首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actinomycetes population from continental slope sediment of the Bay of Bengal was studied. Samples were collected during two voyages of FORV Sagar Sampada in 2004 (May-June) and 2005 (July) respectively from 11 transects (each transect had ca. 200 m, 500 m, and 1 000 m depth stations). The physicochemical parameters of overlying water, and sediment samples were also recorded. The actinomycete population ranged from 5.17 to 51.94 CFU/g dry sediment weight and 9.38 to 45.22 CFU/g dry sediment weight during the two cruises respectively. No actinomycete colony was isolated from stations in 1 000 m depth. Two-way analysis of variance showed significant variation among stations (ANOVA two-way, P〈0.05), but no significance was found between the two cruises (ANOVA two-way, P〈0.05). Populations in stations in 500 m depth in both cruises were higher than that of 200 m depth stations with statistically insignificant difference (ANOVA two-way, P〉0.05). Three actinomycetes genera were identified. Streptomyces was found to be the dominating one in both the cruises, followed by Micromonospora, and Actinomyces. The spore of Streptomyces isolates showed the abundance in spiral spore chain. Spore surface was smooth. Multiple regression analysis revealed that the influencing physico-chemical factors were sediment pH, sediment temperature, TOC, porosity, salinity, and pressure. The media used in the present study was prepared with seawater. Thus, they may represent an autochthonous marine flora and deny the theory of land runoff carriage into the sea for adaptation to the salinity of the seawater and sediments.  相似文献   

2.
Seasonal variability of thermocline in the Yellow Sea   总被引:5,自引:0,他引:5  
Based on the MASNUM wave-tide-circulation coupled numerical model, seasonal variability of thermocline in the Yellow Sea was simulated and compared with in-situ observations. Both simulated mixed layer depth (MLD) and thermocline intensity have similar spatial patterns to the observations. The simulated maximum MLD are 8 m and 22 m, while the corresponding observed values are 13 m and 27 m in July and October, respectively. The simulated thermocline intensity are 1.2℃/m and 0.5℃/m in July and October, respectively, which are 0.6℃/m less than those of the observations. It may be the main reason why the simulated thermocline is weaker than the observations that the model vertical resolution is less precise than that of the CTD data which is 1 m. Contours of both simulated and observed thermocline intensity present a circle in general. The wave-induced mixing plays a key role in the formation of the upper mixed layer in spring and summer. Tidal mixing enhances the thermocline intensity. Buoyancy-driven m  相似文献   

3.
A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.  相似文献   

4.
Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1998-2002). We analyzed decadal variability of chlorophyll a by comparing the products of the two observation periods. The relationships of variability in chlorophyll a with sea surface wind speed (SSW), sea surface temperature (SST), wind stress (WS), and mixed layer depth (MLD) were determined. The results indicate that there is obvious chlorophyll a decadal variability in the SCS. The decadal chlorophyll a presents distinct seasonal variability in characteristics, which may be as a result of various different dynamic processes. The negative chlorophyll a concentration anomaly in January was associated with the warming of SST and a shallower MLD. Generally, there were higher chlorophyll a concentrations in spring during the SeaWiFS period compared with the CZCS period. However, the chlorophyll a concentration exhibits some regional differences during this season, leading to an explanation being difficult. The deepened MLD may have contributed to the positive chlorophyll a concentration anomalies from the northwestern Luzon Island to the northeastern region of Vietnam during April and May. The increases of chlorophyll a concentration in northwestern Borneo during May may be because the stronger SSW and higher WS produce a deeper mixed layer and convective mixing, leading to high levels of nutrient concentrations. The higher chlorophyll a off southeastern Vietnam may be associated with the advective transport of the colder water extending from the Karimata Strait to southeastern Vietnam.  相似文献   

5.
The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the Central Pacific El Nio (CP-El Nio) and has a connection with the subtropical air-sea interaction in the northeastern Pacific. After removing the influence of the Eastern Pacific El Nio, an S-EOF analysis is conducted and the leading mode shows a clear seasonal SSTA evolving from the subtropical northeastern Pacific to the tropical central Pacific with a quasi-biennial period. The initial subtropical SSTA is generated by the wind speed decrease and surface heat flux increase due to a north Pacific anomalous cyclone. Such subtropical SSTA can further influence the establishment of the SSTA in the tropical central Pacific via the wind-evaporation-SST (WES) feedback. After established, the central equatorial Pacific SSTA can be strengthened by the zonal advective feedback and thermocline feedback, and develop into CP-El Nio. However, as the thermocline feedback increases the SSTA cooling after the mature phase, the heat flux loss and the re-versed zonal advective feedback can cause the phase transition of CP-El Nio. Along with the wind stress variability, the recharge (discharge) process occurs in the central (eastern) equatorial Pacific and such a process causes the phase consistency between the thermocline depth and SST anomalies, which presents a contrast to the original recharge/discharge theory.  相似文献   

6.
The authors studied variations of temperature and salinity in seawater under sea ice using hydrologic data collected from polynyas south of the St. Lawrence Island during March of 2008 and 2009. The results indicate that the high-salinity water found during the cruises of 2008 and 2009 was due to the formation of polynyas. The salinity observed in 2008 was higher than that in 2009 as a result of higher salt production in 2008. The spatial distributions of high-salinity cores differed between the two cruises. In March 2008, a southeastward flow was formed under the persistent northerly wind in the observation region, which transported the high-salinity water produced by the polynyas to the southeast. The similar flow, however, did not exist in March 2009 because the northerly wind over the study area was interrupted by a southerly wind. Accordingly, the polynyas and the high-salinity water produced by them existed for a short time. As a result, the high-salinity water in 2009 did not spread very far, and stayed within the polynyas. In addition, during the 2009 cruise, two stages of observations in the polynyas showed the core of high-salinity water was shifted to the southwest of the St. Lawrence Island. This result suggested that a southwestward flow might have existed in the area at the onset of the northerly wind, which was consistent with the alongshore and/or offshore flows caused by the northerly wind.  相似文献   

7.
Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadISST and SODA datasets.Wind and heat flux datasets were used to discuss the mechanisms for these variations.Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole(IOD)events are significantly different.A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process,which does not take place at the subsurface layer.In the western pole,the surface anomalies last longer than the subsurface anomalies.The subsurface anomalies are strongly correlated with ENSO,while the relationship between the surface anomalies and ENSO is much weaker.And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer.The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields,while the heat flux effect is important on SST.  相似文献   

8.
As a unique low-temperature water mass in Antarctic coastal region, the Ice Shelf Water (ISW) is an important component for the formation of the Antarctic Bottom Water (AABW). In this paper, we present a criterion for ISW identification based on freezing point at the sea surface, and we study spatial distribution of ISW in front of the Amery Ice Shelf (AIS) and its flow path in Prydz Bay by analyzing hydrographic data from Australian cruises in 2001 and 2002, as well as Chinese cruises in 2003, 2005, 2006, and 2008, all being made in the austral summer. The relatively cold and fresh ISW occurred as several discrete water blocks with cold cores in front of the AIS, within the depth range of 100?600 m, under the seasonal thermocline. ISW had obvious temporal and spatial variations and the spatial distribution pattern changed greatly after 2005. Most of ISW was concentrated west of 73°E during 2001 to 2003 and 2006, but it was widespread to east in 2005 and 2008. In all observation years, a small amount of cold ISW always occurs at the west end of the AIS front section, where the coldest ISW in the whole section also occurred in 2001, 2003 and 2006. Considering general cyclonic circulation pattern under the AIS, the ISW flowing out from west end of the AIS front might have experienced the longest cooling period under ice shelf, so it would have the lowest temperature. Analysis of data from meridian sections in Prydz Bay in 2003 implied that ISW in the west could spread north to the continental break along the east flank of the Fram Bank near 70.5°E, mix with the upwelling Circumpolar Deep Water and possibly contribute to the formation of AABW.  相似文献   

9.
城市风环境是城市微气候研究的一个重要方向,对分析城市热岛效应、空气流通等具有重要意义。本文以郑州市市区为例,使用1971—2018年气象观测数据、2018年建筑分布数据(OSM)和2016年资源三号卫星数据作为数据源,通过运用气象学和GIS技术结合的方法,探究潜在通风廊道,科学量化城市形态对风环境的影响。研究首先借助WindNinja软件,对城市背景风环境进行模拟分析,该计算方法提高了风道定位的精度。然后利用卫星遥感数据制作了数字高程模型(DSM),结合OSM计算下垫面地表粗糙度。进一步借助ArcGIS软件,利用最小成本路径法(LCP)确定城市潜在通风廊道的位置。结果表明:① 郑州市近年来平均风速缓慢下降,平均每10年下降0.26 m/s;全年主导风向东北风进入城市后受城市形态影响在京广铁路线附近以西逐渐转为东北偏东风,其中在京广快速路以东风速较高,在京广快速路以西风速较低;② 金水区西部、中原区、二七区以及管城区的地表粗糙度较高,通风环境较差;金水区东部和惠济区的地表粗糙度较低,通风环境较好;③根据盛行风向模拟的潜在通风廊道,其共同特点是趋向于低粗糙度的地区。  相似文献   

10.
Based on observed temperature data since the 1950s, long-term variability of the summer sharp thermocline in the Yellow Sea Cold Water Mass (YSCWM) and East China Sea Cold Eddy (ECSCE) areas is examined. Relationships between the thermocline and atmospheric and oceanic forcing were investigated using multiyear wind, Kuroshio discharge and air temperature data. Results show that: 1) In the YSCWM area, thermocline strength shows about 4-year and 16-year period oscillations. There is high correlation between summer thermocline strength and local atmospheric temperature in summer and the previous winter; 2) In the ECSCE area, interannual oscillation of thermocline strength with about a 4-year period (stronger in El Ni o years) is strongly correlated with that of local wind stress. A transition from weak to strong thermocline during the mid 1970s is consistent with a 1976/1977 climate shift and Kuroshio volume transport; 3) Long-term changes of the thermocline in both regions are mainly determined by deep layer water, especially on the decadal timescale. However, surface water can modify the thermocline on an interannual timescale in the YSCWM area.  相似文献   

11.
Many previous studies of the impact of oceanic environmental factors on chlorophyll(CHL)in a specific region focused on sea surface temperature(SST),mixed-layer depth(MLD),or wind stress(WS) alone.In this study,relationship between CHL and all those environmental factors(SST,MLD,and WS) in the open ocean was quantified for five regions within the subtropical gyres and the variation trend of 13-year(2003-2015) was analyzed using satellite observations and Argo measurements.The correlation analysis results show that MLD was correlated positively with CHL,SST was correlated negatively with CHL,and the correlation between CHL and WS was either positive or negative.Based on the significance of the correlations,models representing the relationships were established using the multiple linear regression and analyzed,showing that the environmental factors were the major determinants of CHL change.The regression coefficients show that both SST and MLD have remarkable effect on CHL.Our derived models could be used to diagnose the past changes,understand present variability,and predict the future state of CHL changes based on environmental factors,and help us understand the dynamics of CHL variation in the open ocean.  相似文献   

12.
INTRODUCTIONXuetal.(1993)studiedthebasiccharacteristicsofthethermoclineinthecontinentalshelfandinthedeepsearegionoftheSouthChinaSea(SCS)andthedifferencesbetweenthembyanalyzing1907-1990historicaldataontheSCS.Hepointedoutthatthethermoclineinthedeepsearegionexis…  相似文献   

13.
Based on the temperature data along 34°N, 35°N and 36°N sections in August from 1977 to 2003, the structure and formation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and its responses to El Nino events are analyzed. Results show that: (1) There exist double cold cores under the main thermocline along the 35°N and 36°N sections. Also, double warm cores exist above the main thermocline along the 36°N section. (2) Thermocline dome by upwelling separates the upper warm water into two parts, the eastern and western warm waters. Additionally, the circulation structure caused by upwelling along the cold front and northeastward current along the coast in summer is the main reasons of double warm cores along the 36°N section. The intermediate cold water is formed in early spring and moves eastward slowly, which results in the formation of the western one of double cold cores. (3) Position of the thermocline dome and its intensity vary interannually, which is related to El Nino events. However, the  相似文献   

14.
A two-month seabed-mounted observation(YSG1 area) was carried out in the western Yellow Sea Cold Water Mass(YSCWM) using an RDI-300 K acoustic Doppler current profiler(ADCP) placed at a water depth of 38 m in late summer, 2012. On August 2012, Typhoon Bolaven passed east of YSG1 with a maximum wind speed of 20 m s-1. The water depth, bottom temperature, and profile current velocities(including u, v and w components) were measured, and the results showed that the typhoon could induce horizontal current with speed greater than 70 cm s-1 in the water column, which is especially rare at below 20 meters above bottom(mab). The deepening velocity shear layer had an intense shear velocity of around 10 cm s-1 m-1, which indicated the deepening of the upper mixed layer. In the upper water column(above 20 mab), westward de-tide current with velocity greater than 30 cm s-1 was generated with the typhoon's onshore surge, and the direction of current movement shifted to become southward. In the lower water column, a possible pattern of eastward compensation current and delayed typhoon-driven current was demonstrated. During the typhoon, bottom temperature variation was changed into diurnal pattern because of the combined influence of typhoon and tidal current. The passage of Bolaven greatly intensified local sediment resuspension in the bottom layer. In addition, low-density particles constituted the suspended particulate matter(SPM) around 10 mab, which may be transported from the central South Yellow Sea by the typhoon. Overall, the intensive external force of the Typhoon Bolaven did not completely destroy the local thermocline, and most re-suspended sediments during the typhoon were restricted within the YSCWM.  相似文献   

15.
The spatial distribution of some large tintinnid species (nominally〉76 μm) was investigated according to samples collected by vertical towing in cruises to the southern Yellow Sea in summer 2000-2002 and 2004. Eight species were identified: Codonellopsis mobilis, Leprotintinnus netritus, Tintinnopsis karajacensis, T. japonica, T. kiaochowensis, T. butschlii, T. radix, and Parafavella sp. With maximum abundance of 158.2 ind/L in June 2004, C. mobilis was the dominant species, lasting from May to July 2004. Tintinnid communities were patchy and distributed mainly in shallow waters along the shore.  相似文献   

16.
Sub-tidal (1.04–25 day) current fluctuations during winter/spring on the continental shelf off Savannah, Georgia (32°N) and off St. Augustine, Florida (30°N) were compared with records of local wind stress components and GulfStream position. (Acoustic travel time and bottom pressure measurements at stations on the continental slope were combined to determine main, thermocline depth, as an indicator of Gulf Stream displacement). Relative wind influences increased towards the coast. GulfStream influence increased towards the shelf-break and towards the surface. Off Savannah, the Gulf Stream influence was predominately at 12 day period and was negligible at the 45 m isobath. Off St. Augustine, its influence was predominately at 4 day period and was appreciable at the 40 m isobath (but negligeable at the 28 m isobath). Linear predictions of currents from wind and Gulf Stream account for ∼80% of the observed variance. Similar methods of studying and predicting the wind—and Kuroshio-influenced currents on the East China Shelf are proposed.  相似文献   

17.
The shipboard measurements of whitecap coverage(W) and the meteorological and oceanographic information from two cruises in the South China Sea and Western Pacific are explored for estimating W. This study aims at evaluating how to improve the parameterizations of W while considering the effects of currents and swells on wave breaking. Currents indeed affect W in a way that winds with following currents can decrease W, whereas winds with opposing currents can increase W. Then, 10-m wind speed over sea surface(U_(10)) is calibrated by subtracting the current velocity from U_(10) when the propagating directions of winds and currents are aligned. By contrast, when the direction is opposite, U_(10) is calibrated by adding the parallel velocity component of the opposing current to U_(10). The power fits of W dependence on the U_(10)-related parameters of U_(10), friction velocity, wind sea Reynolds number in terms of this calibrated-U_(10) obtain better results than those directly fitted to U_(10). Different from the effect of currents on W, wind blowing along the crest line of swells may contribute to the increase in W. The conclusions suggest that U_(10) should be calibrated first before parameterizing W in areas with a strong current or some swell-dominant areas.  相似文献   

18.
19.
This paper discusses the long-term temperature variation of the Southern Yellow Sea Cold Water Mass(SYSCWM)and examines those factors that infl uence the SYSCWM,based on hydrographic datasets of the China National Standard Section and the Korea Oceanographic Data Center.Surface air temperature,meridional wind speed,and sea surface temperature data are used to describe the seasonal changes.Mean temperature of the two centers of the SYSCWM had diff erent long-term trends.The temperature of the center in the west of the SYSCWM was rising whereas that of the center in the east was falling.Mean temperature of the western center was related to warm water intrusion of the Yellow Sea Warm Current,the winter meridional wind,and the winter air temperature.Summer process played a primary role in the cooling trend of temperature in the eastern center.A decreasing trend of salinity in the eastern half of the SYSCWM showed that warm water intrusion from the south might weaken,as could the SYSCWM circulation.Weakened circulation provided less horizontal heat input to the eastern half of the SYSCWM.Less lateral heat input may have led to the decreasing trend in temperature of the eastern center of the SYSCWM.Further,warmer sea surface temperatures and less heat input in the deep layers intensifi ed the thermocline of the eastern SYSCWM.A stronger thermocline had less heat fl ux input from upper layers to this half of the SYSCWM.Stronger thermocline and weakened heat input can be seen as two main causes of the cooling temperature trend of the eastern center of the SYSCWM.  相似文献   

20.
过去从局地尺度和微尺度优化规划和建筑设计的角度,城市规划与建筑学科的研究者提出了构建城市区域通风廊道的思想。但对目前的特大城市和城市群而言,无论城市热岛还是污染物输送都可能涉及更大尺度范围的区域影响。结合自然地理资源条件,对城市外围待发展区域的风道识别和规划,可能更具有现实意义。本文基于空气动力学粗糙长度计算通风指数,从动力学角度初步识别出北京不同区域的通风潜力:① 利用数值模拟输出的1月和7月平均水平风场发现,在背景风较强的冬季,水平风速的分布与下垫面的粗糙度保持高度一致,在北京城区东北方向存在一条明显的风道,在通过城区时受城市下垫面的拖曳影响出现显著的风速下降,在城市下风方向风速又有所回升;② 与热力分析对比发现,夏季城市外的低温区域与盛行风向相悖,偏南方向上的补偿空间面积比冬季小且与作用空间的温差也小,流向城市的可利用风资源匮乏;③ 基于近地面温度和粗糙长度加权计算后得到通风指数,冬季为0~0.25,夏季为0~0.60,数值越小通风能力越强,受季节热力差异影响,冬季通风能力显著优于夏季。④ 进一步结合数值模拟的风速分布,将通风评价结果划分为4个等级,从北京市全域尺度分冬、夏两季识别了北京市的潜在风道,冬季贯穿南北的风道全长约200 km,从城市外围引入风资源,可有效提高城市自净能力,而在背景风较弱的夏季,风道贯通性较差,气流疏导能力弱,亟待区域联动优化城市群发展规划。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号