首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov–Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.  相似文献   

2.
In astrophysical studies of Solar System bodies, the measured values of the linear polarization degree Pobs and the position angle of the polarization plane θ are usually considered relative to the plane orthogonal to the scattering plane; and the resulting quantities are designated as Pr and θr, respectively. Parameters of the phase curve of polarization Pr = f(α) serve for determining the physical characteristics of grains composing the regolith surfaces of such bodies as, for example, the Moon, Mercury, asteroids, and planetary satellites, or the polydisperse media, such as cometary comae and tails. In this paper it has been shown that the error in the polarization degree grows \({\sigma _{{P_r}}}\) due to the error \({\sigma _{{\theta _{obs}}}}\) in determining the position angle. The interrelations between these errors were obtained, and the conditions, under which the values of the linear polarization degree Pr relative to the orthogonal system can be used to analyze the phase dependences of polarization, were formulated.  相似文献   

3.
High-resolution spectra of nine yellow nonvariable supergiants (NVSs) located within the canonical Cepheid instability strip from Sandage and Tammann (1969) (α Aqr, ? Leo, μ Per, ω Gem, BD+60 2532, HD 172365, HD 187299, HD 190113, and HD 200102) were taken with the 1-m Zeiss and 6-m BTA telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences in the 1990s. These have been used to determine the atmospheric parameters, chemical composition, radial velocities, reddenings, luminosities, distances, and radii. The spectroscopic estimates of T eff and the luminosities determined from the Hipparcos parallaxes have shown eight of the nine program NVSs on the T eff?log(L/L ) diagram to be outside the canonical Cepheid instability strip. When the edges of the Cepheid instability strip from Bono et al. (2000) are used, out of the NVSs from the list on the diagram one is within the Cepheid instability strip but closer to the red edge, two are at the red edge, three are beyond the red edge, two are at the blue edge, and one is beyond the blue edge. The evolutionary masses of the objects have been estimated. The abundances of α-elements, r- and s-process elements for all program objects have turned out to be nearly solar. The СNO, Na, Mg, and Al abundance estimates have shown that eight of the nine NVSs from the list have already passed the first dredge-up. Judging by the abundances of the key elements and its position on the T eff?log(L/L ) diagram, the lithium-rich supergiant HD 172365 is at the post-main-sequence evolutionary stage of gravitational helium core contraction and moves toward the first crossing of the Cepheid instability strip. The star ? Leo should be assigned to bright supergiants, while HD 187299 and HD 190113 may have already passed the second dredge-up and move to the asymptotic branch.  相似文献   

4.
The CORONAS-I and CORONAS-F data on variations in the ionizing shortwave ultraviolet (UV) solar radiation (EUV radiation) at wavelengths of less than 130 nm and near the H Lyman-alpha line are presented. The CORONAS-I data refer to the period close to solar minimum (the index F 10.7 = 80?100), and the CORONAS-F measurements were held close to solar maximum (F10.7 = 140?280). The UV data are compared to those from the UARS and SOHO satellites and to the results obtained from the ionospheric measurements of ionosphere critical frequencies.  相似文献   

5.
We present the results of spectroscopic and photometric studies of a new polar CRTS CSS130604 J 215427+155714, conducted at the telescopes of the SAO RAS. Analysis of the photometric series of observations allowed to clarify the orbital period of the system, P o = 0. d 0672879 (±0.0000003). We build radial velocity curves and trace the intensity variations in the Hβ and Hγ hydrogen lines and He II λ 4686 ?A ionized heliumline. Based on the Hβ and He II lines we build Doppler maps. It is shown that the line formation region is localized near the Lagrange point. The following parameter estimates of the system are obtained:M 1 = 0.83 ± 0.10M , M 2 = 0.15 ± 0.01M , q = M 2/M 1 = 0.18 ± 0.03, i = 53? ± 5?. Based on the results of spectral, photometric and previously published polarimetric observations the possible geometric model of the system is discussed.  相似文献   

6.
Results of astrometric and BVRI photometric observations of the active asteroid (596) Scheila are presented. The observations were carried out at the Zeiss-1000 telescope of the Sanglokh International Astronomical Observatory of the Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan on June 16?17 and from July 30 to August 1, 2017. The coordinates of the object and its orbit were determined; and the apparent brightness in four filters, the absolute brightness in the V and R filters, and the color indices were obtained. The light curves suggest that no substantial changes in the asteroid’s brightness occurred during the observations. The absolute brightness of the asteroid in the V and R filters was (9.1 ± 0.05)m and (8.8 ± 0.03)m, respectively. The mean value of the asteroid diameter was (119 ± 2) km. The mean values of the color indices (B?V = (0.72 ± 0.05)m, V?R = (0.29 ± 0.03)m, and R?I = (0.31 ± 0.03)m) agree well with the values for asteroids of the P- and D-types and its averages. The rotation period of the asteroid estimated from photometric observations was 16.1 ± 0.2 h. The analysis of the data has shown that the asteroid continues to exhibit the same values of absolute brightness and other characteristics as those before the collision with a small body in December 2010, though the latter resulted in the outburst event and cometary activity of the asteroid. Most likely, the collision of asteroid (596) Scheila with a small body did not lead to catastrophic changes in the surface of the asteroid or to its compete break-up.  相似文献   

7.
Results are presented of a statistical analysis of dynamic parameters for 114 comets with split nuclei. A list of the objects includes actually split comets, fragments of cometary pairs, lost comets with designation D, and comets with large-scale atmospheric features. Some aspects of the hypothesis that splitting is caused by collisions of cometary nuclei with meteoroid swarms are investigated. To verify the hypothesis, an analysis is conducted of the positions of split comets’ orbits relative to 58 meteor streams from Cook’s catalogue. The calculations give the number (N) of orbital nodes of split comets relative to the plane of each swarm within a distance of 0.001, 0.005, 0.01, 0.05, and 0.1 AU from each swarm. A special algorithm is proposed for determining the degree of redundancy of N by finding the expected value and dispersion for the number of the nodes. The comparison of N with the expected value, together with the consideration of the dispersion, reveals a redundancy of N in 29 cases. Therefore, collisions of comets with meteoroid swarms can be considered as one of the possible causes of comet splitting. A similar testing is conducted for the asteroid belt and Kuiper belt as potential sources of a vast number of sporadic meteoroids. Based on the results of the calculations, the former may be considered as the most effective region of splitting of periodic comets.  相似文献   

8.
We have classified a sample of 37,492 objects from SDSS into QSOs, galaxies and stars using photometric data over five wave bands (u, g, r, i and z) and UV GALEX data over two wave bands (near-UV and far-UV) based on a template fitting method. The advantage of this method of classification is that it does not require any spectroscopic data and hence the objects for which spectroscopic data is not available can also be studied using this technique. In this study, we have found that our method is consistent by spectroscopic methods given that their UV information is available. Our study shows that the UV colours are especially important for separating quasars and stars, as well as spiral and starburst galaxies. Thus it is evident that the UV bands play a crucial role in the classification and characterization of astronomical objects that emit over a wide range of wavelengths, but especially for those that are bright at UV. We have achieved the efficiency of 89% for the QSOs, 63% for the galaxies and 84% for the stars. This classification is also found to be in agreement with the emission line diagnostic diagrams.  相似文献   

9.
This paper analyzes the capture of comets into Halley-type and Jupiter-family orbits from the nearparabolic flux of the Oort cloud. Two types of capture into Halley-type orbits are found. The first type is the evolution of near-parabolic orbits into short-period orbits (with heliocentric orbital periods P < 200 years) as a result of close encounters with giant planets. This process is followed by a very slow drift of cometary orbits into the inner part of the Solar System. Only those comets may pass from short-period orbits into Halley-type and Jupiter-family orbits, which move in orbits with perihelion distances q < 13 au. In the second type of capture, the perihelion distances of cometary orbits become rather small (< 1.5 au) during the first stage of dynamic evolution under the action of perturbations from the Galaxy, and then their semimajor axes decrease as a result of diffusion. The capture takes place, on average, in 500 revolutions of the comet about the Sun, whereas in the first case, the comet is captured, on average, after 12500 revolutions. The region of initial orbital perihelion distances q > 4 au is found to be at least as important a source of Halley-type comets as the region of perihelion distances q < 4 au. More than half of the Halley-type comets are captured from the nearly parabolic flux with q > 4 au. The analysis of the dynamic evolution of objects moving in short-period orbits shows that the distribution of Centaurs orbits agrees well with the observed distribution corrected for observational selection effects. Hence, the hypothesis associating the origin of Centaurs with the Edgeworth-Kuiper belt and the trans-Neptunian region exclusively should be rejected.  相似文献   

10.
We present the results of the study of the eclipsing polar CRTS CSS081231 J071126+440405. Photometric observations allowed us to refine the orbital period of the system \(P_ \circ = 0_ \cdot ^d 0.08137673\). Considerable changes in the appearance of the object’s spectra have occurred over the period of September 20–21, 2001: the slope of the continuum changed from “red” to “blue”, and the variability of the line profiles over the duration of the orbital period has also changed. Doppler maps have shown a shift of the emission line-forming region along the accretion stream closer to the white dwarf. We measured the duration of the eclipse of the system and imposed constraints on the inclination angle \(78_ \cdot ^ \circ 7 < i < 79_ \cdot ^ \circ 3\). The derived radial velocity amplitude was used to obtain the basic parameters of the system: M1 = 0.86 ± 0.08M, M2 = 0.18 ± 0.02 M, q = 0.21 ± 0.01, RL2 = 0.20 ± 0.03 R, A = 0.80 ± 0.03 R. The spectra of the object exhibit cyclotron harmonics. Their comparison with model spectra allowed us to determine the parameters of the accretion column: B = 31–34 MG, Te = 10–12 keV, θ = 80–90°, and Λ = 105.  相似文献   

11.
A series of highly accurate photoelectric observations of the eclipsing binary MZ Lac was obtained with a 48-cm AZT-14 reflector at the Tien-Shan High-Altitude Station of the Sternberg Astronomical Institute from 1985 to 2004 to study its apsidal motion. We constructed a consistent system of physical and geometrical parameters of the components and the binary’s orbit: we determined their masses (M1 = 1.50M, M2 = 1.29M), radii (R1 = 1.86R, R2 = 1.35R), luminosities (L1 = 0.79L, L2 = 0.45L), surface gravities (logg1 = 4.06, logg2 = 4.27), age (t = 1.9 × 109 yr), and the distance to the binary (d = 510 pc). The binary exhibits apsidal motion with the period Uobs = 480 ± 40 yr, while its theoretically expected value is Uth = 450 ± 40 yr. Spectroscopic studies of MZ Lac and calculations of the absolute parameters of the components are required to test our conclusions.  相似文献   

12.
We use the technique developed in our previous studies to determine the ratios of optical depth components τ a R and τκ S on the basis of the observational data on the Uranian geometrical albedo for the years 1981, 1993, and 1995. Here τ a and τ R are the aerosol and gas scattering components, τ S = τ a + τ R , and τκ is the absorption component of the effective optical depth at which the intensity of the diffusely reflected radiation is formed. The ratios turn out to be different for different years. This phenomenon is caused by the horizontal inhomogeneity of the aerosol component distribution over the Uranian disk.  相似文献   

13.
Meteorite impacts onto a small satellite lead to the ejection of a regolith mass, which is much greater than the impactor mass, into cosmic space. Assume that an isotropic ejection with velocities smaller than the maximum possible velocity b took place at the time moment t 0. Since the orbital periods are unequal, the particle trajectories will densely fill a certain domain D. The same domain will be filled after an explosion of an artificial satellite moving in a high orbit. One to three months later, the node and pericenter longitudes will be distributed over the entire circle and the domain D will become a body of revolution, a topological solid torus. We examine the domain of possible particle motion and its boundary S immediately after the impact event (an unperturbed case) and the same domain under the assumption that the initial longitudes of nodes and pericenters were already a result of considerable changes (a perturbed case). In both cases, we managed to construct the domain D and its boundary S analytically: parametric equations containing only relatively simple functions were obtained for S. The basic topologic and differential-geometric properties of S were studied completely.  相似文献   

14.
The paper describes unmanned spacecraft Luna-9, Luna-10, and similar ones designed by NPO Lavochkin. The history of their development is given, and their high importance in lunar studies is noted. Projects of Luna-Globe, Luna-Resurs, and Luna-Grunt that should be implemented in the near future are briefly described.  相似文献   

15.
We consider a spherically symmetric general relativistic perfect fluid in its comoving frame. It is found that, by integrating the local energy momentum conservation equation, a general form of g 00 can be obtained. During this study, we get a cue that an adiabatically evolving uniform density isolated sphere having ρ(r,t)=ρ 0(t), should comprise “dust” having p 0(t)=0; as recently suggested by Durgapal and Fuloria (J. Mod. Phys. 1:143, 2010) In fact, we offer here an independent proof to this effect. But much more importantly, we find that for the homogeneous and isotropic Friedmann-Robertson-Walker (FRW) metric having p(r,t)=p 0(t) and ρ(r,t)=ρ 0(t), \(g_{00} = e^{-2p_{0}/(p_{0} +\rho_{0})}\). But in general relativity (GR), one can choose an arbitrary tt ?=f(t) without any loss of generality, and thus set g 00(t ?)=1. And since pressure is a scalar, this implies that p 0(t ?)=p 0(t)=0 in the Big-Bang model based on the FRW metric. This result gets confirmed by the fact the homogeneous dust metric having p(r,t)=p 0(t)=0 and ρ(r,t)=ρ 0(t) and the FRW metric are exactly identical. In other words, both the cases correspond to the same Einstein tensor \(G^{a}_{b}\) because they intrinsically have the same energy momentum tensor \(T^{a}_{b}=\operatorname {diag}[\rho_{0}(t), 0,0, 0]\).  相似文献   

16.
In this paper, we consider the inverse problem of central configurations of n-body problem. For a given \({q=(q_1, q_2, \ldots, q_n)\in ({\bf R}^d)^n}\), let S(q) be the admissible set of masses denoted \({ S(q)=\{ m=(m_1,m_2, \ldots, m_n)| m_i \in {\bf R}^+, q}\) is a central configuration for m}. For a given \({m\in S(q)}\), let S m (q) be the permutational admissible set about m = (m 1, m 2, . . . , m n ) denoted
$S_m(q)=\{m^\prime | m^\prime\in S(q),m^\prime \not=m \, {\rm and} \, m^\prime\,{\rm is\, a\, permutation\, of }\, m \}.$
The main discovery in this paper is the existence of a singular curve \({\bar{\Gamma}_{31}}\) on which S m (q) is a nonempty set for some m in the collinear four-body problem. \({\bar{\Gamma}_{31}}\) is explicitly constructed by a polynomial in two variables. We proved:
  1. (1)
    If \({m\in S(q)}\), then either # S m (q) = 0 or # S m (q) = 1.
     
  2. (2)
    #S m (q) = 1 only in the following cases:
    1. (i)
      If s = t, then S m (q) = {(m 4, m 3, m 2, m 1)}.
       
    2. (ii)
      If \({(s,t)\in \bar{\Gamma}_{31}\setminus \{(\bar{s},\bar{s})\}}\), then either S m (q) = {(m 2, m 4, m 1, m 3)} or S m (q) = {(m 3, m 1, m 4, m 2)}.
       
     
  相似文献   

17.
Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of ~100 000 clump red giants within ~800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18R 2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as “standard candles.” This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode(M H ) = ?1.49 m ± 0.04 m , mode(M Ks ) = ?1.63 m ± 0.03 m , mode(M W1) = ?1.67 m ± 0.05 m mode(M W2) = ?1.67 m ± 0.05 m , mode(M W3) = ?1.66 m ± 0.02 m , mode(M W4) = ?1.73 m ± 0.03 m , as well as the corresponding estimates of their de-reddened colors.  相似文献   

18.
The light curves of the periodic comet 9P/Tempel 1 obtained during its apparitions in 1972, 1983, 1994, and 2005 have been constructed and studied. The values of the photometric parameters H 0, n, and H 10 have been determined for these apparitions; and secular variations of the comet’s brightness have been studied. The light curve of the comet obtained close to the moment of the artificial impact agrees well with the change in the production rate of water molecules. The presented results are important from the point of the possible change in the photometric parameters induced by the artificial impact and the long-term evolution of the cometary core activity.  相似文献   

19.
The formation of luminescent subordinate He I lines by the absorption of radiation from a source in lines of the main He I series in an expanding Universe is considered. A burst of radiation in continuum is assumed to occur at some instant of time corresponding to redshift z0. This radiation is partially absorbed at different z < z0 in lines of the main He I series (different pumping channels) and then is partially converted into radiation in subordinate lines. If ν ik is the laboratory transition frequency of some subordinate line emerging at some z, then at the present epoch its frequency will be ν = ν ik /(1 + z). The quantum yield, i.e., the number of photons emitted in the subordinate line per initial excited atom, has been calculated for different z (and, consequently, for different ν). Several pumping channels have been considered. We show that the luminescent lines can be both emission and absorption ones; the same line can be an emission one for one of the pumping channels and an absorption one for another. For example, the 1s2s–1s2p (1S–1P*) line is an emission one for the 1s2–1s2p pumping and an absorption one for the 1s2–1s3p pumping. We show that in the frequency range 30–80 GHz the total quantum yield for the first and second of the above channels can reach +50 and ?50%, respectively.  相似文献   

20.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号