首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mineral exploration of the Widgiemooltha-Norseman region of Western Australia has located massive and disseminated nickel sulphide mineralisation.This paper discusses the geological setting of the nickel sulphide mineralisation with reference to the stratigraphy, structure and metamorphism of the ultramafic sequence and spatially associated rocks. The amphibolite facies metamorphosed ultramafic rocks of the Widgiemooltha area are compared with greenschist metamorphosed ultramafic rocks at Eundynie, which exhibit excellently preserved pseudomorphs of primary igneous textures.Some 2000 ultramafic rock samples were analysed for 13 element/oxides and divided into four major mineralogically and texturally distinct groups. The data were analysed statistically by determination of means and standard deviations and multiple regression analyses.The data suggest differentiation of a magma at depth followed by a vast outpouring of lava to produce picritic-peridotitic rocks. The flows crystallised with upper spinifex zones and lower euhedral-olivine zones in varying proportions dependent on magma composition. The development of spinifex texture is compositionally controlled. This texture is not developed in rocks with MgO contents greater than 26% (± 2%).The comparison of the ultramafics of the Widgiemooltha and Eundynie areas indicates that talc-carbonate formation and serpentinization have modified primary igneous textures and geochemistries, resulting in the production of a diverse group of rock types. Such post-magmatic alteration processes in association with structural elements are considered important in the upgrading of nickel sulphide mineralisation.  相似文献   

2.
Perseverance is a world-class, komatiite-hosted nickel sulphide deposit situated in the well-endowed Leinster nickel camp of the Agnew–Wiluna greenstone belt, Western Australia. The mine stratigraphy at Perseverance trends north-northwest (NNW), dips steeply to the west, and is overturned. Stratigraphic footwall units lie along the western margin of the Perseverance Ultramafic Complex (PUC). The PUC comprises a basal nickel sulphide-bearing orthocumulate- to mesocumulate-textured komatiite that is overlain by a thicker, nickel sulphide-poor, dunite lens. Hanging wall rocks include rhyodacite that is texturally and compositionally similar to footwall volcanic rocks. These rocks separate the PUC from a second sequence of nickeliferous, E-facing, spinifex-textured komatiite units (i.e. the East Perseverance komatiite). Past workers argue for a conformable stratigraphic contact between the PUC and the East Perseverance komatiite and conclude that the PUC is extrusive. This study, however, clearly demonstrates that these komatiite sequences are discordant, implying that the PUC may have intruded rhyodacite country rock as a sill with subsequent structural juxtaposition against the East Perseverance komatiite. Early N–S shortening associated with the regional DI deformation event (corresponding to the local DP1 to DP3 events at Perseverance) resulted in the heterogeneous partitioning of strain along the margins of the competent dunite. A mylonite developed in the more ductile footwall rocks along the footwall margin of the PUC, while isoclinal F3 folds, such as the Hanging wall limb and Felsic Nose folds, formed in low-mean stress domains along the fringes of the elongated dunite lens. Strata-bound massive and disseminated nickel sulphides were passively fold thickened in hinge areas of isoclinal folds, whereas basal massive sulphides lubricated fold limbs and promoted thrust movement along shallowly dipping lithological contacts. Massive sulphides were physically remobilised up to 20 m from their primary footwall position into deposit-scale fold hinges to form the 1A and Felsic Nose orebodies. First-order controls on the geometry of the Perseverance deposit include the thermomechanical erosion of footwall rocks and the channelling of the mineralised komatiitic magma. Second- or third-order controls are several postvolcanic deformation events, which resulted in the progressive folding and shearing of the footwall contact, as well as the passive fold thickening of massive and disseminated sulphide orebodies. Massive sulphides were physically remobilised into multiple generations of fold hinges and shear zones. Important implications for near-mine exploration in the Leinster camp include identifying nickeliferous komatiite units, defining their three-dimensional geometry, and targeting fold hinge areas. Fold plunge directions and stretching lineations are indicators of potential plunge directions of massive sulphide orebodies.  相似文献   

3.
澳大利亚西部伊尔岗克拉通卡尔古利地体是世界上太古宙与科马提岩有关的硫化物镍矿床最为集中的地区。该区科马提岩型硫化镍矿床主要有两大类型:①由高品位的块状、海面陨铁状和网状矿石组成,赋存于科马提岩熔岩流(主要为火山橄榄岩)底部,以卡姆巴尔达矿床为代表;②以低品位的浸染状镍硫化物矿石为主,赋存于厚层纯橄榄岩的中部,以芒特基斯为代表。与镍成矿有关的科马提岩形成于晚太古代(2.70Ga),具铝不亏损(Al2O3/TiO2=15~25)地球化学特征,一般形成于具含硫围岩的动态高岩浆流环境。伊尔岗克拉通科马提岩型镍硫化物矿床形成于经历岩浆作用(结晶、分异和浓集)和地壳硫混染作用的硫不饱和镁铁质-超镁铁质岩浆的熔岩通道或管道中。在矿床成因讨论的基础上,提出该类型矿床的找矿标志和勘查方法。  相似文献   

4.
西北地区地处亚欧大陆腹地,以元古宙—古生代金属成矿为显著特色。火山喷溢型铁矿、BIF型铁矿、岩浆熔离型铜镍矿、块状硫化物型铜多金属矿、海底喷流型铅锌矿及浅成低温热液型金矿是主要的成矿类型。中亚构造域中南部以晚古生代内生矿床产出为特点,主要表现为石炭纪—早二叠世大火成岩省大规模的成矿作用。塔里木、鄂尔多斯是中国重要的油气储藏盆地,周边有金属矿产产出。特提斯构造域东北部主要是秦—祁—昆造山带西昆仑塔什库尔干、祁漫塔格重要矿集区的发现。根据西北地区重要成矿区带的主要成矿特征、典型矿床及找矿新发现,结合多元信息综合分析,对各个成矿区带进行资源潜力评价、划分找矿远景和勘查选区,并提出了部署建议。  相似文献   

5.
The West Jordan nickel deposit, in the northern Agnew–Wiluna greenstone belt of Western Australia, is a newly-discovered Type 2 dunite-hosted, low-grade, large tonnage, disseminated sulphide system. Located in the core of a large dunite body, mineralisation is dominated by intercumulus sulphide blebs (20 μm to 6 mm across) in assemblages containing pentlandite, pyrrhotite, heazlewoodite and locally, native nickel, sphalerite and chalcocite. Mineralisation grades between 0.2 and 2 wt.% Ni, with the majority of samples in the 0.35–0.7% Ni range, were consistent with most komatiitic Type 2 systems. Hypogene alteration of the ultramafic host rock is interpreted to have been effected by retrograde metamorphic fluids, and has resulted in extensive serpentinisation and localised, structurally-controlled, talc-magnesite alteration. This gangue alteration has resulted in modification of original magmatic sulphide assemblages, and localised remobilisation of the minor Cu and Zn components of the magmatic sulphides. The deposit is deeply weathered, and all samples utilised in this study were obtained from a series of 12 diamond drill holes which were comprehensively assayed. An igneous stratigraphy is presented which is interpreted to be west-younging, consistent with along-strike deposits to the south, such as the Mount Keith and Yakabindie Type 2 nickel deposits.  相似文献   

6.
《Ore Geology Reviews》2007,30(3-4):177-241
Australia's nickel sulfide industry has had a fluctuating history since the discovery in 1966 of massive sulfides at Kambalda in the Eastern Goldfields of Western Australia. Periods of buoyant nickel prices and high demand, speculative exploration, and frenetic investment (the ‘nickel boom’ years) have been interspersed by protracted periods of relatively depressed metal prices, exploration inactivity, and low discovery rates. Despite this unpredictable evolution, the industry has had a significant impact on the world nickel scene with Australia having a global resource of nickel metal from sulfide ores of ∼ 12.9 Mt, five world-class deposits (> 1 Mt contained Ni), and a production status of number three after Russia and Canada. More than 90% of the nation's known global resources of nickel metal from sulfide sources were discovered during the relative short period of 1966 to 1973. Australia's nickel sulfide deposits are associated with ultramafic and/or mafic igneous rocks in three major geotectonic settings: (1) Archean komatiites emplaced in rift zones of granite–greenstone belts; (2) Precambrian tholeiitic mafic–ultramafic intrusions emplaced in rift zones of Archean cratons and Proterozoic orogens; and (3) hydrothermal-remobilized deposits of various ages and settings. The komatiitic association is economically by far the most important, accounting for more than 95% of the nation's identified nickel sulfide resources. The ages of Australian komatiitic- and tholeiitic-hosted deposits generally correlate with three major global-scale nickel-metallogenic events at ∼ 3000 Ma, ∼ 2700 Ma, and ∼ 1900 Ma. These events are interpreted to correspond to periods of juvenile crustal growth and the development of large volumes of primitive komatiitic and tholeiitic magmas caused by large-scale mantle overturn and mantle plume activities. There is considerable potential for the further discovery of komatiite-hosted deposits in Archean granite–greenstone terranes including both large, and smaller high-grade (5 to 9% Ni) deposits, that may be enriched in PGEs (2 to 5 g/t), especially where the host ultramafic sequences are poorly exposed.Analysis of the major komatiite provinces of the world reveals that fertile komatiitic sequences are generally of late Archean (∼ 2700 Ma) or Paleoproterozoic (∼ 1900 Ma) age, have dominantly Al-undepleted (Al2O3/TiO2 = 15 to 25) chemical affinities, and often occur with sulfur-bearing country rocks in dynamic high-magma-flux environments, such as compound sheet flows with internal pathways facies (Kambalda-type) or dunitic compound sheet flow facies (Mt Keith-type). Most Precambrian provinces in Australia, particularly the Proterozoic orogenic belts, contain an abundance of sulfur-saturated tholeiitic mafic ± ultramafic intrusions that have not been fully investigated for their potential to host basal Ni–Cu sulfides (Voisey's Bay-type mineralization). The major exploration challenges for finding these deposits are to determine the pre-deformational geometries and younging directions of the intrusions, and to locate structural depressions in the basal contacts and feeder conduits under cover. Stratabound PGE–Ni–Cu ± Cr deposits hosted by large Archean–Proterozoic layered mafic–ultramafic intrusions (Munni Munni, Panton) of tholeiitic affinity have comparable global nickel resources to many komatiite deposits, but low-grades (< 0.2% Ni). There are also hydrothermal nickel sulfide deposits, including the unusual Avebury deposit in western Tasmania, and some potential for ‘Noril'sk-type’ Ni–Cu–PGE deposits associated with major flood basaltic provinces in western and northern Australia.  相似文献   

7.
The Black Swan Succession is a bimodal association of dacitic and komatiitic volcanic rocks located about 50 km NNE of Kalgoorlie, within the 2.7-Ga Eastern Goldfields greenstone province of the Yilgarn Craton. The komatiite stratigraphy comprises a steep dipping, east facing package about 700 m in maximum thickness and about 2.5 km in strike length (Fig. 1), which hosts a number of economically exploitable Ni sulphide orebodies including the Silver Swan massive ore shoot (approximately half a million tonnes at about 10.5% Ni). The sequence can be subdivided into a Lower Felsic Unit, comprising coherent and autobrecciated facies of multiple dacite lava flows; an upper Eastern and lower Western Ultramafic Unit, each showing marked lateral facies variation, and an Upper Felsic Unit coeval with the Eastern Ultramafic Unit. The komatiite sequence has been metamorphosed at sub-greenschist facies in the presence of high proportions of CO2-rich fluid, giving rise to pervasive talc–carbonate and talc–carbonate–quartz assemblages, with extensive preservation of pseudomorphed igneous textures. Cores of lizardite serpentinite are present in the thickest parts of the ultramafic succession. The degree of penetrative deformation is generally very low, and original stratigraphic relationships are largely intact in much of the sequence. The Eastern Ultramafic Unit and Western Ultramafic Unit are interpreted as components of a single large komatiite flow field, representing overlapping stages in the emplacement of a series of distributory lava pathways and flanking sheet flows. The Western Ultramafic Unit which hosts the bulk of the high-grade massive and disseminated ores is a sequence dominated by coarse-grained olivine cumulates, 2 km wide and up to 500 m thick, with major magma pathways represented by thick, homogenous olivine mesocumulate piles at its northern and southern ends: respectively 400 and 200 m thick. The sequence between the two major pathways consists of olivine orthocumulates (oOC) with minor spinifex-textured intervals. The Unit is capped by a persistent spinifex-textured crust less than 1 m thick, and is locally vesicular. The Eastern Ultramafic Unit contains the Black Swan Cumulate Zone, a 500-m thick sequence of very coarse-grained hopper-textured, locally vesicular oOC containing disseminated sulphides in its lower 200 m. The zone is flanked to the north and south by complexly interdigitated sequence of highly irregular, spinifex-capped, olivine cumulate-rich flow lobes between 1 and 100 m thick, and dacitic lavas and tuffs. The complexity of the 3-D spatial relationship of these units suggests a combination of simultaneous eruption of dacite and komatiite, combined with thermal or thermomechanical erosion. The Eastern and Western Units are interpreted as the result of more or less continuous prolonged eruption of olivine charged komatiite lava, which developed localised thermo-mechanical erosion channels in the dacitic substrate. Komatiite and dacite eruption was synchronous, giving rise to complex interdigitation and extensive contamination and hybridisation.Editorial handling: Peter Lightfoot  相似文献   

8.
Spinifex-textured komatiites at Honeymoon Well, Western Australia, show evidence of partial melting and recrystallization of original igneous textures. Their textures and mineral compositions differ markedly from those typical of komatiites. Spinifex olivine plates are bent and broken, while interstitial space between spinifex and cumulus olivine is occupied by polygonal aggregates of clinopyroxene, orthopyroxene, minor olivine and plagioclase. Similar granular pyroxene-plagioclase aggregates occur as diffuse veins cutting spinifex zones and cumulate zones of the flows and, in places, form the matrix to a breccia containing corroded fragments of spinifex rock. Thermometry based on the two pyroxene assemblages yields temperatures of 1055° to 1141° C, just below the low-pressure komatiite solidus. Mineral compositions are different from those of typical komatiites: clinopyroxenes are Al-poor and Cr-rich, olivines are unusually iron-rich and depleted in Cr and Ca, and the low-Ca pyroxene is bronzite rather than the more typical pigeonite. We interpret these observations as the results of thermal metamorphism, partial remelting and subsequent slow crystallization of originally normal spinifex-textured komatiite flows. The rocks in question occupy a 40–70 m interval sandwiched between two olivine-rich units: an underlying 90 m-thick olivine adcumulate layer, forming part of the cumulate zone of a basal 160 m-thick flow, and an overlying 1 km-thick extrusive body composed mostly of olivine mesocumulate and adcumulate and capped in turn by spinifex-textured flows. Thermal modelling shows that a sinusoidal temperature profile of cool flow tops and hot flow centres would exist within this sequence shortly after eruption. Conductive thermal relaxation of this profile could reheat spinifex zones to the extent of inducing partial melting and textural reconstitution. Such reheating is largely dependent on the time interval between the emplacement of successive flows. Calculations suggest that at Honeymoon Well the emplacement interval must have been of the order of 10 years or less. Textural reconstitution may have contributed to the development of the thick orthocumulate sequences characteristic of komatiites in the Agnew-Wiluna belt. Present address: Geochemex Australia, P.O. Box 281, West Perth, 6005, Western Australia  相似文献   

9.
The Kambalda Ni province, located in the Archaean Norseman‐Wiluna greenstone belt of Western Australia, boasts the largest known concentration of komatiite‐associated magmatic Fe–Ni–Cu sulfide deposits. These are found as long, linear massive to disseminated bodies at the base of a thick komatiite sequence. The sulfide bodies are closely associated with, or contained within, trough structures at the contact with the underlying basaltic unit. In this study, the McComish Prospect, located 40 km south of Kambalda at Tramways, was studied to assess the relationships between volcanic facies, mineralisation and trough structures. The rocks in this region have variably experienced four phases of deformation, upper greenschist ‐ lower amphibolite facies metamorphism, granitoid intrusion, and subsequent alteration. Relict igneous textures are locally preserved at McComish, however, enabling the evaluation of existing geological models and interpretations. The McComish trough is considered to be entirely structural in origin and unrelated to primary volcanic processes (e.g. thermal erosion). The association of volcanic textural facies in individual flow units, and the distribution of flow units across the trough is more complex than predicted by prevailing models, suggesting an alternative komatiite lava emplacement mechanism. Results are consistent with the proposal that komatiites did not flow turbulently as widely accepted, nor did they cool by vigorous convection. Alternatively, the lavas were emplaced as inflated, lobate basalt pahoehoe‐like flows. Although Fe–Ni–Cu sulfide mineralisation at McComish is most likely volcanic in origin, its present distribution appears to be structurally controlled or modified. The zone of weakly to strongly disseminated sulfides at the base of the komatiite sequence is thickened adjacent to a major north‐northwest‐trending fault on the western margin of the trough. This fault is interpreted to have been a fluid conduit, remobilising the ore during metamorphism and deformation.  相似文献   

10.
新街镁铁—超镁铁侵入体的铂族元素地球化学特征   总被引:12,自引:0,他引:12  
张成江  李晓林 《地球化学》1998,27(5):458-466
采用镍硫试金预处理中子活化分析方法,系统测定了新街层状侵入体镁铁-超镁铁岩和与其有成因联系的玄武岩及正长岩的铂族元素含量,探讨了岩浆作用过程中铂族元素的地球化学行为。结果表明,新街岩体的铂元素分异特征与布什维尔德等铁质超镁铁岩相似,而明显不同于科马提岩和阿尔卑斯型橄榄岩,二叠系峨眉山玄武岩的铂族元素分异特征与新街岩体相似,再次证实二者为同源岩浆分异产物。  相似文献   

11.
Estimating the undiscovered mineral resources of a terrane is a challenging, yet essential, task in mineral exploration. We apply Zipf’s law rank statistical analysis to estimate the undiscovered nickel sulphide resources in the Norseman-Wiluna Greenstone Belt, Western Australia. The analysis suggests that about 3.0 to 10.0 Mt of nickel sulphide resources are yet to be discovered in this belt, compared to the currently known total nickel sulphide endowment of 10.8 Mt. This undiscovered nickel sulphide endowment is likely to be hosted by incompletely delineated deposits and undiscovered deposits in less explored komatiites in the belt. Using the more detailed data subset of the Kambalda domain, this study manipulates Zipf’s law to estimate the sizes of undiscovered deposits, in addition to the domain’s total nickel sulphide endowment estimate. Importantly, regression analysis shows that the gradient of the line of best fit through the logarithmic rank-size plot for the detailed Kambalda data subset is −1. This gradient, which is the key Zipf’s law constant k, has the value of −0.92 for the Norseman-Wiluna Greenstone Belt which is collectively less mature than the Kambalda domain. This result corroborates the use of k = −1 in Zipf’s law predictive analyses of mineral resources for deposit populations for which the value of k = −1 has not yet been attained due to exploration immaturity.  相似文献   

12.
The Black Swan komatiite sequence is a package of dominantly olivine-rich cumulates with lesser volumes of spinifex textured rocks, interpreted as a section through an extensive komatiite lava flow field. The sequence hosts a number of nickel sulfide orebodies, including the Silver Swan massive shoot and the Cygnet and Black Swan disseminated orebodies. A large body of whole rock analyses on komatiitic rocks from the Black Swan area has been filtered for metasomatic effects. With the exception of mobile elements such as Ca and alkalis, most samples retain residual igneous geochemistry, and can be modelled predominantly by fractionation and accumulation of olivine. Whole rock MgO–FeO relationships imply a relatively restricted range of olivine compositions, more primitive than the olivine which would have been in equilibrium with the transporting komatiite lavas, and together with textural data indicate that much of the cumulus olivine in the sequence was transported. Flow top compositions show evidence for chromite saturation, but the cumulates are deficient in accumulated chromite. Chromite compositions are typical of those found in compound flow-facies komatiites, and are distinct from those in komatiitic dunite bodies. Incompatible trace element abundances show three superimposed influences: control by the relative proportion of olivine to liquid; a signature of crustal contamination and an overprint of metasomatic introduction of LREE, Zr and Th. This overprint is most evident in cumulates, and relatively insignificant in the spinifex rocks. Platinum and palladium behaved as incompatible elements and are negatively correlated with MgO. They show no evidence for wholesale depletion due to sulfide extraction, which was evidently restricted to specific lava tubes or pathways. The lack of correspondence between PGE depletion and contamination by siliceous material implies that contamination alone is insufficient to generate S-saturation and ore formation in the absence of sulfide in the assimilant. Contamination signatures in spinifex-textured rocks may be a guide to Ni-sulfide mineralisation, but are not entirely reliable in the absence of other evidence. The widespread vesicularity of the sequence may be attributable to assimilated water rather than to primary mantle-derived volatiles, and cannot be taken as evidence for primary volatile-rich magmas. The characteristic signature of the Black Swan Succession is the presence of highly localised disseminated sulfide within a sequence showing more widespread evidence for crustal contamination and interaction with its immediate substrate. This has important implications for the applicability of trace element geochemistry in exploration for komatiite-hosted nickel deposits.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial handling: Peter Lightfoot  相似文献   

13.
中国主要含镍岩体特征及其成因   总被引:8,自引:0,他引:8       下载免费PDF全文
中国目前已发现7条岩带中18个岩体赋存有工业铜镍矿床。这些含镍岩体的岩石组合有三大类,其中以超基性岩中矿床居多,苏长岩与科马提岩中较少。中国含镍岩浆系列属于科马提岩系列而非拉斑玄武岩系列,含矿岩浆来自上地幔的部分熔融,源区具有U、Th值高而Cr低的特点,深大断裂发育的大陆边缘是镍矿床发育最理想的场所。  相似文献   

14.
A distinct vertical zonation very similar to that described for the Kuroko deposits of Japan, is displayed by both mineralogy and textures of sulphides from the Lahanos and Kzlkaya massive sulphide deposits of northeastern Turkey. A deeper erosional level is exposed at the Kzlkaya deposit, so that only remnants of the massive sulphide ore zone are present. The zonation is from an upper zone of massive Cu and Zn sulphides (black and yellow ore) with fine-grained, colloform, banded, framboidal, and spherulitic textures, downwards through an intermediate zone of low Cu-Zn massive pyrite with transitional textures, to a lower zone of stockwork and impregnated pyrite displaying euhedral, zoned textures. The fine-grained and colloform pyrite of the upper zones is progressively overgrown by, and recrystallized to, the massive and euhedral pyrite of lower zones. The original textures of these deposits are best preserved by pyrite. The previous interpretation of these textures, of sulphide deposition from colloidal solutions ponded by an impermeable pyroclastic horizon, is reexamined in the light of present observations. Although ultra-fine-grained sulphides, framboids, and radially-cracked spherules could have formed by replacement of pre-existing minerals by a colloidal solution, the colloform and banded textures are indicative of growth in open spaces. It thus seems likely that the fine-grained colloform sulphides, including chalcopyrite, sphalerite, and tennantite as well as pyrite, were initially deposited on or near the surface of the sea-floor. Additional evidence for this interpretation is seen in the progressive recrystallization of the sulphide textures to massive, much coarser, pyrite in the lower zones. This recrystallization may in part be due to diagenetic and hydrothermal processes operating after formation of the original layered sulphides. These conclusions are in agreement with those reached for the similar, but larger Madenköy deposit 100 km to the east.  相似文献   

15.
The Neoarchaean Epoch nickel sulphide (NiS) deposit, discovered in 1970 and subsequently mined from 1972 to 1998, has been previously interpreted to be a magmatic ore system. However, on the basis of field, petrographic and analytical data obtained during the initial exploration and evaluation stages, integrated with limited new analytical data (SEM and ore microscopy), we propose that the Epoch NiS may be of hydrothermal origin. Key features that have prompted a re-appraisal of the genesis of the Epoch mineralisation, include: a) ore lenses are irregularly distributed along foliation fabrics of the host talc-carbonate rocks and as such no relationship to basal ultramafic/mafic units; b) the thickness of the ore lenses are highly variable from tens of centimetres to several metres; c) ore mineralogy is characterised by dominant millerite–pyrite–chalcopyrite assemblages; and d) high Pd/Pt ratios. Although our hydrothermal model is somewhat speculative, we suggest that on present evidence there is little doubt that the Epoch NiS lacks the features of typical magmatic sulphide deposits. More geochemical and isotopic data are needed to test our model.  相似文献   

16.
The Perseverance ultramafic complex is a body of olivine-richkomatiitic rocks spatially associated with the Agnew nickeldeposit, in the Agnew-Wiluna greenstone belt of the ArchaeanYilgarn Block in Western Australia. The complex consists ofa central lenticular body, up to 700 m thick, of olivine adcumulates,flanked by laterally extensive sheet-like bodies of olivineorthocumulates and spinifextextured komatiite flows. Rocks progressivelyfurther away from the central lens have chemical compositionsreflecting higher original proportions of komatiite liquid tocumulus olivine. Parent liquids had MgO contents between 25and 32% MgO, approximately chondritic Al/Ti ratios and HREEpatterns, and moderate depletion in LREE. Olivines within the adcumulate lens show a progressive increasein forsterite content from Fo93 at the bottom to Fo94?5, atthe top. Calculated original olivine compositions in the flankingrocks are similar to those at the base of the central lens.Original olivine nickel contents show a symmetrical variationfrom maximum values of 3500 ppm at the top of the central lens,through minimum values of 1000 ppm at the base and margins ofthe central lens to intermediate values in the distal rocks.The complex as a whole shows evidence for nickel depletion relativeto other komatiite suites. These observations are explained in terms of prolonged eruptionand flow of komatiitic lava down a major flow channel or lavariver. Adcumulates crystallized on the floor and sides of thecentral channel, which was formed at an early stage by thermalerosion of floor rocks. Episodic overflow of the central channelproduced distal ‘flood plain’ rocks consisting ofolivine orthocumulates and layered flows. Lavas became moremagnesian and nickel-rich with time, giving rise to the observedspatial variation in primary olivine composition. Nickel depletionof the earliest lavas is attributed to pre-eruption segregationof large volumes of immiscible Fe-Ni-sulfide, which were concentratedto form the underlying Agnew nickel deposit.  相似文献   

17.
《Ore Geology Reviews》2010,37(4):293-305
A centrographic method for analysing mineral deposit clusters is illustrated using the komatiite-hosted Kambalda nickel sulphide deposit cluster, Yilgarn craton, Western Australia. In this method, the standard distance circle divides the cluster into a more endowed inner part and a less endowed peripheral part. The standard deviational ellipse, another centrographic object, depicts the preferred northwest–southeast trend of nickel orebodies at Kambalda. Weighted centrography shows that nickel endowment is greater in the eastern than western part of the cluster. The spatio-geometric interaction of the circle and ellipse splits the cluster into several partitions. The relative concentration of nickel orebodies or endowment within a partition in relation to their concentration within the entire cluster is termed ‘capture efficiency’. Komatiite areal trace exhibits higher nickel orebody capture efficiency than spatio-geometric partitions; however, some spatio-geometric partitions exhibit nickel endowment capture efficiencies comparable to that of komatiite. Furthermore, nickel orebody and endowment capture efficiencies of komatiite are elevated only within the standard distance circle. These results suggest that at Kambalda, (i) the standard distance circle is a prime window for understanding the komatiite-hosted nickel system, and (ii) spatio-geometric partitions are plausible locales for spatial analysis of nickel orebodies and endowment. The proposed centrographic method is potentially useful in mineral resource estimations and mineral exploration targeting.  相似文献   

18.
Lead isotope measurements on gossans may be used as an exploration tool for Pb-Zn-Cu deposits of the “stratiform” type. The method is based on the homogeneous isotopic composition of stratiform orebodies and the close fit of their ratios to the so-called “growth curve”. These features also characterize oxidized outcrops. (gossans) of the primary sulphide ore. The retention of homogeneous Pb isotope ratios during oxidation was tested and proved for true gossans derived from known mineralization in which there was a variation in vertical depth from gossan to primary sulphide, different ages and different geological environments. The deposits included Pb-Zn-Cu (Woodlawn), Pb-Zn (Broken Hill), Zn-Pb (Dugald River), Zn-Cu-Pb (Currawang).The method has been extended to distinguish true gossans from false (pseudo) gossans where the base metals and associated trace elements have been scavenged from the surrounding rocks. It has also been applied to a company exploration program in which a number of ironstone cappings had been drilled and other geochemical information was available. Diamond drilling indicated that five prospects were barren, i.e. underlain by iron sulphides devoid of significant base metal mineralization. On the Pb isotope data, three of the prospects would be rejected; a fourth shows a particularly high potential and is worthy of further exploration, whilst the fifth initially showed high potential but a comparison of gossan and sulphide Pb isotope data after drilling suggests that the drill hole was sited on the fringes of economic mineralization.The Pb isotope method may be utilized further in exploration at the drilling stage. If sulphides are intersected, Pb isotopes may be used to distinguish barren sulphides from those with economic potential, even though they both may contain similar base metal concentrations.  相似文献   

19.
Study of komatiites for their structures and textures in cratonic blocks could provide more insights into the early Archaean volcanism, mantle processes and associated metallogeny. Jayachamarajapura (J.C.Pura) belt in Western Dharwar craton is a komatiitc milieu, where outcrop features display several flow characteristics and sub-volcanic emplacement features typical of well known komatiitic areas of the world. In spite of deformation, metamorphism and alterations the komatiites still preserve many of the primary cooling structures, which stand testimony for their extrusive volcanic nature. Distinct features like pillows, flow-top polyhedral joints, ocelli, vesicular, flow-top breccia and cumulate segregations and crude layering are observed. However, massive, undifferentiated nature of komatiitic flows is more predominant. Because of serpentinisation, carbonitization and chloritization, the original mineralogy and textures are obliterated and scantily preserved. Still, these observed features provide vital clues to imply the formation of komatiite sequences in a submarine to subaerial conditions when episodic pulses of komatiite lava piled up (about 3.35 Ga ago) to form the ultramafic milieu of J.C. Pura belt.  相似文献   

20.
Stratigraphy, structure and host-rock chemistry are dominant controls on the location of Au in Archaean greenstone-hosted Au deposits, but the stratigraphy in such deposits is seldom obvious due to the monotonous nature of the host rocks or pervasive alteration associated with Au mineralisation. Portable, hand-held, X-ray fluorescence (pXRF) spectrometry provides a method to rapidly collect large amounts of whole-rock geochemical data that can yield new insights into both stratigraphy and Au localisation. Here we present results of pXRF analyses of samples from a representative section through Au-mineralised amphibolite-facies metabasaltic rocks at Plutonic Gold Mine, Western Australia. These data illustrate a geochemical stratigraphy in which individual lava flows can be identified on the basis of element concentrations. The most evolved basalts are at the structural base of the succession, and the least evolved at the top of the sequence, confirming previous geochemical interpretations and textural evidence that the sequence is overturned, and demonstrating for the first time that the presented section does not involve significant structural repetition. In conjunction with Au assay data, the pXRF data reveal that Au commonly occurs along basalt flow boundaries. The elemental concentration data clearly demonstrates for the first time the stratigraphic control on Au mineralisation that is not readily apparent at the macroscopic level. The methods described in this paper are readily applied, and have the potential to enhance the understanding of otherwise unclear stratigraphy and its control on mineralisation in many different types of deposits worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号