimated marine limiting point elevations indicate deposition of an early aggradational shoreline associated with a sea-level elevation of −0.1 to +1.7 m (MSLPMVGD datum) between ∼6.8 ka and 5.7 ka, in agreement with previous sea-level studies from the Malay–Thai peninsula. A hiatus occurs in the record between ∼5.7 ka and 3.0 ka, possibly due to a relative sea-level oscillation and shoreline erosion. Long-term relative sea-level fall and possible still-stands created strandplains that are interrupted by aggradational to transgressive paleo-barrier and estuary formation corresponding with brief episodes of RSL rise. Analyses of GPR facies and OSL ages suggest annual clinoform deposition, with geometries dictated by variations in ENSO. These data demonstrate the utility of high resolution studies of coastal facies as useful proxy indicators for paleoclimate studies at subdecadal to millennial time-scales.  相似文献   

10.
Dating and geomorphology of shoreline features in the Qinghai Lake basin of northwestern China suggest that, contrary to previous interpretations, the lake likely did not reach levels 66-140 m above modern within the past ∼ 90,000 yr. Maximum highstands of ∼ 20-66 m above modern probably date to Marine Isotope Stage (MIS) 5. MIS 3 highstands are undated and uncertain but may have been at or below post-glacial highs. The lake probably reached ∼ 3202-3206 m (+ 8-12 m) during the early Holocene but stayed below ∼ 3202 m after ∼ 8.4 ka. This shoreline history implies significantly different hydrologic balances in the Qinghai Lake basin before ∼ 90 ka and after ∼ 45 ka, possibly the result of a more expansive Asian monsoon in MIS 5.  相似文献   

11.
《Quaternary Science Reviews》2004,23(16-17):1733-1756
This study shows that successions of Pleistocene carbonate aeolian deposits can be placed successfully in a geochronologic framework using magnetostratigraphic and susceptibility stratigraphic analysis supplemented by luminescence dating, studies of wave-cut platforms, and biostratigraphic evidence. The investigated aeolian system covers a significant part of southernmost Mallorca and is exposed in impressive coastal cliff sections.At the study site at Els Bancals the aeolian system has a maximum thickness of 16 m and is composed of alternating dark red colluvial deposits and greyish red aeolian dune and sand-sheet deposits forming seven cyclostratigraphic units. Each cyclostratigraphic unit represents landscape stabilisation, colluviation, and soil formation followed by dunefield development, when marine carbonate sand was transported far inland by westerly or north-westerly winds. The aeolian system is located on top of a wave-cut marine platform 12–14 m a.s.l. This platform probably formed during a sea-level highstand in Marine Isotope Stage (MIS) 11 (427–364 ka), and renewed marine activity probably later in MIS 11 is indicated by the formation of beach deposits.Two sections at Els Bancals were sampled for a paleomagnetic study; additional samples were taken to detect variations in magnetic susceptibility (MS). The characteristic remanent magnetisation has been recovered for the most part of the succession in spite of diagenetic overprinting. There is evidence for two probably three reversal polarity excursions, possible connected to the Levantine, CR1 and CR0/Biwa III episodes. If this correlation is correct, the sampled succession represents a time interval in the Middle Pleistocene between ca 410 and ca 260 ka. This age estimate is supported by the MS study and by luminescence dates of 333±70 ka (aeolianite from lower part of the succession) and 275±23 ka (aeolianite from the top of the succession).The nature of the succession suggests deposition during alternating warm and moist (colluvial deposition; soil formation) and cold, dry and windy conditions (dunefield formation). The susceptibility signal can be correlated with the insolation signal at 65°N suggesting that environmental variation on Mallorca was linked to orbitally forced climate change, and it seems that aeolian activity and dunefield formation were linked to glacial or stadial periods.  相似文献   

12.
The continental shelf of the Gulf of Gabes is outlined, during the MIS 5c and MIS 5a onshore highstands, by the genesis of forced regressive beach ridges situated respectively at –19 m b.s.l/100 ka and –8 m b.s.l/80 ka. This area, considered as a stable domain since at least the last 130 ka (Bouaziz et al.2003), is a particular zone for the reconstruction of the late quaternary sea-level changes in the region. Shuttle Radar Topography Mission (SRTM) data and field observations are highlighted to deduce interaction between hydrodynamic factors and antecedent topography. Variations in geomorphology were attributed to geological inheritance. Petrography and sedimentary facies of the submerged coastal ridges reveal that the palaeocoastal morphology was more agitated than today and the fluvial discharges are consistent. Actual morphologic trend deduced from different environment coasts (sandy coasts, sea cliffs and tidal flat) is marked by accumulation of marine sands and progradation.  相似文献   

13.
《Quaternary Science Reviews》2007,26(17-18):2090-2112
The geomorphology and morphostratigraphy of numerous worldwide sites reveal the relative movements of sea level during the peak of the Last Interglaciation (Marine Isotope Stage (MIS) 5e, assumed average duration between 130±2 and 119±2 ka). Because sea level was higher than present, deposits are emergent, exposed, and widespread on many stable coastlines. Correlation with MIS 5e is facilitated by similar morphostratigraphic relationships, a low degree of diagenesis, uranium–thorium (U/Th) ages, and a global set of amino-acid racemization (AAR) data. This study integrates information from a large number of sites from tectonically stable areas including Bermuda, Bahamas, and Western Australia, and some that have experienced minor uplift (∼2.5 m/100 ka), including selected sites from the Mediterranean and Hawaii. Significant fluctuations during the highstand are evident at many MIS 5e sites, revealed from morphological, stratigraphic, and sedimentological evidence. Rounded and flat-topped curves derived only from reef tracts are incomplete and not representative of the entire interglacial story. Despite predictions of much different sea-level histories in Bermuda, the Bahamas, and Western Australia due to glacio- and hydro-isostatic effects, the rocks from these sites reveal a nearly identical record during the Last Interglaciation.The Last Interglacial highstand is characterized by several defined sea-level intervals (SLIs) that include: (SLI#1) post-glacial (MIS 6/5e Termination II) rise to above present before 130 ka; (SLI#2) stability at +2 to +3 m for the initial several thousand years (∼130 to ∼125 ka) during which fringing reefs were established and terrace morphology was imprinted along the coastlines; (SLI#3) a brief fall to near or below present around 125 ka; (SLI#4) a secondary rise to and through ∼+3–4 m (∼124 to ∼122 ka); followed by (SLI#5) a brief period of instability (∼120 ka) characterized by a rapid rise to between +6 to +9 m during which multiple notches and benches were developed; and (SLI#6) an apparently rapid descent of sea level into MIS 5d after 119 ka. U/Th ages are used to confirm the Last Interglacial age of the deposits, but unfortunately, in only two cases was it possible to corroborate the highstand subdivisions using radiometric ages.Sea levels above or at present were relatively stable during much of early MIS 5e and the last 6–7 ka of MIS 1, encouraging a comparison between them. The geological evidence suggests that significant oceanographic and climatic changes occurred thereafter, midway through, and continuing through the end of MIS 5e. Fluctuating sea levels and a catastrophic termination of MIS 5e are linked to the instability of grounded and marine-based ice sheets, with the Greenland (GIS) and West Antarctic (WAIS) ice sheets being the most likely contributors. Late MIS 5e ice volume changes were accompanied by oceanographic reorganization and global ecological shifts, and provide one ominous scenario for a greenhouse world.  相似文献   

14.
This paper investigates a series of small-scale, short-lived fluctuations of sea level registered in a prograding barrier spit that grew during the MIS 5e. This interglacial includes three highstands (Zazo et al., 2003) and we focus on the second highstand, of assumed duration ~10 ± 2 ka, given that U–Th ages do not provide more accurate data. Geometry and 3D architecture of beach facies, and thin-section petrography were used to investigate eight exposed offlapping subunits separated by seven conspicuous erosion surfaces, all interpreted as the result of repeated small-scale fluctuations of sea level.Each subunit records a relatively rapid rise of sea level that generated a gravelly shoreface with algal bioherms and a sandy uppermost shoreface and foreshore where most sand accumulated. A second range of still smaller-scaled oscillations of sea level has been deduced in this phase of sea-level fluctuation from lateral and vertical shifts of the foreshore-plunge-step-uppermost shoreface facies.Eventually, progradation with gently falling sea level took place and foreshore deposits underwent successive vadose cementation and subaerial dissolution, owing to relatively prolonged exposure. Later recovery of sea level re-established the highstand with sea level at approximately the same elevation, and there began deposition of a new subunit. The minimum sea-level variation (fall and subsequent rise) required to generate the observed features is 4 m. The time span available for the whole succession of events, and comparison with the Holocene prograding beach ridge complex in the nearby Roquetas (Almería) were used to calculate the periodicity of events. A millennial-suborbital time scale is suggested for fluctuations separating subunits and a decadal scale for the minor oscillations inside each subunit.  相似文献   

15.
A detailed record of late Quaternary sea-level oscillations is preserved within the upper 45 m of deposits along an eight km transect across Croatan Sound, a drowned tributary of the Roanoke/Albemarle drainage system, northeastern North Carolina. Drill-hole and seismic data reveal nine relatively complete sequences filling an antecedent valley comprised of discontinuous middle and early Pleistocene deposits. On interfluves, lithologically similar marine deposits of different sequences occur stacked in vertical succession and separated by ravinement surfaces. Within the paleo-drainage, marine deposits are separated by fluvial and/or estuarine sediments deposited during periods of lowered sea level. Foraminiferal and molluscan fossil assemblages indicate that marine facies were deposited in a shallow-marine embayment with open connection to shelf waters. Each sequence modifies or truncates portions of the preceding sequence or sequences. Sequence boundaries are the product of a combination of fluvial, estuarine, and marine erosional processes. Stratigraphic and age analyses constrain the ages of sequences to late Marine Isotope Stage (MIS) 6 and younger (∼ 140 ka to present), indicating multiple sea-level oscillations during this interval. Elevations of highstand deposits associated with late MIS 5 and MIS 3 imply that sea level was either similar to present during those times, or that the region may have been influenced by glacio-isostatic uplift and subsidence.  相似文献   

16.
In recent years, major advances have been made in our understanding of Late Quaternary sea-level changes in western Scotland. In particular, new hypotheses have been advanced to explain the ages and origins of high-level rock platform fragments and high-level marine shell beds. Certain raised shorelines in Islay and Jura, SW Argyll and Wester Ross have been related to former margins of the last ice sheet and are associated with drops in the Lateglacial marine limit. In some areas the decline in Lateglacial sea-level took place in association with a stationary ice margin while in others the fall in sea-level occurred in conjunction with considerable ice retreat.During the Lateglacial Interstadial, relative sea-level fell rapidly between ca. 13 and ca. 12 ka BP and thereafter more slowly until ca. 11 ka BP. Renewed marine erosion during the cold climate of the Loch Lomond (Younger Dryas) Stadial (ca. 11-10 ka BP) resulted in the production of the Main Lateglacial Shoreline, which declines in altitude to the W, SW and S away from the centre of glacio-isostatic uplift in the W Highlands. The shoreline has a maximum altitude of 10–11 m O.D. in the Oban area and passes below sea-level in NE Islay, Ardnamurchan, Colonsay, W Mull, Kintyre and Arran.During the early Holocene a pronounced marine transgression took place, probably culminating between 6.6 and 7.0 ka BP. The culmination of the transgression is represented by the Main Postglacial Shoreline that reaches a maximum altitude of ca. 14 m in the Oban area and declines gently in altitude away from the centre of glacio-isostatic uplift. Reconstruction of the uplift isobases for this shoreline appears to indicate a slight eastward migration of the uplift centre since the Younger Dryas. In peripheral areas of western Scotland the Main Postglacial Shoreline is not present owing to the effect of Holocene submergence.  相似文献   

17.
西沙群岛西科1井碳酸盐岩稳定同位素地层学   总被引:2,自引:0,他引:2       下载免费PDF全文
西科1井由于矿化重结晶作用和白云岩化作用普遍发育, 无法采用传统的氧同位素地层学方法进行地层年代标定.但是该井δ13C变化曲线与南海及全球主要大洋的碳同位素变化曲线完全相同, 可以用来准确标定200 ka以来的地层年龄.该井0~50 m深度对应全球氧同位素1~7期, 5 m处地层时代为14 ka, 为氧同位素1期的底界年龄; 11.70 m处为氧同位素2期的底界, 年龄为29 ka; 13.90 m深度年龄为57 ka; 到35.65 m为氧同位素6期底界, 年龄为191 ka, 同时δ13C值表现出冰期低而间冰期高的特点, 取自25.21 m的珊瑚U-Th定年年龄为131.062±2.320 ka.通过碳同位素定年发现, 石岛缺失近代5 ka以来的沉积物, 在间冰期向冰期转换时因海平面下降造成碳酸盐台地暴露剥蚀.全球气候变化是石岛碳酸盐台地δ13C值发生突变的主要原因.   相似文献   

18.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

19.
As a future warm-climate analog, much attention has been directed to studies of the Last Interglacial period or marine isotope substage (MIS) 5.5, which occurred ~120,000 years ago. Nevertheless, there are still uncertainties with respect to its duration, warmth and magnitude of sea-level rise. Here we present new data from tectonically stable peninsular Florida and the Florida Keys that provide estimates of the timing and magnitude of sea-level rise during the Last Interglacial period. The Last Interglacial high sea stand in south Florida is recorded by the Key Largo Limestone, a fossil reef complex, and the Miami Limestone, an oolitic marine sediment. Thirty-five new, high-precision, uranium-series ages of fossil corals from the Key Largo Limestone indicate that sea level was significantly above present for at least 9000 years during the Last Interglacial period, and possibly longer. Ooids from the Miami Limestone show open-system histories with respect to U-series dating, but show a clear linear trend toward an age of ~120 ka, correlating this unit with the Last Interglacial corals of the Key Largo Limestone. Older fossil reefs at three localities in the Florida Keys have ages of ~200 ka and probably correlate to MIS 7. These reefs imply sea level near or slightly above present during the penultimate interglacial period. Elevation measurements of both the Key Largo Limestone and the Miami Limestone indicate that local (relative) sea level was at least 6.6 m, and possibly as much as 8.3 m higher than present during the Last Interglacial period.  相似文献   

20.
The infrared stimulated luminescence (IRSL) dating method is applied to alkali feldspar coarse grains from the two distinct Middle Pleistocene interglacial estuarine deposits of Tourville, located along the Seine Valley. The upper deposit (unit D), previously dated at 200 ka by ESR on in situ shells and correlated with a stage 7 high sea-level stand (186–245 ka), yields a measured IRSL age of 176 ± 21 ka. The lower deposit (unit B) assigned to a distinctly older high sea-level event (stage 9: 303–339 ka) yields a measured IRSL age of 273 ± 28 ka. The nearby stage 7 raised beach of Sangatte, in Northwestern France, previously dated by TL on quartz (229 ± 18 ka) yields a measured IRSL age of 186 ± 19 ka. These IRSL age estimates systematically underestimate the expected geological ages. This could be due to the long-term fading or instability of the luminescence signal in alkali feldspars. The correction for long-term fading has been tested on these samples. At Tourville, it yields corrected IRSL ages of 196 ± 23ka and 314 ± 32ka, for the upper and lower units respectively and, at Sangatte, a corrected IRSL age of 206 ± 20 ka. These corrected IRSL age estimates are in better agreement with the expected geological ages. This study demonstrates the potential of the feldspar luminescence dating method to provide chronological information on Middle Pleistocene interglacial estuarine sediments within the North Sea-English Channel Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号