首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scarcity of diagnostic skeletal elements in the latest Cretaceous theropod record of the Ibero-Armorican domain (southwestern Europe) prevents to perform accurate phylogenetic, paleobiogeographic, and diversity studies. In contrast, eggs and eggshells of theropod dinosaurs are relatively abundant and well known in this region from which several ootaxa have been described. Here, we describe the first Late Maastrichtian theropod ootaxon (Prismatoolithus trempii oosp. nov.) from SW Europe and demonstrate that oological record can be used as a proxy for assessing diversity of egg-producers and may help to complement their scarce bone record. The performed analyses indicate that the theropod taxa and ootaxa reach their diversity maxima during the Late Campanian and start to decrease near the Campanian–Maastrichtian boundary at both global and regional scales. The oological diversity of theropods in the Ibero-Armorican domain is consistent with the theropod diversity identified at high taxonomic level. Two distinct assemblages of theropod ootaxa can be recognized in the latest Cretaceous of the Ibero-Armorican domain. Their temporal transition can be correlated with other dinosaur faunal changes recorded in the region. This faunal turnover took place around the Early–Late Maastrichtian boundary, involving ornithopods, sauropods, ankylosaurs and, according to the present results, theropods as well.  相似文献   

2.
The Coll de Nargó area (Lleida Province, south-central Pyrenees) has yielded thousands of dinosaur eggs distributed in more than 30 levels across 370 m of Upper Cretaceous Tremp Formation deposits. Two stratigraphic units yielding dinosaur eggshells, eggs and clutches, can be distinguished. Multiple eggshells were collected from up to 75 different in situ clutches, located in consecutive stratigraphical levels throughout the Mas de Pinyes section. Four different oospecies have been recognized: Megaloolithus aureliensis, Megaloolithus siruguei, Megaloolithus cf. baghensis and Cairanoolithus cf. roussetensis. In absence of typical biochronological markers, fossil eggshells may have potential as a tool for dating. Based on these ootaxa, three oozones can be established along the stratigraphic section. The lower assemblage is composed by M. aureliensis, M. siruguei and Cairanoolithus cf. roussetensis; the middle one consists only of M. siruguei, while the upper oozone is characterized by M. cf. baghensis. Results suggest that the age of Coll de Nargó rocks ranges from the latest Campanian to the beginning of the Late Maastrichtian. Also reported is the first evidence of the oogenus Cairanoolithus outside of France, where it was regarded as an endemic ootaxon. The Coll de Nargó area is considered to be one of the most important dinosaur nesting areas in Europe recurrently used by several dinosaurs during a long time span. Finally, the presence of fossilized eggshell membrane in several specimens from Coll de Nargó contributes to understanding the taphonomic process of megaloolithid eggs in this area.  相似文献   

3.
A selachian fauna is described for the first time from the Late Cretaceous (Campanian–Maastrichtian) of Senegal. So far, the Campanian Paki Formation has only yielded a single tooth of Rhombodus sp. whereas the Cap de Naze Formation has yielded a more diverse fauna including juvenile Cretalamna cf. Cretalamna biauriculata, Serratolamna serrata, Carcharias cf. Carcharias heathi, ?Carcharias sp., Squalicorax pristodontus, Schizorhiza stromeri, Parapaleobates sp., Rhombodus binkhorsti and Rhombodus andriesi. Teeth of juvenile Cretalamna largely dominate the assemblage. Such an assemblage confirms a Late Maastrichtian age for the unit 3 in the Cap de Naze Formation. The assemblage, although composed of cosmopolitan taxa, is similar to the contemporaneous selachian assemblage from the phosphates of Morocco.  相似文献   

4.
The Transylvanian region of Romania preserves some of the most unusual and iconic dinosaurs in the global fossil record, including dwarfed herbivores and aberrant carnivores that lived during the very latest Cretaceous (Maastrichtian) in an ancient island ecosystem (the Haţeg Island). A series of artificial outcrops recently exposed during a hydroelectric project, the Petreşti-Arini section near Sebeş in the Transylvanian Basin, records a 400+ meter sequence documenting the transition from fully marine to terrestrial environments during the Campanian–Maastrichtian. Calcareous nannofossil biostratigraphy indicates that the lower marine beds in this section, part of the uppermost Bozeş Formation, can be assigned to the CC22 biozone, corresponding to the lower–mid upper Campanian. These beds smoothly transition, via a brackish-water unit, into the fully continental Maastrichtian Sebeş Formation. Dinosaur and pterosaur fossils from the uppermost Bozeş Formation can be assigned a late Campanian age making them the oldest well-dated terrestrial fossils from the Haţeg Island, and indicating that the classic Haţeg dinosaur fauna was becoming established by this time, coincident with the first emergence of widespread land areas. Vertebrate fossils occur throughout the overlying Sebeş Formation at the site and are dominated by the small-bodied herbivorous dinosaur Zalmoxes. The dominance of Zalmoxes, and the absence of many taxa commonly seen elsewhere in Maastrichtian sites in Romania, suggests the possibility that either the Petreşti-Arini section preserves a somewhat unusual near-shore environment, or the earliest Haţeg Island dinosaur communities were structured differently from the more diverse communities later in the Maastrichtian. Alternatively, due to the limited sample size available from the studied succession, it is also conceivable that sampling biases give an incomplete portrayal of the Petreşti-Arini local fauna. Support for any one of these alternative hypotheses requires further data from Petreşti-Arini as well as from the larger Transylvania area.  相似文献   

5.
The uppermost Cretaceous (upper Campanian–Maastrichtian) marine deposits of the central south Pyrenees host a rich larger benthic foraminiferal fauna and several rudist-rich levels. These marine deposits are directly overlain by the continental facies of the Arén and Tremp Formations, which are famous for their fossil dinosaur remains. Larger benthic foraminiferal distribution documents an important faunal turnover in all the carbonate platform environments within the photic zone, from open marine to littoral areas. Biostratigraphy indicates that this turnover occurred close to the Campanian-Maastrichtian boundary. This is also confirmed by strontium isotope stratigraphy which indicates an earliest Maastrichtian age for the appearance of the larger benthic foraminiferal assemblage constituted by Lepidorbitoides socialis, Clypeorbis mammillata, Wannierina cataluniensis, Orbitoides gruenbachensis, Siderolites aff. calcitrapoides, Fascispira colomi, Omphalocyclus macroporus and Laffiteina mengaudi. In particular, a numerical age of 71 Ma is obtained for the Hippurites radiosus level, just a few meters below the first continental deposits of the Arén sensu stricto Formation. The youngest marine sediments of the central south Pyrenees are early Maastrichtian in age. This is also an important constraint for the age of the end-Cretaceous dinosaur fossil localities of the Tremp basin.  相似文献   

6.
Palynological and palynofacies analyses were carried out on some Cretaceous samples from the Qattara Rim-1X borehole, north Western Desert, Egypt. The recorded palynoflora enabled the recognition of two informal miospore biozones arranged from oldest to youngest as Elaterosporites klaszii-Afropollis jardinus Assemblage Zone (mid Albian) and Elaterocolpites castelainii–Afropollis kahramanensis Assemblage Zone (late Albian–mid Cenomanian). A poorly fossiliferous but however, datable interval (late Cenomanian–Turonian to ?Campanian–Maastrichtian) representing the uppermost part of the studied section was also recorded. The palynofacies and visual thermal maturation analyses indicate a mature terrestrially derived organic matter (kerogen III) dominates the sediments of the Kharita and Bahariya formations and thus these two formations comprise potential mature gas source rocks. The sediments of the Abu Roash Formation are mostly dominated by mature amorphous organic matter (kerogen II) and the formation is regarded as a potential mature oil source rock in the well. The palynomorphs and palynofacies analyses suggest deposition of the clastics of the Kharita and Bahariya formations (middle Albian and upper Albian–middle Cenomanian) in a marginal marine setting under dysoxic–anoxic conditions. By contrast, the mixed clastic-carbonate sediments of the Abu Roash Formation (upper Cenomanian–Turonian) and the carbonates of the Khoman Formation (?Campanian–Maastrichtian) were mainly deposited in an inner shallow marine setting under prevailing suboxic–anoxic conditions as a result of the late Cenomanian and the Campanian marine transgressions. This environmental change from marginal to open (inner shelf) basins reflects the vertical change in the type of the organic matter and its corresponding hydrocarbon-prone types. A regional warm and semi-arid climate but with a local humid condition developed near/at the site of the well is thought to have prevailed.  相似文献   

7.
The results of Barnum Brown's 1937 expedition to the Almond Formation of Wyoming consisted of two unidentified ceratopsian skulls and a partial hadrosaurid specimen (AMNH 3651). The hadrosaurid is here attributed to the Maastrichtian genus Saurolophus, verifying previous biostratigraphic correlations of this formation using ammonite zones. Fossiliferous lower Maastrichtian formations occurring latitudinally between those of Alberta, Canada, and southwestern Texas, USA, such as the Almond Formation, are essential for testing the effects and duration of apparent hadrosaurid faunal segregation earlier in the Campanian, and indirectly aiding in the placement of faunal boundaries that are currently unknown for the late Campanian. The discovery of Saurolophus in Wyoming, a close relative of the Campanian genus Prosaurolophus, affirms that the segregation of hadrosaurid faunas established in the late Campanian (~75 Ma) continued for at least 3 million years. Combining occurrences of Saurolophus from Mongolia and the Moreno Formation of California with those of Alberta, Canada, this genus appears to have had one of the largest geographic ranges of any equivalent clade of hadrosaurid dinosaur, although species level distributions are still uncertain.  相似文献   

8.
The exposed Cretaceous shelf succession of the Cauvery Basin, southeastern India, has provided a world-class record of mid and Late Cretaceous invertebrates, documented in a substantial literature. However, the lithostratigraphy of the succession has been little studied and previously subject to a range of nomenclature. It is revised here, on the basis of intensive regional mapping, to stabilize the definition and nomenclature of lithostratigraphic units. The Uttattur Group is restricted in outcrop to the Ariyalur district and divided into the Arogypapurum Formation (new; Albian), Dalmiapuram Formation (late Albian), and Karai Formation (late Albian–early Turonian) for which the Odiyam and Kunnam Members are recognized. The Trichinopoly Group follows unconformably and is also restricted in outcrop to the Ariyalur district. It is divided into the Kulakkalnattam Formation (Turonian) and Anaipadi Formation (late Turonian–Coniacian). The Ariyalur Group is more widely distributed. In the Ariyalur district, the Sillikkudi Formation (Santonian–Campanian) and its Kilpaluvari Member, the Kallakurichchi Formation (early Maastrichtian), the Kallamedu Formation (mid and Late Maastrichtian) and the Niniyur Formation (Danian) are recognized. The sequence in the Vriddhachalam area consists of the Parur and Patti formations (Campanian), Mattur Formation (late Campanian–earliest Maastrichtian) and Aladi Formation (Maastrichtian). For the Pondicherry district, the Valudavur and Mettuveli formations (Maastrichtian) and Kasur and Manaveli formations (Paleocene) comprise the succession. The interpreted depositional environments for the succession in the Ariyalur district indicate four eustatic cycles in the mid and Late Cretaceous and earliest Tertiary: late Albian–early Turonian, late Turonian–Santonian, Campanian, Maastrichtian, and Paleocene. Overall the Cauvery Basin sequence is arenaceous and relatively labile in terms of framework grain composition, and contrasts with the pelitic assemblage developed on the west Australian margin from which eastern India separated in the Early Cretaceous (Valanginian). The difference is ascribed to palaeoclimate as controlled by palaeolatitude. For the Late Cretaceous, the Cauvery Basin drifted north on the Indian plate from 40 to 30°S. This zone is inferred to constitute Southern Hemisphere horse latitudes for Late Cretaceous time, characterized by an arid climate, physical weathering and the production of labile sands. By contrast, the west Australian margin of matching tectonic history remained in a high palaeolatitude (>40°S) throughout the Late Cretaceous, experiencing a pluvial climate, the dominance of chemical weathering and the production of clays.  相似文献   

9.
Nineteen benthonic and planktonic foraminiferal zones and their subzones have been recognized in the Tethyan cretaceous successions along the four sections analyzed in the northwestern Zagros fold–thrust belt within the preforeland–foreland basin. A detailed micropaleontological investigation revealed eight benthonic zones from the Qamchuqa Formation (Barremian to Lower Early Cenomanian) including: the Choffatella decipiens interval zone, C. decipiens/Palorbitolina lenticularis total range zone, C. decipiens/Salpingoporella dinarica interval zone, Mesorbitolina texana total range zone, Mesorbitolina subconcava total range zone, Orbitolina qatarica total range zone, Orbitolina sefini total range zone, and the Orbitolina concava partial range zone. The Rotalipora cushmani total range zone was recorded in the Dokan Formation that overlies the Qamchuqa Formation of the Late Cenomanian age. The Gulneri Formation is represented only by the Whitnella archaeocretacea partial range zone/Heterohelix moremani total range subzone and indicates the Late Cenomanian/Early Turonian age. Six planktonic foraminiferal zones were recorded from the Kometan Formation, indicating the Late Cenomanian to Early Campanian age, and are represented by the R. cushmani/H. moremani subzone, Helvetotruncana helvetica total range zone, Marginotruncana sigali partial range zone, Dicarinella primitiva interval range zone, Dicarinella concavata interval zone, Dicarinella assymetrica total range zone, and Globotruncanita elevata partial range zone. Two planktonic foraminferal zones were recorded also and these are related to the Globotruncana (fornicata, stuartiformis, elevata, and ventricosa) assemblage zone, Globotruncana calcarata total range subzone, from the Shiranish Formation, Lower Late Campanian, while the second zone is nominated as the Globotruncana (arca, tricarinata, esnehensis, and bahijae) assemblage zone, Globotruncana gansseri interval subzone, and Globotruncana contusa total range zone of the Late Campanian to basal middle Maastrichtian age. The last zone is related to the Abathomphalus mayaroensis partial range zone (of Late Maastrichtian age) and occasionally intercalated with the OrbitoidesLoftusia benthic zones. An important hiatus, between the Qamchuqa and Kometan formations was proved and manifests Pre-Aruma unconformity, and is occasionally associated with the global Cenomanian–Turonian Oceanic Anoxic Euxinic Event, while the Maastrichtian red bed of the Shiranish Formations mostly points to Tethyan upper Cretaceous Oceanic Red Bed.  相似文献   

10.
The stratigraphy, sedimentology and syn-depositional tectonic events (SdTEs) of the Upper Cretaceous/Paleogene (K–P) succession at four localities in north Eastern Desert (NED) of Egypt have been studied. These localities are distributed from south-southwest to north-northeast at Gebel Millaha, at North Wadi Qena, at Wadi El Dakhal, and at Saint Paul Monastery. Lithostratigraphically, four rock units have been recorded: Sudr Formation (Campanian–Maastrichtian); Dakhla Formation (Danian–Selandian); Tarawan Formation (Selandian–Thanetian) and Esna Formation (Thanetian–Ypresian). These rock units are not completely represented all over the study area because some of them are absent at certain sites and others have variable thicknesses. Biostratigrapgically, 18 planktonic foraminiferal zones have been recorded. These are in stratigraphic order: Globotruncana ventricosa Zone (Campanian); Gansserina gansseri, Contusotruncana contusa, Recimguembelina fructicosa, Pseudohastigerina hariaensis, Pseudohastigerina palpebra and Plummerita hantkenenoides zones (Maastrichtian); Praemurica incostans, Praemurica uncinata, Morozovella angulata and Praemurica carinata/Igorina albeari zones (Danian); Igorina albeari, Globanomanlina pseudomenradii/Parasubbotina variospira, Acarinina subsphaerica, Acarinina soldadoensis/Globanomanlina pseudomenardii and Morozovella velascoensis zones (Selandian/Thantian); and Acarinina sibaiyaensis, Pseudohastigerina wilcoxensis/Morozovella velascoensis zones (earliest Ypresian). Sedimentologically, four sedimentary facies belts forming southwest gently-dipping slope to basin transect have been detected. They include tidal flats, outer shelf, slumped continental slope and open marine hemipelagic facies. This transect can be subdivided into a stable basin plain plus outer shelf in the extreme southwestern parts; and an unstable slope shelf platform in the northeastern parts. The unstable slope shelf platform is characterized by open marine hemipelagic, fine-grained limestones and fine siliciclastic shales (Sudr, Dakhla, Tarawan and Esna formations). The northeastern parts are marked by little contents of planktonic foraminifera and dolomitized, slumped carbonates, intercalated with basinal facies. Tectonically, four remarkable syn-depositional tectonic events (SdTEs) controlled the evolution of the studied succession. These events took place strongly within the Campanian–Ypresian time interval and were still active till Late Eocene. These events took place at: the Santonian/Campanian (S/C) boundary; the Campanian/Maastrichtian (C/M) boundary; the Cretaceous/Paleogene (K/P) boundary; and the Middle Paleocene–Early Eocene interval. These tectonic events are four pronounced phases in the tectonic history of the Syrian Arc System (SAS), the collision of the Afro-Arabian and Eurasian plates as well as the closure of the Tethys Sea.  相似文献   

11.
Two closely associated egg types occur at the same locality in the Upper Cretaceous (Maastrichtian) St. Mary River Formation in north central Montana. These specimens represent the first fossil eggs described from this formation. At least fifteen small ovoid eggs or egg portions are scattered through a 25 cm interval of rock. Five significantly larger, round eggs overlie these smaller eggs and are in close proximity to one another on a single bedding plane. The best preserved egg of the smaller size measures 36 mm × 62 mm and exhibits the prismatic, two-layered eggshell structure of a theropod egg. The dispersed distribution and inconsistent angles of these small eggs likely resulted from disturbance by subsequent nesting activity and/or possibly nest predation. At least twelve additional small prismatic eggs also occur at this site. We assign the small eggs as a new oogenus and oospecies, Tetonoolithus nelsoni, within the Prismatoolithidae. The large round eggs measure 130 mm in diameter and the eggshell displays substantial diagenetic alteration. These eggs likely belonged to a hadrosaur due to their similarity in egg size, shape, and eggshell thickness to Maiasaura eggs from the stratigraphically lower Two Medicine Formation. Eggs at different stratigraphic levels at this site indicate that conditions favorable to both dinosaur species persisted for an extended period of time. However, determining whether these dinosaurs occupied the nesting site at the same or different years remains beyond the resolution of the rock record.  相似文献   

12.
A symphyseal region of the fused dentaries of a caenagnathid theropod is described from the Upper Cretaceous Nemegt Formation at the Bugin Tsav locality in the Mongolian Gobi Desert. In contrast to the high diversity of Caenagnathidae in the upper Campanian to Maastrichtian in North America, only specimens of a single caenagnathid, Elmisaurus raurus, have been reported in the coeval strata in Asia. Although dentaries are commonly-found bones in the fossil record of Caenagnathidae, the present specimen is the first discovery of caenagnathid dentaries from the upper Campanian to Maastrichtian in Asia. The Nemegt Formation is unique for its diverse oviraptorosaurian fauna that includes both Caenagnathidae and Oviraptoridae as well as the non-caenagnathoid Avimimus portentosus. Hypothesized coexistence of eolian and fluvial environments in the Gobi Basin during the deposition of the Nemegt Formation might explain such co-occurrence of Caenagnathidae and Oviraptoridae.  相似文献   

13.
Actinopterygian remains have been recovered from Upper Cretaceous (lower Campanian to lower Maastrichtian) marginal marine deposits of the Adaffa Formation in northwestern Saudi Arabia. The fossils comprise gars (Lepisosteidae), pachycormids (cf. Protosphyraena sp.), indeterminate pycnodontiforms, enchodontid teleosts (cf. Enchodus sp.) and other indeterminate Teleostei. This assemblage is significant because it includes a novel occurrence for the Middle East (Pachycormidae) together with taxa (Lepisosteidae, Pycnodontiformes, Enchodontidae) that have been previously recorded from Late Cretaceous faunas elsewhere in the Mediterranean Tethyan region.  相似文献   

14.
The Cape Lamb Member of the Snow Hill Island Formation at The Naze on the northern margin of James Ross Island, east of the Antarctic Peninsula, yielded a theropod dinosaur recovered near the middle of a 90 m thick section that begins at sea level, ends below a basalt sill, and is composed of interbedded green–gray massive and laminated fine-grained sandstones and mudstones. Sixteen palynoassemblages were recovered from this section, which yielded moderately diverse assemblages with a total of 100 relatively well-preserved species. The principal terrestrial groups (32%) are represented by lycophytes (8 species), pteridophytes (15 species), gymnosperms (13 species), angiosperms (21 species) and freshwater chlorococcaleans (3 species). Marine palynomorphs (68%) belong to dinoflagellates (61 species), chlorococcaleans (6 species), and one acritarch. The vertical distribution of selected species allows the distinction of two informal assemblages, the lower Odontochitina porifera assemblage from the base to its disappearance in the lower part of the section, and the remaining section characterized by the Batiacasphaera grandis assemblage. The global stratigraphic ranges of selected palynomorphs suggest an early Maastrichtian age for this section and the entombed dinosaur that is also supported by the presence of the ammonoid Kitchinites darwinii. These assemblages share many species with latest Campanian–early Maastrichtian palynofloras from Vega and Humps Islands, New Zealand, and elsewhere in the Southern Ocean, establishing a good correlation among them. The dominance or frequent presence of dinoflagellates throughout the section supports the general interpretation of a shelf marine depocenter. The consistent presence of terrestrial palynomorphs suggests contributions from littoral/inland environments.  相似文献   

15.
Four upper Campanian-lower Maastrichtian reference sections are described in the Glubokaya and Kalitva river basins and in the Znamenka 1-A Borehole located in the northwestern Rostov region. The sections are composed of the upper Campanian Kagal??nik, Belgorod, Pavlovka, Sukhodol and lower Maastrichtian Efremovo-Stepanovka formations. They are characterized by successive stratigraphically significant macro- and microfossil assemblages: belemnites, calcareous nannoplankton, benthic foraminifers, and radiolarians. The Pavlovka and, particularly, Sukhodol formations contain a specific assemblage of coarsely-agglutinated benthic foraminifers. The first data obtained on radiolarians in upper Campanian-lower Maastrichtian sections of the northwestern Rostov region revealed four assemblages, two of which were previously unknown from Upper Cretaceous sediments of the East European Platform. Most sections enclose a hiatus at the base of the Sukhodol Formation, which comprises two upper Campanian benthic foraminiferal zones. The problem of recognition of the lower Maastrichtian boundary on the East European Platform is considered in accordance with international GSSP requirements.  相似文献   

16.
Planktonic foraminifer distributions in seventeen stratigraphic sections of Upper Cretaceous hemipelagic and pelagic sequences of northern Bey Da?lar? Autochthon (western Taurides) yield six biozones such as, Dicarinella concavata Interval Zone, Dicarinella asymetrica Range Zone, Radotruncana calcarata Range Zone, Globotruncana falsostuarti Partial Range Zone, Gansserina gansseri Interval Zone, and Abathomphalus mayaroensis Concurrent Range Zone. Two of the zones, Dicarinella concavata Zone and Dicarinella asymetrica Zone, are identified in the massive hemipelagic limestones of the Bey Da?lar? Formation, of Coniacian-Santonian age. They are characterized by scarce planktonic foraminifera and abundant calcisphaerulids. The other four biozones are determined from the cherty pelagic limestones of the Akda? Formation and indicate a late Campanian-late Maastrichtian time interval. The planktonic foraminifera observed in these four biozones are diverse, complex morphotypes (K-selection), suggesting open oceans. The assemblage of the Abathomphalus mayaroensis Zone shows that the latest Maastrichtian record is absent throughout the northern part of the autochthon. Two main sedimentary hiatuses are recognized within the Upper Cretaceous pelagic sequence. Early to middle Campanian and latest Maastrichtian-middle Paleocene planktonic foraminifera are absent in all measured stratigraphic sections. Hiatus durations differ between sections as a result of diachronism of onset of the hemipelagic and pelagic deposition and the post-Santonian and post-Maastrichtian erosional phases. Drowning event and the early-middle Campanian and latest Maastrichtian-middle Paleocene hiatuses in the pelagic sequence are attributed to regional tectonics during the Late Cretaceous.  相似文献   

17.
A new ornithopod dinosaur from Antarctica, Trinisaura santamartaensis n. gen. et n. sp. is diagnosed by a unique combination of characters that includes a scapula with a spike-like acromial process with a strong and sharp lateral crest and longer than other ornithopods, a humerus with a rudimentary deltopectoral crest represented as a thickening on the anterolateral margin of the humerus, and shaft strongly bowed laterally, and an ischium gently curved along its entire length. The holotype specimen comprises vertebral and appendicular elements. The presence of axially elongate distal caudal vertebrae, pubis with long prepubic and postpubic processes, as well as a femur with a distinct anterior trochanter, pendant 4th trochanter and shallow anterior intercondylar groove constitute a combination of characters present in the Late Cretaceous Patagonian Gasparinisaura, Anabisetia and Talenkahuen. The materials were found on the surface enclosed in a hard sandstone concretion collected near the Santa Marta Cove, James Ross Island, from the lower levels of the Snow Hill Island Formation (Campanian). This is the first ornithopod taxon identified from this unit, and the second ornithischian dinosaur, after the ankylosaur Antarctopelta oliveroi. However, other ornithopod reports from nearby localities of James Ross and Vega islands in outcrops of the overlying Lopez de Bertodano Formation suggest that this clade was widely represented in the Campanian and Maastrichtian of the James Ross Basin, Antarctic continent.  相似文献   

18.
19.
Lepisosteid fishes are well known from the Upper Cretaceous of Europe, but only by fragmentary remains from some Cenomanian and Campanian–Maastrichtian deposits. Here we report various cranial and postcranial remains of gars, discovered in the Upper Cretaceous (Santonian) Csehbánya Formation of Iharkút (Bakony Mountains, Hungary). These remains represent one of the most diverse assemblages of lepisosteid fish material from Upper Cretaceous continental deposits of Europe. Based on tooth morphology, scale-microstructure and the features of the supracleithrum we refer these remains to the genus Atractosteus. Besides some uncertain remains from the Cenomanian of France and Spain, the Santonian aged fossils from Iharkút represent the oldest undisputable occurrence of the family Lepisosteidae in the European continental Cretaceous. Using tooth crown morphology, the surface microstructure of the ganoid scales and the anatomy of the supracleithrum a review of the Late Cretaceous lepisosteid record suggests the occurrence of both Atractosteus and Lepisosteus in the European archipelago.  相似文献   

20.
The Lower Cretaceous (Albian) Sasayama Group in the Hyogo Prefecture of southwestern Japan has yielded various vertebrate fossils, including skeletal remains of dinosaurs, anurans, lizards, and mammals, and recently eggshell fragments. Here we report on numerous fossil eggshells from the bone-bearing Kamitaki locality in Tamba City, which represents a diverse dinosaur eggshell assemblage. Of the more than 90 eggshell fragments recovered, five different types were identified, including eggshells that likely belong to a variety of theropods (Nipponoolithus ramosus oogen. et oosp. nov., Elongatoolithus sp., Prismatoolithus sp., and Prismatoolithidae indet.) and at least one ornithopod (Spheroolithus sp.). All eggshells are relatively thin, and a new derived estimation method correlating egg mass with eggshell thickness indicates that they are among the smallest (28–135 g) theropod eggs known, likely laid by small bodied forms. The eggshell assemblage from this locality suggests that a diverse small dinosaur fauna, consisting primarily of theropods, nested in the region, a diversity yet to be evidenced from skeletal remains in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号