首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Estimated at ~58 Ma in duration, the Sturtian snowball Earth (ca. 717–659 Ma) is one of the longest‐known glaciations in Earth history. Surprisingly few uncontroversial lines of evidence for glacial incisions associated with such a protracted event exist. We report here multiple lines of geological field evidence for deep but variable glacial erosion during the Sturtian glaciation. One incision, on the scale of several kilometres, represents the deepest incision documented for snowball Earth; another much more modest glacial valley, however, suggests an erosion rate similar to sluggish Quaternary glaciers. The heterogeneity in snowball glacial incisions reported here and elsewhere was likely influenced by actively extending horst‐and‐graben topography associated with the breakup of supercontinent Rodinia.  相似文献   

2.
The snowball Earth hypothesis describes episodes of Neoproterozoic global glaciations, when ice sheets reached sea‐level, the ocean froze to great depth and biota were decimated, accompanied by a complete shutdown of the hydrological cycle. Recent studies of sedimentary successions and Earth systems modelling, however, have brought the hypothesis under considerable debate. The Squantum ‘Tillite’ (Boston Basin, USA), is one of the best constrained snowball Earth successions with respect to age and palaeogeography, and it is suitable to test the hypothesis for the Gaskiers glaciation. The approach used here was to assess the palaeoenvironmental conditions at the type locality of the Squantum Member through an analysis of sedimentary facies and weathering regime (chemical index of alteration). The stratigraphic succession with a total thickness of ca 330 m documents both glacial and non‐glacial depositional environments with a cool‐temperate glacial to temperate non‐glacial climate weathering regime. The base of the succession is composed of thin diamictites and mudstones that carry evidence of sedimentation from floating glacial ice, interbedded with inner shelf sandstones and mudstones. Thicker diamictites interbedded with thin sandstones mark the onset of gravity flow activity, followed by graded sandstones documenting channellized mass gravity flow events. An upward decrease in terrigenous supply is evident, culminating in deep‐water mudstones with a non‐glacial chemical weathering signal. Renewed terrigenous supply and iceberg sedimentation is evident at the top of the succession, beyond which exposure is lost. The glacially influenced sedimentary facies at Squantum Head are more consistent with meltwater dominated alpine glaciation or small local ice caps. The chemical index of alteration values of 61 to 75 for the non‐volcanic rocks requires significant exposure of land surfaces to allow chemical weathering. Therefore, extreme snowball Earth conditions with a complete shutdown of the hydrological cycle do not seem to apply to the Gaskiers glaciation.  相似文献   

3.
Glacial deposits occurring close to the Vendian-Cambrian boundary were discovered long ago in several regions of Asia and West Africa. New data of recent years confirm earlier observation and specify age constraints of these deposits. In certain sections, glacial sediments rest on beds with the Upper Vendian fossils (Vendotaenia sp., Sabellidites remains, and microfossils). In the Hoggar Highland, they discordantly overlie magmatic rocks ca. 560 Ma old. In the East Sayan Mts., the Upper Vendian Cloudina sp. have been found in the diamictite matrix. In Central Asia and Northwest China, cap dolomites conformably overlying glacial deposits grade upward into the chert-phosphatic sediments containing fossils (Tarim region), which are characteristic of the Anabarites trisulcatus Zone in the Nemakit-Daldynian Stage. Fossils of this zone have been found directly above glacial deposits in the East Sayan. According to all these data, the respective Baykonurian glaciation, as it is termed in this work, either antedated the Nemakit-Daldynian Age or was concurrent to its commencement. The glaciation is correlative with a significant negative δ13C excursion of ?5 to ?10‰. Judging from recent paleotectonic reconstructions, the Baykonurian glaciation was not regional in rank and left records in both hemispheres of the Earth. This glaciation resumes the well-known succession of the great glaciation event in the terminal Late Precambrian, i.e., the Sturtian, Marinoan, and Gaskiers glaciations. Hence, one cannot ignore the Baykonurian glaciation when analyzing the geological, biospheric, and biotic history of the Late Precambrian.  相似文献   

4.
《Earth》2008,88(3-4):61-93
Sedimentological observations and palaeomagnetic data for Cryogenian glacial deposits present the climatic paradox of grounded glaciers and in situ cold climate near sea-level, glaciomarine deposition, and accompanying large (up to 40 °C) seasonal changes of temperature, all in low to near-equatorial (< 10°) palaeolatitudes (equated with geographic latitudes). Neither the “snowball Earth” nor the “slushball Earth” hypothesis can account for such strong seasonality near the palaeoequator, which together with findings from sedimentology, chemostratigraphy, biogeochemistry, micropalaeontology, geochronology and climate modelling argue against those scenarios. An alternative explanation of glaciation and strong seasonality in low palaeolatitudes is offered by a high (> 54°) obliquity of the ecliptic, which would render the equator cooler than the poles, on average, and amplify global seasonality. A high obliquity per se would not have been a primary trigger for glaciation, but would have strongly influenced the latitudinal distribution of glaciers. The principle of low-latitude glaciation on a terrestrial planet with high obliquity is validated by theoretical studies and observations of Mars. A high obliquity for the early Earth is a likely outcome of a single giant impact at 4.5 Ga, the widely favoured mechanism for lunar origin. This implies that a high obliquity could have prevailed during most of the Precambrian, controlling the low palaeolatitude of glaciations in the early and late Palaeoproterozoic and Cryogenian. It is postulated that the obliquity changed to < 54° between the termination of the last Cryogenian low-palaeolatitude glaciation at ≤ 635 Ma and the initiation of Late Ordovician–Early Silurian circum-polar glaciation at 445 Ma.The High Obliquity, Low-latitude Ice, STrong seasonality (HOLIST) hypothesis for pre-Ediacaran glaciation emerges favourably from numerous glacial and non-glacial tests. The hypothesis is in accord with such established or implied features of Cryogenian glaciogenic successions as extensive and long-lived open seas, an active hydrological cycle, aridity and palaeowesterly (reversed zonal) winds in low palaeolatitudes, and the apparent diachronism or non-correlation of some low-palaeolatitude glaciations. A pre-Ediacaran high obliquity also offers a viable solution of the faint young Sun paradox of a warm Archaean Earth. Furthermore, reduction of obliquity during the Ediacaran–early Palaeozoic would have yielded a more habitable globe with much reduced seasonal stresses and may have been an important factor influencing the unique evolutionary events of the Ediacaran and Cambrian. The palaeolatitudinal distribution of evaporites cannot discriminate unambiguously between high- and low-obliquity states for the pre-Ediacaran Earth. Intervals of true polar wander such as postulated by others for the Ediacaran and Early Cambrian imply major mass-redistributions within the Earth at those times, which may provide a potential mechanism for reducing the obliquity during the Ediacaran–early Palaeozoic.  相似文献   

5.
Alexanderson, H., Landvik, J. Y. & Ryen, H. T. 2010: Chronology and styles of glaciation in an inter‐fjord setting, northwestern Svalbard. Boreas, 10.1111/j.1502‐3885.2010.00175.x. ISSN 0300‐9483. A 30‐m‐thick sedimentary succession at Leinstranda on the southwestern coast of Brøggerhalvøya, northwestern Svalbard, spans the two last glacial–interglacial cycles and reveals information on glacial dynamics, sea‐level changes and the timing of these events. We investigated the deposits using standard stratigraphical and sedimentological techniques, together with ground‐penetrating radar, and established an absolute chronology based mainly on optically stimulated luminescence dating. We identified facies associations that represent depositional settings related to advancing, overriding and retreating glaciers, marine and littoral conditions and periglacial surfaces. The environmental changes show an approximate cyclicity and reflect glaciations followed by high sea levels and later regression. The luminescence chronology places sea‐level highstands at 185 ± 8 ka, 129 ± 10 ka, 99 ± 8 ka and 36 ± 3 ka. These ages constrain the timing of recorded glaciations at Leinstranda to prior to c. 190 ka, between c. 170 and c. 140 ka (Late Saalian) and between c. 120 ka and c. 110 ka (Early Weichselian). The glaciations include phases with glaciers from three different source areas. There is no positive evidence for either Middle or Late Weichselian glaciations covering the site, but there are hiatuses at those stratigraphic levels. A high bedrock ridge separates Leinstranda from the palaeo‐ice stream in Kongsfjorden, and the deposits at Leinstranda reflect ice‐dynamic conditions related to ice‐sheet evolution in an inter‐fjord area. The environmental information and the absolute chronology derived from our data allow for an improved correlation with the marine record, and for inferences to be made about the interaction between land, ocean and ice during the last glacial–interglacial cycles.  相似文献   

6.
The centers of many Neoproterozoic and Phanerozoic glaciations were located on cratons and crystalline shields not necessarily, as some researchers believe, associated with rifts. An example is the Vendian Bol’shoi Patom glacial formation (Lena River, Yakutia). The U-Pb ages of detrital zircons from this formation imply that it was deposited by glaciers located on the pre-Riphean crystalline shields of the Siberian Platform. Glaciation in this region occurred after cessation of rifting and could not be related to the latter. The Bol’shoi Patom Formation is an element of the Middle Siberian glacial horizon that was deposited during the Marino Glaciation and is traceable along the southern periphery of the Siberian Platform from the Aldan Shield to the Baikal and Sayany regions. This indicates that the Marinoan Glaciation in Siberia involved at least the entire southern part of the Siberian Platform. Rifting was not the single, or even a principal, factor responsible for glaciations, although it could accompany and enhance them simultaneously providing space for sedimentation and conditions for preserving glacial deposits from erosion.  相似文献   

7.
Glaciations took place in five long intervals of the geologic history, called glacioeras: Kaapvaal (Late Archean), Huronian (Early Proterozoic), African (Late Proterozoic), Gondwanan (Paleozoic), and unfinished Antarctic (Late Cenozoic). The glacioeras were similar in structure, duration, and dynamics of evolution. They consisted of three to six glacioperiods including several discrete glacio-epochs. The glacioeras lasted ~ 200 Myr. They started with small regional glaciations, which expanded, reached intercontinental sizes, and then quickly degraded. There were serious differences between the Precambrian and Phanerozoic glacioeras. A series of ecologic crises related to numerous glacial events led first to abiotic and then to biotic factors. Glaciations caused extinction and stagnation of the Earth’s biota, the appearance of bionovations and new biota, and acceleration of evolution processes. Thus, the glacioeras were the turning intervals of the biosphere evolution.  相似文献   

8.
《Sedimentary Geology》2006,183(1-2):99-124
The snowball Earth hypothesis suggests that the Neoproterozoic was characterized by several prolonged and severe global glaciations followed by very rapid climate change to ‘hot house’ conditions. The Neoproterozoic Port Askaig Formation of Scotland consists of a thick succession of diamictite, sandstone, conglomerate and mudstone. Sedimentological and stratigraphic analysis of Port Askaig deposits exposed on the Garvellach Islands was carried out to establish the nature of Neoproterozoic palaeoenvironmental change preserved in this thick succession. Particular emphasis was placed on identifying and distinguishing between climatic and tectonic controls on sedimentation.Port Askaig Formation diamictite units are attributed to deposition by sediment gravity flow processes or ‘rainout’ of fine-grained sediment and ice-rafted debris in a glacially influenced marine setting. Associated facies record various depositional processes ranging from sediment gravity flows (conglomerate, massive sandstone and laminated mudstone) to deposition under other unidirectional currents (cross-bedded and horizontally laminated sandstone). The Port Askaig Formation is also characterized by abundant soft sediment deformation features that occur at discrete intervals and are interpreted to record episodic seismic activity.Stratigraphic analysis of the Port Askaig Formation on the Garvellach Islands reveals three phases of deposition. Phase I was dominated by sediment gravity flow processes and sedimentation was primarily tectonically controlled. Phase II was a transitional phase characterized by continued tectonic-instability, an increased supply of sand to the basin and the preservation of current-generated facies. In the third and final phase of deposition, the interbedded units of sandstone and diamictite are interpreted to reflect development of large sandy bedforms and ice margin fluctuations in a tectonically stable marine setting.Sedimentological and stratigraphic analysis of the Port Askaig Formation demonstrates that tectonic activity had a significant influence on development of the lowermost parts of the succession. Climatic influences on sedimentation are difficult to identify during such phases of tectonic activity but are more easily discerned during episodes of tectonic quiescence (e.g.,, Phase III of the Port Askaig Formation). The thick succession of diamictite interbedded with current-deposited sandstone preserved within the Port Askaig Formation is not consistent with deep freeze conditions proposed by the snowball Earth hypothesis.  相似文献   

9.
The Late Carboniferous–Early Permian Itararé Group is a thick glacial unit of the Paraná Basin. Five unconformity-bounded sequences have been defined in the eastern outcrop belt and recognized in well logs along 400 km across the central portion of the basin. Deglaciation sequences are present in the whole succession and represent the bulk of the stratigraphic record. The fining-upward vertical facies succession is characteristic of a retrogradational stacking pattern and corresponds to the stratigraphic record of major ice-retreat phases. Laterally discontinuous subglacial tillites and boulder beds occur at the base of the sequences. When these subglacial facies are absent, deglaciation sequences lie directly on the basal disconformities. Commonly present in the lowermost portions of the deglaciation sequences, polymictic conglomerates and cross-bedded sandstones are generated in subaqueous proximal outwash fans in front of retreating glaciers. The overlying assemblage of diamictites, parallel-bedded and rippled sandstones, and Bouma-like facies sequences are interpreted as deposits of distal outwash fan lobes. The tops of the deglaciation sequences are positioned in clay-rich marine horizons that show little (fine-laminated facies with dropstones) or no evidence of glacial influence on the deposition and likely represent periods of maximum ice retreat.  相似文献   

10.
Among Palaeoproterozoic glacial deposits on four continents, the best preserved and documented are in the Huronian on the north shore of Lake Huron, Ontario, where three glaciogenic formations have been recognized. The youngest is the Gowganda Formation. The glacial deposits of the Gowganda Formation were deposited on a newly formed passive margin. To the west, on the south side of Lake Superior, the oldest Palaeoproterozoic succession (Chocolay Group) begins with glaciogenic diamictites that have been correlated with the Gowganda Formation. The >2.2 Ga passive margin succession (Chocolay Group=upper Huronian) is overlain, with profound unconformity, by a >1.88 Ga succession that includes the superior-type banded iron-formations (BIFs). The iron-formations are therefore not genetically associated with Palaeoproterozoic glaciation but were deposited 300 Ma later in a basin that formed as a result of closure of the “Huronian” ocean. In Western Australia, Palaeoproterozoic glaciogenic deposits of the Meteorite Bore Member appear to have formed part of a similar basin fill. The glaciogenic rocks are, however, separated from underlying BIF by a thick siliciclastic succession. In both North America and Western Australia, BIF-deposition took place in compressional (possibly foreland basin) settings but the iron-formations are of greatly different age, suggesting that the most significant control on their formation was not oxygenation of the Earth’s atmosphere but rather, emplacement of Fe-rich waters (uplifted as a result of ocean floor destruction?) in a siliciclastic-starved environment where oxidation (biogenic?) could take place. Some of the Australian BIFs appear to predate the appearance of red beds in North American Palaeoproterozoic successions and are therefore unlikely to be related to oxygenation of the atmosphere.Neoproterozoic glaciogenic deposits are widespread on the world’s continents. Some are associated with iron-formations. Two theories have emerged to explain these enigmatic BIFs. According to the snowball Earth hypothesis (SEH), ice-covered oceans would have permitted buildup of dissolved Fe. Precipitation of Fe-rich sediments would have taken place following reoxygenation of the hydrosphere as the ice cover disappeared. A second theory involves glaciation of Red Sea rift-type basins. Fe-charged brines in such basins would have precipitated on being mixed with “normal” seawater as a result of glacially driven thermal overturn. Both theories provide an explanation of the hydrothermal imprint on the geochemistry of Neoproterozoic BIF but the restricted development of BIF (relative to glacial deposits), evidence of rift activity such as significant facies and thickness changes, and association with volcanic rocks, all favour deposition in a rift environment.Cap carbonates are one of the cornerstones of the SEH. Escape from the snowball condition is said to have resulted from buildup of atmospheric CO2 while the weathering cycle was stopped. Under such conditions, the first siliciclastic deposits following glaciation, should be extremely weathered, and should be overlain by sedimentary rocks that show a gradual return to more “normal” compositions. Using a chemical index of alteration (CIA) it can be shown that, in the case of the Gowganda Formation, the CIA shows a gradual upward increase, opposite to that predicted by the SEH. The Earth underwent severe climatic perturbations both near the beginning and end of the Proterozoic Eon but whether it attained a totally frozen surface condition (as postulated under the SEH) remains speculative.  相似文献   

11.
Late Proterozoic African glacial era   总被引:1,自引:0,他引:1  
A series of large-scale glaciations occurring in the second half of the Late Riphean and Vendian are referred to as the African Glacial Era (Glacioera), which was separated from the preceding Huronian Glacioera by an interglacial of 1.5 Gyr. Six large discrete glacial events (glacioperiods) repeating each 30–50 Myr, occurred during the African Glacioera. The following glacioperiods (in geochronological succession) are recognized: Kaigas, Rapitan, Sturtian, Marinoan, Gaskiers, and Baykonur. Most glacioperiods included several discrete glaciation episodes. Glaciations were accompanied by repeated biosphere change and crises. The dynamic coevolution of climate and biosphere at the end of the Proterozoic facilitated an accelerated development of Earth’s biota, which culminated in the appearance and divergence of multicellular and skeletal fauna. The African Glacioera terminated the Proterozoic and was the time when the Phanerozoic climatic system and the biosphere were forming on the Earth.  相似文献   

12.
D. A. D. Evans   《Tectonophysics》2003,375(1-4):353
It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian “explosion” of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth's longterm climate, superimposed by developing regulatory feedbacks involving an increasingly complex biosphere.  相似文献   

13.
The dominantly shallow-marine Vendian succession of NE Spitsbergen contains distinctive types of carbonate rock. Limestones deposited before Vendian glaciation resemble those described from other Upper Proterozoic successions, being high in Sr and inferred to have been originally aragonitic, including the distinctive 5–10 Jim equant polygonal calcite of cemented shrinkage cracks. In contrast, manganoan stromatolitic limestones within marginal-marine glacial-outwash deposits, and consisting of micrite, microspar and fascicular-optic calcite are interpreted as originally calcitic. The restriction of primary marine calcite to cold seawater is comparable with Recent and Permian carbonates, although the Precambrian example formed in a sea diluted with meltwater. There is good textural preservation of relatively 18O-rich oolitic dolostones which were cemented in a supratidal environment by artesian fluids. Nevertheless, early diagenetic replacement is inferred, immediately prior to a glacial episode. Post-glacial dolostones are either replacive marine, or evaporative lacustrine, but share rather more negative δ18O values, closer to the mean of Late Precambrian dolostones. The heaviest oxygen isotope values constrain seawater δ18O to no more negative than — 2 to — 4SMOW. The main reason for the pronounced oxygen isotopic depletion of most Late Precambrian carbonates is their initial metastable mineralogy. The possibility of determining palaeolatitudes of the enigmatic widespread Late Proterozoic glaciations by isotopic analysis of freshwater periglacial calcareous precipitates is raised. Significant carbon isotope variations reflect changes in depositional water chemistry: some of these could be global in extent.  相似文献   

14.
卞金忠 《第四纪研究》1985,6(1):107-112
李四光教授于三十年代初,在江西庐山发现第四纪冰川遗迹以来,迄今在江西其他地区甚少有古冰川遗迹的报道。1976年笔者在工作区内,见到了不少古冰川遗迹,大约分布在东经114°50′至116°34′和北纬25°45′至28°间。它对于揭示江西南部地区第四纪冰川孕育及发展规律,提供了实际资料。  相似文献   

15.
Precambrian glaciations are established to have occured during several brief periods in the Late Archean, Early Proterozoic, Late Riphean, and Vendian. These extreme climatic events of the Late Archean and post-Archean Earth history were accompanied by significant changes in the biosphere and biota. The terminal stages of Precambrian glaciations were marked by intense development of some existing groups, and the appearance of new groups of organisms. This may be explained by associated radical transformations of environments in all the biosphere subsystems, which resulted in substantial ecosystem and related biotic crises. The crises released former and yielded new ecological niches, on the one hand, and provoked enhanced mutations in organisms and rapid appearance of new forms, on the other. The most viable new forms as well as some of taxa that survived the crisis colonized released and newly formed niches to become more diverse and dominant groups. Thus, activation of abiotic and subsequent biotic factors during and after glaciations stimulated the renewal of the biota and acceleration of the evolutionary process.  相似文献   

16.
龙门山古冰川作用   总被引:1,自引:1,他引:0  
汶川地震中央区域龙门山主山九顶山海拔4 984 m,山脊北坡有三处成排分布不少规模较小的冰斗-冰川谷地形,恢复当时雪线高度在4 100 m高度。根据其形态保存程度、古今雪线高度差等情况判断,应当是2阶段冰川作用遗存。据气温和降水资料,现在九顶山雪线高度在5 000 m,刚好超出九顶山顶部。故而九顶山3 800 m以上目前处于冰缘环境,石冰川、石环、融冻泥流等冰缘现象比较突出。九顶山不存在更老的冰川作用及其地貌遗存,是青藏高原以东5 000 m上下的高山只是在末次冰期时抬升跨越冰期雪线而发育冰川这一新观点的又一证据,也是青藏高原第四纪晚期剧烈抬升的又一证据。  相似文献   

17.
Differentiating between forced regressive deposits from deglacial periods in high latitude domains and forced regressive deposits from the onset of glacial periods in low latitude domains is fundamental for the accurate interpretation of glacial cycles within the geological record and then for the reconstruction of palaeogeography and palaeo‐climate. A forced regressive deglacial sequence is documented from the Lake Saint‐Jean basin (Québec, Canada). In this area, the Late Pleistocene to Holocene sediments have recorded the Laurentide ice sheet retreat accompanied by the invasion of marine waters (Laflamme Gulf) from ca 12·9 cal kyr bp . Subsequently, fluvio‐deltaic and coastal prograding wedges were deposited; they followed the base‐level fall due to glacio‐isostatic rebound. This succession, representing a transition from glacial to post‐glacial periods within a previously glaciated area, was investigated through recent mapping, preserved landforms, facies analysis, and new optical stimulated luminescence and radiocarbon dates. Three basin‐scale geological sections share a common lower part made of isolated ice‐contact fan deposits overlying bedrock. Throughout the entire basin, ice‐contact fans are capped by glacimarine muds. Above, fluvial and coastal prograding systems were deposited and evolved through four steps: (i) deltaic systems progressively increased in width; (ii) coastal influence on sedimentation increased; (iii) hydrographic drainage systems became more organised; and (iv) deltas graded from steep (Gilbert delta) to low‐angle foresets (mouth‐bar delta). Deposited during the base‐level fall from glacio‐isostatic rebound, the complete succession has been designated as a single falling stage system tract referred to as a deglacial falling stage system tract. It is representative of a deglaciation sequence in areas previously covered by ice during glacial periods (i.e. medium to high latitude domains). Diagnostic criteria are provided to identify such a deglacial falling stage system tract in the geological record, which may aid identification of previously unknown glacial cycles.  相似文献   

18.
A sedimentological study of Quaternary sediments from the northwestern part of the Barents Sea shows that their composition is controlled by the underlying Mesozoic bedrock and that very little sediment has been supplied from outside sources. The Quaternary sediments consist of Pleistocene glacial clays (moraines) and Holocene gravel, sand and mud, derived by erosion of the clay-rich moraines, which again have been derived from underlying Mesozoic rocks. On the shallow Spitsbergen Bank (30-100 m depth) we find a high energy facies of bioclastic carbonate sand and gravel and lag deposits of Mesozoic rock fragments from the underlying moraine. 14C-datings of the bioclastic carbonates (Molluscs and Barnacles) suggest that soft bottom conditions with Mya truncata prevailed in early Holocene time, succeeded by a hard bottom high energy environment with Barnacles in the last 2000-3000 years. This may be due to a southward movement of the oceanic polar front into the Spitsbergen Bank due to colder climate in Late Holocene (subatlantic) time, which at present day produces strong bottom currents down to 100 m depth. On the Spitsbergen Bank carbonate sedimentation has succeeded glacial sedimentation as a result of withdrawal of clastic sediment supply in Holocene time and high organic productivity because of upwelling. A similar mechanism may have been operating during earlier glaciations, i.e. in Late Precambrian time to produce an association of glacial and carbonate sediments although the biological precipitation was different at that time. In Late Precambrian time precipitation or carbonate by algaes may have occurred in colder water on the shelves due to higher saturation of carbonate in the sea water.  相似文献   

19.
While cap dolostones are integral to the Snowball Earth hypothesis, the current depositional model does not account for multiple geological observations. Here we propose a model that rationalises palaeomagnetic, sequence‐stratigraphic and sedimentological data and supports rapid deglaciation with protracted cap dolostone precipitation. The Snowball Earth hypothesis posits that a runaway ice‐albedo can explain the climate paradox of Neoproterozoic glacial deposits occurring at low palaeolatitudes. This scenario invokes volcanic degassing to increase atmospheric greenhouse gases to a critical threshold that overcomes the albedo effect and brings the planet back from the ice‐covered state. Once this occurs, Earth should shift rapidly from a snowball to an extreme greenhouse. However, cap dolostone units overlying glacial sediments, typically interpreted as transgressive deposits, exhibit multiple magnetic reversals indicating they accumulated in >105 years. By reviewing modern post‐glacial systems, sequence stratigraphic concepts and principles of sedimentology, we suggest that cap dolostones are not restricted to the transgression but rather represent sediment starvation following a major landward shoreline migration associated with the demise of Snowball Earth. Thus, the duration in which cap dolostone accumulated is not directly coupled to the timescale of the Snowball Earth deglaciation.  相似文献   

20.
希夏邦马峰东南富曲河谷的冰川沉积和冰川构造   总被引:2,自引:0,他引:2  
在希夏邦马峰(海拔8012m)东南富曲河谷,中更新世以来有三次冰期;即聂拉木、富曲和普罗冰期。它们均可再分为两个亚阶段。聂拉木南的高冰碛平台长3.5m,宽1.5km,厚200m。属于中更新世聂拉木冰期(聂聂雄拉冰期)的巨大山谷冰川沉积,中尼公路从高冰碛平台尾端通过,形成数公里长的冰碛剖面,呈现出美丽多姿的冰川成因类型沉积和冰川构造现象,包括冰下,冰上融出碛,冰内.冰下河道沉积,冰湖沉积,坠碛,流磺等。冰川运动时造成的冰川构造,如断层、滑动面-…等也很清楚,代表了海洋型(暖冰川)冰川沉积和冰川构造特征,是中国目前研究冰川构造最理想的场所。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号